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Abstract  

We argue that  the random oracle model --where all par- 
ties have access to a public random oracle-- provides a 
bridge between cryptographic theory and cryptographic 
practice. In the paradigm we suggest, a practical proto- 
col P is produced by first devising and proving correct 
a protocol pR for the random oracle model, and then 
replacing oracle accesses by the computation of an "ap- 
propriately chosen" function h. This paradigm yields 
protocols much more efficient than standard ones while 
retaining many of the advantages of provable security. 
We illustrate these gains for problems including encryp- 
tion, signatures, and zero-knowledge proofs. 

1 Introduct ion 

Cryptographic theory has provided a potentially in- 
valuable notion for cryptographic practice: the idea of 
provable security. Unfortunately, theoretical work often 
seems to gain provable security only at the cost of effi- 
ciency. This is due in part to the following. Theorists 
view certain primitives (e.g., one-way functions) as "ba- 
sic" and build more powerful primitives (e.g., pseudo- 
random functions) out of them in inefficient ways; but 
in practice, powerful primitives are readily available and 
the so-called basic ones seem to be no easier to imple- 
ment. In fact theorists deny themselves the capabili- 

* High Performance Computing and Communications, IBM 
T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, 
NY 10598, USA. e-mail: mihir@watson.ibm, com. 

t PS LAbl System Design, IBM Personal Software Prod- 
ucts, 11400 Burnet Road, Austin, TX 78758, USA. e-mail: 
rogaway@aust in .  ibm. com. 

Permission to copy without fee all or part of this material is 
granted provided that the copies era not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, end notice is given 
that copying is by permission of the Association for Computing 
Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission, 
1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA 
© 1993 ACM 0-89791-629-8/93/0011..,$1.50 

ties of practical primitives which satisfy not only the 
strongest kinds of assumptions they like to make, but 
even have strengths which have not been defined or for- 
malized. 

In order to bring to practice some of the benefits of 
provable security, it makes sense to incorporate into our 
models objects which capture the properties that  prac- 
tical primitives really seem to possess, and view these 
objects as basic even if the assumptions about them 
are, from a theoretical point of view, very strong. This 
paper highlights the efficacy and potential of one such 
approach. The idea is a simple one: namely, provide all 
parties - -good and bad alike--  with access to a (public) 
random oracle; prove correct a protocol in this model; 
then replace the random oracle by an object like a hash 
function. We stress that  the proof is in the random or- 
acle model and the last step is heuristic in nature. It is 
a thesis of this paper that  significant assurance benefits 
nonetheless remain. 

The idea of such a paradigm builds on work of Gol- 
dreich, Goldwasser and Micali [20, 211 and Fiat-Shamir 
[14]. It is guided by many previous "unjustified" uses 
of hash functions. Finally, it incorporates viewpoints 
which, shared and verbally articulated by many mem- 
bers of our community, should be regarded as folk- 
lore. In this light, we view our contribution as follows. 
First, we raise the implicit philosophy behind the use of 
a random oracle to an explicitly articulated paradigm 
which we maintain brings significant benefits to prac- 
tice. Second, we systematically apply the paradigm to 
diverse cryptographic problems to obtain efficient so- 
lutions. Third, we provide definitions and proofs to 
show that  some of the previously "unjustified" uses of 
hash functions can find justification in the random or- 
acle model. Finally, we suggest constructions of hash 
functions which we believe are appropriate to instanti- 
ate the random oracle. We proceed by describing the 
paradigm in further detail. For details on background 
and related work see Section 1.3. 
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1 .1  T h e  R a n d o m  O r a c l e  P a r a d i g m  

The aforementioned disparity between the theoreti- 
clans' and practioners' views on primitives is illustrated 
by the following example. Theorists view a one-way 
function as a basic object and build pseudo-random 
functions from them. But in practice, as indicated by 
Luhy and Rackoff [30, 31], the DES provides a pseudo- 
random function of 64 bits to 04 bits. Ironically, if one 
needs a practical protocol for a one-way function, likely 
one would construct it from DES-- thereby reducing the 
"simple" primitive to the "complex" one. 

If one is trying to design efficient protocols, it makes 
more sense to start off making strong, realistic assump- 
tions about  the primitives that  will be used. Based on 
the paragraph above, a pseudorandom function on 64- 
bit strings is an excellent starting point. As we describe 
below, it seems reasonable to adopt even more generous 
assumptions. 

POWERFUL PRIMITIVES. Let us look at a second 
efficiently-computable primitive: the map h2 defined by 
the MD5 algorithm [35] restricted to inputs of length 
< 400, say. 1 One has expectations like these of this func- 
tion: that  it is hard to find an z such that  h2(z)  = z; 
that  it is hard to find an z such that  h2(z) has Ham- 
ming weight exceeding 120; that  fa ( z )  = h2(za)  is (in 
practice) a pseudorandom function family; etc. What  
really is this object? To date, there has been no sat- 
isfactory answer. Tha t  is, there is no formal definition 
which captures a large fraction of the nice properties 
this function seems to possess--and it is not clear that  
one can be found. 

THE PARADIGM. Our answer to "what might a function 
like h2 accomplish?" is to say that  it can be thought of 
as a random function in the sense that  it can be used 
in the following design methodology in the role of h. 
Suppose one has a protocol problem 1I (the problem 
being "independent" of the primitive h.) In order to 
devise a good protocol P for II: 

(1)  Find a formal definition for II in the model of com- 
putation in which all parties (including the adver- 
sary) share a random oracle R. 

(2)  Devise an efficient protocol P for II in this random 
oracle model. 

(3)  Prove that  P satisfies the definition for II. 

(4)  Replace oracle accesses to R by computat ion of h. 

It is our thesis that  this method, when properly car- 
ried out, leads to secure and efficient protocols. In- 
deed, protocols constructed under this paradigm have 
so far proven "secure" in practice. But we stress that  
all claims of provable security are claims made within 

ISee  Sec t ion  6 for why  we prefer  no t  to  use MD5 itself.  

the random oracle model, and instantiating the oracle 
with h is only a heuristic whose success we trust from 
experience. 

Note that  h cannot really be like a random function 
because it has a short description. In many ways, h 
is very different from a random oracle. This has not 
altered the success of the method. 

We stress that  the protocol problem II and protocol 
P must be "independent" of the hash function we are 
to use. It is easy to construct unnatural  problems or 
protocols whose description and goals depend explicitly 
on h so that  the protocol is secure in the random oracle 
model but fails when the random oracle is instantiated 
with the hash function. The notion of "independence" 
will not be formalized in this paper. 

INSTANTIATION. For the body of this paper, we assume 
a random oracle R from (0, 1}* to (0, 1} °°. We use 
such an oracle without further explanation to provide 
whatever random maps are convenient for describing a 
given protocol. 

When instantiating a random oracle by a concrete 
function h, care must he taken first to ensure that  h 
is adequately conservative in its design so as not to 
succumb to cryptanalytic attack, and second to en- 
sure that  h exposes no relevant "structure" attribut- 
able to its being defined from some lower-level primi- 
tive. Examples of both types of pitfalls are given in 
Section 6. As explained in tha t  section, standard hash 
functions like MD5 and SHA don't  by themselves make 
good replacements for a random oracles; but one does- 
n ' t  have to look much further. Candidate instantiations 
include hash functions with their outputs truncated; 
hash functions with their input lengths restricted; and 
hash functions used in some nonstandard way, such as 
ha(z) ---- MD5(~x). See Section 6. 

1 .2  R e s u l t s  

The results of this paper can can be divided into three 
kinds. First are new and efficient solutions for vari- 
ous cryptographic problems. Second are justifications of 
known heuristics. Third are some "theoretical" results 
in the random oracle model which our investigations 
have lead us to prove. In each case we provide proto- 
cols, theorems, and the new definitions appropriate to 
the random oracle setting. 

EFFICIENT ENCRYPTION. Goals which are possible 
but impractical in the standard setting become prac- 
tical in the random oracle setting. We illustrate with 
one example: public key encryption. In what follows 
G: (0, 1}* ---, (0, 1} °° is a random generator; k is the 
security parameter; H: (0, 1}* --, (0, 1} ~ is a random 
hash function; f is a trapdoor permutation with inverse 
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f - l ;  G(r) @ x denotes the bitwise XOR of z with the 
first [z[ bits of the output of G(r); and "H" denotes con- 
catenation. For a concrete implantation, f might be 
squaring [35] or RSA [38]. 

We suggest two schemes to encrypt efficiently in the 
random oracle model: 

(1) Set EG(z) ---- f ( r )  II a ( , )  • for a random value 
r from the domain of f .  

(2) Set  EG'H(x )  -~ f ( r )  ][ G ( r ) G z  I[ H ( r x )  for a ran- 
dom value r from the domain of .f. 

Here z is the message to be encrypted, f is the recip- 
ient's public key, and f - 1  is his secret key. For back- 
ground, definitions, precise statements of results, and ef- 
ficiency comparisons with known schemes see Section 3, 
but, briefly, what is argued there is the following: the 
first scheme achieves polynomial/semantic security as 
defined by [24]; the second is secure against chosen- 
ciphertext attack in the sense of [36] as well as non- 
malleable in the sense of [13]; and both are significantly 
more efficient than previous provably-secure schemes 
[24, 4, 34, 36, 11, 13] for the same goals. 

JUSTIFICATION O F  KNOWN HEURISTICS. A variety of 
well-known "tricks" find formal justification by moving 
to the random oracle setting. (This does not mean that  
existing protocols can usually be justified by adopting a 
random oracle model; to the contrary, it appears to be 
more the exception than the rule.) We illustrate with 
the following pair of examples. 

Popular signature schemes such as RSA are an in- 
stance of the following: for a trapdoor permutation 
f and hash function H the signature of message z is 
f - l ( / . / (~) ) .  It is widely recognized that  no natural 
properties of a hash function make such a method a 
secure signature scheme. However for H a random hash 
function we show the scheme is secure against adaptive 
chosen message attack. See Section 4. 

A heuristic to eliminate interaction in a zero- 
knowledge interactive proof, attributed to M. Blum, 2 is 
to have the prover essentially ask of himself the queries 
that  a verifier would ask by computing these queries 
as the hash of the messages already exchanged between 
the parties. We show that  this construction is prov- 
ably secure in the random oracle model. Providing this 
proof has necessitated giving formal definitions for zero- 
knowledge in the random oracle model. See Section 5. 

THEORETICAL RESULTS. Generalizing the result just 
described, we show that  any language that  has an in- 
teractive proof can have its proof efficiently transformed 
into a non-interactive zero-knowledge one. The model 
of computation is that  all parties --including cheating 
provers-- are afforded only polynomially many queries 

2 Personal communication, via S. Micali and S. Rudich. 

to the random oracle. We also show that  in the random 
oracle model, constant round, information theoretically 
secure function evaluation is possible, s Definitions and 
proofs of these results are omitted for lack of space. 

1 .3  B a c k g r o u n d  a n d  R e l a t e d  W o r k  

The basic idea of proving correct a protocol in a model 
where the parties have a random oracle and then instan- 
tiating that  oracle with an appropriate cryptographic 
primitive originates in [20, 21]. The cryptographic prim- 
itive suggested and constructed for this purpose by [20] 
is the pseudo-random function (PRF). For a PRF to 
retain its properties, however, the seed via which it is 
specified (and which enables its computation) must re- 
main unknown to the adversary. Thus the applicability 
of the paradigm is restricted to protocols in which the 
adversary is denied access to the random oracle. 4 Thus 
in many applications (and the ones of this paper in par- 
ticular) PRFs don't  suffice. Note, however, that  when 
the setting permits instantiation of the oracle via PRFs, 
the resulting protocol can usually be proven correct in 
the standard model of computation under a standard 
complexity-theoretic assumption, something instantia- 
tion via hash functions as we suggest does not achieve. 

The first work which explicitly adopts a public ran- 
dom oracle model - -a l l  parties, adversary included, can 
access the oracle-- is that  of Fiat and Shamir [14]. The 
authors use this model to turn an identification scheme 
into a digital signature scheme (without "totally" sac- 
rificing rigor in the course of this transformation). 

M. Blum's aforementioned idea of making interactive 
proofs non-interactive can be thought of as an extension 
of the Fiat-Shamir idea. An exciting recent result on 
computationally bounded checking, due to Micali [32], 
exploits in part this same technique. 

Impagliazzo and Rudich [27] model one-way functions 
as random oracles. They do this in order to show that  
proving the existence of a secret key exchange protocol 
given a black box one-way function is as hard as sep- 
arating P from NP. They also use random oracles for 
positive results; among these, they formalize and prove 
the existence of a private key cryptosystem in the ran- 
dom oracle model. 

Concurrent and independent of our work, Leighton 
and Micali [28] view hash functions as public random 
oracles to justify the security of a new, efficient signature 
scheme. They use the random oracle model to define 
and prove exact, non-asymptotic security. In another 

3 In this application it does not suffice to replace the pseudo- 
random generator used in [1] by a random generator. 

4 That is, the adversary is denied direc~ access to the oracle. 
A particular problem might permit the adversary indirect access 
to the oracle via her interaction with the good parties. 
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paper [29] the same authors use hash functions viewed as 
random oracles to give new secret key exchange schemes. 

Because of the breadth of topics in this paper, history 
specific to to a particular goal is summarized in the 
section that describes that goal. 

1 .4  F u t u r e  D i r e c t i o n s  

Brought out in only a limited way in the current work, 
and fully in [28], is the fact that the random oracle 
model facilitates giving definitions and results precise 
in the sense of avoiding complexity theory and asymp- 
totics. It is feasible and desirable to make our results 
precise in this sense. A typical theorem would express 
the advantage an adversary gains in terms of the num- 
ber of oracle queries which she makes. 

We know no complexity-theoretic assumption which 
does a good job of capturing all the nice properties of a 
public random oracle. Is there a way to extend the [20] 
notion of a pseudorandom function family to an equally 
useful and compelling notion which involves no hidden 
randomness? 

2 P r e l i m i n a r i e s  

NOTATION. {0, I}* denotes the space of finite binary 
strings and {0, i} °° denotes the space of infinite ones. 
Strings are finite unless we say otherwise. We denote 
by anlb , or just ab, the string which is the concatena- 
tion of strings a and b. The empty string is denoted 
A. A polynomial time algorithm is one which runs in 
time polynomial in its first argument. "PPT" stands 
for "probabilistic, polynomial time." A function e(k) 
is negligible if for every c there exists a k~ such that  
e(k) <_ k -c for every k > k~. A function is said to be 
non-negligible if it is not negligible. We'll use the nota- 
tion "k-~( 1)" to mean the class negligible functions or 
a particular anonymous function in this class. For spec- 
ifying probabilistic experiments and spaces we use the 
notation originating in [26]. Recall in particular that  
if A is a probabilistic algorithm of inputs z, y , . . .  then 
a ~ A(z, y , . . . )  denotes the experiment of choosing a 
by running A(z, ~/,...), and [A(z, y , . . . ) ]  denotes the set 
of all elements which can be output by A(z, y , . . . )  with 
positive probability. 

ORACLES. For convenience, a random oracle R is a 
map from {0, 1}* to {0, 1} °° chosen by selecting each bit 
of R(z) uniformly and independently, for every z. Of 
course no actual protocol uses an infinitely long output, 
this just saves us from having to say how long "suffi- 
ciently long" is. We denote by 2 °0 the set of all random 
oracles. 

The letter "R" will denote the "generic" random or- 
acle, while G: {0, 1}* --, {0, 1} °° will denote a random 
generator and H: {0, 1}* ~ {0, 1} ~ a random hash 
function. Whenever there are multiple oracles men- 
tioned, all of these are independently selected. Via all 
sorts of natural encodings, a single random oracle R can 
be used to provide as many independent random oracles 
as one wants. 

As usual the oracles provided to an algorithm are in- 
dicated by superscripts. Sometimes the oracle is under- 
stood and omitted from the notation. 

TRAPDOOR PERMUTATIONS. Following [26], a ~rapdoor 
permutation generator is a PPT algorithm G. which on 
input 1 ~ outputs (the encoding of) a triple of algorithms 
(f,  f - l ,  d). The first two are deterministic and the last 
is probabilistic. We require that  [d(lk)] be a subset of 
{0, 1} k and that  f ,  f - 1  be permutations on [d(lk)] which 
are inverses of one another. We require that  there exist 
a polynomial p such that  f ,  f - 1  and d are computable 
in time p(k), and that for all nonuniform polynomial 
time adversaries M,  

e(k) = Pr[ (f,  f - l ,  d) ~-- G.( l t ) ;  

y M(f ,  d, y) = ] 
is negligible. As mentioned before, squaring modulo an 
appropriate composite number [42, 3], variations of it 
[26], or RSA [38] are good examples of trapdoor per- 
mutations. Call a trapdoor permutation generator ~.  
uniform if for all k and all (f,  f - l ,  d) E [G(I~)] it is the 
case that  d is the uniform distribution on {0, 1} k. 

3 E n c r y p t i o n  

We have relied on definitional work in [24, 33, 19, 18, 
34, 13]. For simplicity we consider adversaries who 
are nonuniform (polynomial time) algorithms, possi- 
bly probabilistic; extensions to the uniform case can be 
made following [18]. 

ENCRYPTION. We extend the notion of public key en- 
cryption [12] to the random oracle model. The scheme 
is specified by a PPT  generator G which takes a se- 
curity parameter 1 k and outputs a pair of probabilis- 
tic algorithms (E, D) which are called the encryption 
and decryption algorithms respectively and which run 
in time bounded by G's time complexity. A user U runs 
G to get (E, D) and makes the former public while keep- 
ing the latter secret. To encrypt message z anyone can 
compute y 4-- ER(z) and send it to U; to decrypt ci- 
phertext y user U computes z ~-- DR(y). We require 
DR(ER(z)) = z for all z and assume for simplicity that  
DR(y) = 0 if y is not the encryption under E R of any 
string z. 
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3 .1  P o l y n o m i a l  S e c u r i t y  

BACKGROUND. The "basic" security goal of public key 
encryption finds its formalization in Goldwasser and Mi- 
cali's iequivaient) notions of polynomial and semantic 
security [24]. If By denotes a hard core predicate for 
f i c f .  [5, 43, 23]) then security in the sense of [24] can 
be achieved by setting E(z) = f ( r t )  [[ . . .  11 f(rlzl) 
where each ri is randomly chosen from the domain of 
f with the restriction that  Byiri ) = xi. This yields 
an encryption of length O(k. [z]), which requires O([zl) 
evaluations of f to encrypt and O([z D evaluations of 
f - 1  to decrypt, which is not practical. A more effi- 
cient construction of Blum and Goldwasser [4] yields 
encryptions of size O(]z I + k) requiring O(Izl) modular 
squarings operations to encrypt and O(1) modular ex- 
ponentiations plus o(Izl) modular squaring to decrypt, 
which is still too expensive. Practioners often embed 
the message z into an otherwise random value r~ and 
then set E(z) = f(r~).  (For example, this is exactly 
what [39] specifies.) The embeddings usually used do 
not guarantee that  z is as hard to find as r~ (let alone 
that  all properties of z are hidden). 

DEFINITION. We adapt the notion of polynomial se- 
curity [24] to the random oracle model. (A similarly- 
extended notion for semantic security remains equiv- 
alent.) A CP-adversary (chosen-plaintext adversary) 
A is a pair of nonuniform polynomial time algorithms 
(F, A1), each with access to an oracle. For an encryp- 
tion scheme G to be secure in the random oracle model 
we require that  for any CP-adversary A = i F, A1), 

P r [R  ~ 2°°; iE, D) +-- G(I~); (rno,rnl) +-- F n i E ) ;  

b {0,1);  ER(mb) : 
Af(E,  raG, ml ,  or) = b] < ½ + k -'°(1). 

Note that  the oracle used to encrypt and decrypt is 
given to the adversary who tries to distinguish the en- 
cryption of strings m0 and ml ,  so, for example, a hash 
H(z)  with H derived from R could most certainly not 
appear in the secure encryption of a string x. 

ENCRYPTION BY E(z) = f(r) II G(r) • To specify 
our encryption scheme, let G, be a trapdoor permuta- 
tion generator and let G: {0, 1}* --~ {0, 1} °° be a ran- 
dom generator. On input 1 t our generator G runs ~. 
to get (f, f-X,d). E is the algorithm which on input z 
picks r ~ d(1 ~) and outputs EG(z) = f ( r )  II G ( r ) ~ z ,  
where G(r) @ z denotes the XOR of the first Izl bits of 
Gir  ) with z. Of course the decryption function is then 
DO(ys) = s @ G( f-l(V)). 

THEOREM. In Appendix A we show that  the above 
scheme is polynomially secure in the random oracle 
model. 

COMPARISON. We achieve encryption size o(Izl + k). 
Besides hashing of negligible cost, encryption needs one 
application of ] and decryption needs one application 
of f - x .  Setting f to squaring this means one modular 
squaring to encrypt and one modular exponentiation to 
decrypt. This is much more efficient than the scheme of 
[4] discussed above. 

3 . 2  C h o s e n  C i p h e r t e x t  S e c u r i t y  

BACKGROUND. Naor and Yung [34] provided a defini- 
tion of chosen ciphertext security and the first scheme to 
provably achieve it. Rackoff and Simon [36] suggested 
a stronger notion and a corresponding solution; another 
solution was given by De Santis and Persiano [11]. The 
last two exploit proofs of knowledge, as suggested ear- 
lier by [17, 6]. All known schemes provably secure un- 
der standard assumptions rely on non-interactive zero- 
knowledge proofs [7, 16] and are prohibitively inefficient. 
Damg&rd [10] suggests an efficient scheme to achieve 
the definition of [34], but this scheme is not proven to 
achieve the definition of [34] and it does not achieve 
the one of [36] which we are interested in. A scheme of 
Zheng and Seberry [44] closely related to ours will be 
discussed later. 

DEFINITION. We adapt the definition of [36] to the ran- 
dom oracle setting. An RS-adversary ("Rack°ff-Sim°n 
adversary") A is a pair of nonuniform polynomial time 
algorithms A = (F, A1), each with access to an oracle 
R and a black box implementation of D R. F ' s  job is to 
come up with a pair of (equal length) messages m0 and 
ml  such that  if A1 is given the encryption ct of a random 
one of these, A1 won't be able to guess well which one 
as long as A1 is not allowed to ask a of the decryption 
oracle. Formally, Ai is forbidden from asking an oracle 
query equal to its final argument. Encryption scheme 

is secure against RS-attack if for each RS-adversary 
A : (F, A1), 

P r [ R  *-- 2°°; (E ,D)  +-- G(lk); (mo, ml)  *-- FR'DR(E); 

b +-- {0, 1}; ~ *-- Eaimb): 
A R'DR' ' a) b] < + 1 ~/~, 7nO, ~i, ---- _ _  

ENCRYPTION BY E(x)  : f i  r ) II G ( r ) •  • II 
It is easy to see that  the scheme of the previous sec- 
tion is not secure against RS-attack. We now specify 
an efficient scheme which is. Let G, be a trapdoor 
permutation generator. Let G: {0, 1}* ---, {0, i} ~ be 
a random generator, and let H: {0, 1}* --* <0, 1} k be 
a random hash function, independently derived from 
the random oracle. The generator G of our scheme 
runs G. to get (f,  f - l , d ) .  E is the algorithm which 
on input z picks r +-- di 1~) and outputs EG'Hix ) +-- 
f i r )  II • • Gir) II H i r e )  To decrypt a string y, parse 
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it to a II ~ II b for I~l = Ibl = k and define DO'H(y) as 
w~G( f -~ (a ) )  if H( f - t (a )  II w@G(f- t (a)) )  : b, and 
0 otherwise. 

THEOREM. In Appendix A we show that  the above 
scheme is secure against chosen-ciphertext attack. 

COMPARISON. Translated into the random oracle model 
and our notation, the scheme of Zheng and Seberry [44] 
is E*(z) = / ( r )  II (G(,)  ~ (~H(~))). This scheme is as 
efficient as ours, and we believe it has the same security 
properties. Thus, the random oracle model serves to 
justify the construction of [44]. 

3 . 3  N o n - M a l l e a b i l i t y  

BACKGROUND. The notion of non-malleability was in- 
troduced by Dolev, Dwork and Naor [13]. Informally, 
an encryption scheme is non-malleable if you cannot, by 
witnessing an encryption of a string z, produce the en- 
cryption of a related string z ~. For example, given the 
encryption of z you shouldn't be able to produce the en- 
cryption of ~. The notion extends polynomial security, 
and in particular the latter is implied by the former. A 
construction of non-malleable schemes is given in [13]. 
However, this construction is completely impractical, in- 
volving huge public keys, computation of multiple signa- 
tures, and many non-interactive zero knowledge proofs. 

DEFINITION. We adapt to the random oracle setting 
the definition of [13]. An interesting relation p~,~ : 
<0,1}* × {0,1}* ---, {0,1} must satisfy p~ , , ( z , z )  = 
p~,.Cz, 0') = o for every z e {0 ,1}* ,  i e N, R e 2 °°, 
and E, ~r G {0, 1].*; furthermore, p must be computable 
by a polynomial time Turing machine MR(z,  y, E, 7r). 
An M-adversaxy ("malleability adversary") .4 is a pair 
(F, A) of non-uniform probabilistic polynomial time al- 
gorithms, each with access to an oracle R. When F runs 
it outputs the description of an algorithm 7r which also 
takes an oracle and which runs with time complexity 
no greater than that  of F.  For an encryption scheme 

to be non-malleable we require that  for every inter- 
esting relation p and every M-adversaxy (F, A) there 
exists a (nonuniform) polynomial time A. such that  
[ e (k ) -  ¢.(k)] is negligible, where 

e(k) = Pr [R  #-- 2°0; (E,D) ~- G(I~); 7r ~-- FR(E);  

~- ¢~(1~);  ~ ~- ER(z) ;  ~' ~_ A~(E, ¢, ~ ) :  

p~,¢(z, DR(a'))  = 1 ] 

, , (k )  = Pr [R  ~-- 2°°; (E,D) ~-- G(lk); ~r ~ FR(E);  

' AR,(E, 7r): 

pR t z D R t a ~  I] E,~rk , ~, .11 = 
See [13] for explanations on the intuition underlying this 
definition, including the restriction on the relation p. 

ENCRYPTION BY E(:c) = f(r)II G ( r ) ~  • II H(r~). 
The encryption scheme is the same as that  of the pre- 
vious section. 

THEOREM. In Appendix A we show that  the above 
scheme is non-malleable. 

4 S i g n a t u r e s  

DEFINITION. We extend the definitions of [26] to the 
random oracle setting. A digital signature scheme is 
a triple (~, Sign, Verify) of polynomial time algorithms, 
called the generator, signing algorithm, and verifying 
algorithm, respectively. The first two axe probabilis- 
tic and the last two have access to the random oracle. 
On input 1 ~, the generator produces a pair (PK, SK) 
of matching public and secret keys. To sign message 
rn compute a ~ SignR(SK, rn); to verify (m, or) com- 
pute VerifyR(PK, m, or) E {0, 1}. It must be the case 
that VerifyR(PK, m, or) = 1 for all or e [SignR(SK, ~)]. 
An S-adversary ("signing adversary") is a (nonuniform) 
polynomial-time algorithm F with access to R and a 
signing oracle. The output  of F is a pair (m, or) such 
that  ra was not queried of the signing oracle. The sig- 
nature scheme is secure if for every S-adversaxy F the 
function ¢(k) defined by 

P r [R  ~-- 2°°; (PK, SK) 4-- G(I~); (rn, a) 4-- 

FR,Sig"~(SK,')(PK) : VerifyR(PK, rn, or) : 1 ] 

is negligible. We say that  F is successful if its output 
(rn, or) satisfies VerifyR(PK, m, or) = 1. 

PROTOCOL. Fix a trapdoor permutation generator G.. 
For simplicity assume it is uniform; see below for how 
to patch things for standard ones. Let H: {0, 1}* --* 
{0, 1) k denote as usual a random hash function. The 
signature scheme is ({~, Sign H, Verify H) where G on in- 
put 1 k outputs PK = f and SK =/-1; SignH(f - l ,m)  
is f - l (H(m)) ;  and VerifyH ( f  , m, a) is 1 if and only 
if f(or) = H(rn). In other words just the "classical" 
method of signing with the aid of a hash function. 

UNIFORMITY: A TECHNICALITY. Standard trapdoor 
permutations (squaring based or RSA) are not uniform 
and the scheme must be patched to handle them. There 
are many ways of patching. RSA, and squaring as de- 
fined in [26], have dense domains in which membership 
can be efficiently tested. So to sign rn we could modify 
the scheme to compute H(1 H m) ,H(2  H m ) , . . ,  until 
a member y - H(i [[ m) of the domain is found and 
then return (i, f - l (y) ) .  Verification is defined in the 
obvious way. Another alternative for these functions is 

app ly  the construction of [2, Section 4.2] to make them 
uniform. The squaring functions defined in [42, 3] don't  
have efficiently testable domains but various patches can 
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nonetheless be made. In fact it isn't  even necessary for 
the function to be a permuta t ion  (cf. [35]). 

SBCURITY. Suppose F is an S-adversary successful 
with a nonnegligible probabil i ty A(k). We construct al- 
gori thm M(f, d, y) which nonnegligibly often computes 
f-l(y), as follows. M lets PK = f .  It  flips coins for 
F and starts  running F.  We assume that  F makes 
exactly n(k) queries to H,  all distinct, and tha t  if F 
makes a signing query m then it has already queried 
H(m) ;  this is easily seen to be wlog. Now M chooses 
t 6 { 1 , . . . ,  n(k)) at random. It  then replies to queries 
as follows: 

(1) Let rn~ denote the i-th H query that F makes. 
If i = t then M answers by returning y. Else it 
chooses n ~-- {0, 1} ~ and returns y~ = f ( n ) .  

(2) Suppose F makes signing query m. If  m = mt  then 
M halts, admi t t ing  failure. Otherwise M answers 
with r~ where i ~ t satisfies m = mi.  

Let (m, a)  be F ' s  output .  If  m ~ m~ then M halts ad- 
mit t ing failure. Else it outputs  a and halts. The proba- 
bility that  M(f, d, y) successfully computes f-~(y) can 
be shown to be at least 

which is still nonnegligible. 

5 Zero Knowledge  

We provide definitions for zero-knowledge (ZK) proofs 
in the random oracle and then show how ZK interac- 
tive proofs can be made non-interactive in this model. 
The t ransformation is efficient, so that  we get non- 
interactive ZK proofs of complexity equal to interactive 
ZK ones. 

5 . 1  D e f i n i t i o n s  

Definitions for zero-knowledge in the random oracle 
model involve a little more than simply "relativizing" 
the s tandard ones. Wha t  follows extends the formula- 
tion in the usual interactive setting [25] as well as the 
formulation in the common random string model [6, 7]. 

SBTTING. For simplicity we discuss proofs for a lan- 
guage L 6 NP. Fix a NP relation p defining L; a wit- 
ness for the membership  of z in L means a string w 
satisfying p(z,  w) -- 1. A witness selector is a function 
W which on any input z 6 L returns a witness for the 
membership  of z in L. 

A verifier is polynomial  t ime function V which given 
common input z, conversation s 6 {0, 1}* so far, and 
a (private) random tape r 6 {0, 1} °° returns V(z ,  s,  r)  

which is either the next message to the prover or a bit in- 
dicating his decision to either accept or reject. A prover 
is a P P T  5 function P which given the common input z, 
conversation ~ so far, and auxiliary input a returns the 
next message Pa(z, ~) to the verifier. (When z 6 L the 
auxiliary input is a witness to this fact, and otherwise it 
is the empty  string). In the random oracle model both  
prover and verifier take also this oracle. 

For any oracle R denote by c o n v ( V  R, p R ,  z ,  r )  the 
space of all (transcripts of) conversations between p R  
and V R when the common input is • and V's  random 
tape is r 6 {0, 1}°% Denote by ACCv(~,r) G {0, 1} the 
verifier's decision on whether or not to accept. Let 

ACC(e~, V, z) = er[  R *- 2°°; r ~- {0, 1}°°; 

conv(V R, r): Accv( , = I ] 

denote the probability that V accepts in an interaction 
with Pa on common input z. In proofs and protocols 
we'll often abuse notation and work only with whatever 
prefixes of the infinite string r are relevant. 

PROOF SYSTBMS. We say that (P, V) is an interactive 
proof for L, in the random oracle model and with error 
e(n), if e(n) ~ 1/2 and the following two conditions 
hold. The complef.eness condition asks that if z E L 
then for all witnesses w to the membership of z in L 
it is the case that ACC(V, Pw, z) = I. The soundness 
condition asks that for all PPT P and sufficiently long 
z it is the case that ACC(PA, V, Z) ~ e([z[). 

VIZWS. To define zero-knowledge the view of the ver- 
ifier is first updated to include the random oracle; we 
define 

rview(V, Ps, z) = { R ~- 2°°; r ~-- {0, I}°°; 

conv(V V$, r): r; R) }. 

SIMULATORS. Since the random oracle is part of the 
view, it must also be part of the output of the simula- 
tor; i.e. the simulator is allowed to construct a "simula- 
tion" of the oracle. This is analogous to non-interactive 
zero-knowledge [6, 7] where the simulator is allowed to 
construct and output a "simulation" of the common 
random string. However, the random oracle is an infi- 
nite object, and so we can't ask the simulator to output 
it. Instead we allow the simulator to prescribe a small 
(polynomial sized) piece of the oracle, and have the rest 
"magically" filled at random. Formally, a simulator is 
a PPT algorithm which on any input z outputs a triple 
( s , r ' , T )  where T : (~l, Y l ) , . . . , ( z t , y t ) i s  a sequence 
of pairs of strings with the property that  z l , . . . ,  z~ axe 

5 In principle the results in the random oracle model require us 
to restrict only the number of oracle calls, not the running time of 
the prover. But at time of instantiation with hash functions run- 
ning time should be restricted anyway so we make the assumption 
straight away. Thus we are in the "argument" model of [9]. 
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distinct. The random oracle completion operation R0C 
takes as input T and returns an oracle R which is ran- 
dom subject to the constraint that  R(zi)  is prefixed by 
Yi for all i = 1 , . . . ,  t. 6 It is convenient to similarly de- 
fine the random s$ring completion operation RSC which 
takes a string r '  E {0, 1}* and appends an infinite se- 
quence of random bits. We define the completion of 
S(z)  to be the probability space 

SO(z) = { (~; ,r ' ,T)  ~-- S(z);  R *--- ROC(T); 

r *--- RSC(r') : (~, r; R) }. 

DISTINGUISHERS. A distinguisher is a polynomial sized 
oracle circuit family D = {D=}=eL. Write D~(s, r) for 
the output of circuit D= when given oracle R and inputs 
~, r. 7 Then define 

e . ,  =))  = 

I Pr[ (., r; R) *-- S'(=) : OffiR(-, r) = 1 ] -  
Pr[ (-, r; R) P., =): D2(' ,  r) = 1 ] .  

ZERo-KNoWLEDGE. We say that  a simulator S is a P -  
simulator for a verifier V over L if for every distinguisher 
D, every witness selector W, every constant d and all 
sufficiently long z E L it is the case that  

diffD(SC(z),rvie'( V, Pw(z), z)) < I =1  . 

We say that  P defines a (computational) ZK protocol 
over L in the random oracle model if for every verifier 
~" there exists a P-simulator  for ~" over L. Statistical 
ZK can be defined analogously. (P, V) is a ZK proof for 
L, in the random oracle model and with error e, if it is 
a proof system for L with error • and P defines a ZK 
protocol over L. 

MULTI-THEOREM PROOFS. In applications it is impor- 
tant that  we be able to prove polynomiaily many, adap- 
tively chosen theorems in zero-knowledge, as for zero- 
knowledge in the common random string model. For 
simplicity we have stuck above to the one theorem case; 
in the final paper we will present the general definitions. 

PROOFS OF KNOWLEDGE. In the final paper we will 
also define proofs of knowledge in the random ora- 
cle model and show how to construct efficient, non- 
interactive zero-knowledge proofs of knowledge. 

5 . 2  P r o t o c o l  

THE PROBLEM. Let ( P ' , V ' )  be a ZK proof for L G 
NP, in the standard (i.e. random oracle devoid) model, 

6 It is understood that the operation refers to the oracle in use 
rather than the "generic" underlying one, so that if we are using a 
random hash function H then what is returned is an H satisfying 
this constraint, etc. 

z Here r will be an infinite string, and giving ~, r as input to 
D= means the latter will look at only a finite prefix. 

achieving error probability 1/2. Let k(n) = w(log n) be 
given. We want a non-interactive ZK proof (P, V) in the 
random oracle model which achieves error e(n) - 2 -~('~) 
while increasing computing time and communicated bits 
by a factor of at most O(k(n)). 

SIMPLIFYING ASSUMPTIONS. Like most such ZK proofs 
assume (pl ,  V I) is three moves: P~ ~ V'  : a followed 
by V I --4 P~ : b followed by P~ --~ V I : /3. Here b 
is a random bit (the first one on the random tape of 
V I which we now think of as just this bit) and w is 
the auxiliary input to P ' .  The message a consists of 
a set of envelopes and has size n°(1). Some subset of 
these envelopes is opened according to challenge b, and 
for any string a there is exactly one value b E {0, 1} for 
which there exists a fl such that  ACCv, (abfi, b) = 1. The 
zero-knowledge is captured by an algorithm S ~ which 
given z, b outputs abfl such that  ACCv,(ab/3, b) = 1 and 
for any witness selector W the following ensembles are 
computationallyindistinguishable: {b ~ {0, 1}; abfl 
S'(z ,  b): (abfl, b) }=eL and { a ~ P~v(=)(z,A); b ~-- 

{0, 1}; fi *-- P~v(=)(z, ab) : (abfl, b) },~L. 

THE TRANSFORMATION. Let H: {0, 1}* --, {0,1} 2k 
be a random hash function. The new prover P ~  
computes . . . ;  P'(=,A); sets 
b~ to the i-th bit of H ( a l . . . a 2 k ) ;  computes ~1 ~-- 

. . . ;  * -  sends 
(al, . . . ,a2~,~1,. . . , f i2~) to V H. V tI sets b~ to the i-th 
bit of H ( a t . . .  a2~ ) and accepts iff ACCv,(aibifli, bi) = 1 
for all i. The fact that  the new protocol is non- 
interactive and as efficient as claimed is clear. 

(P, V) IS A ZK PROOF SYSTEM WITH ERROR 2 -k(n). 

Completeness is clear. We can show that if P/~ makes 
T(n)  oracle queries then ACC(PA, V, z) < T ( n ) .  2 -a~(n) 
which is at most 2 -k('*) for sufficiently long n. For ZK 
the tack of interaction implies we only need to simulate 
the view of the honest verifier V, and the correspond- 
ing simulator S is as follows. Given z E L algorithm 
S chooses bt ~-- {0,1}; . . . ;  b2t ~-- {0,1}. Now for 
each i = 1 , . . . , 2 k  it lets aibi~i ~ S ' (z ,  bi). It sets 
T = ( a l . . . a 2 ~ , b t . . . b 2 ~ )  and outputs (c ,A,T) .  The 
random oracle completion operation applied to T results 
in a map H:  {0, 1}* --, {0, 1} 2~ which is random subject 
to the constraint that  H(c t l . . . a2~)  = b t . . .b~ .  Now 
based on our assumption about S ~ we can work through 
the definitions and check that  S is a P-simulator for V 
over L. We omit the details due to lack of space. 

6 I n s t a n t i a t i o n  

Expanding on the discussion in Section 1.1, here we pro- 
vide further guidance in instantiating random oracles 
with primitives like hash functions. 
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First and foremost, it is not necessary (or desirable) 
to pay at tention to the particulars of the target protocol 
whose random oracles are being instantiated. All that  
matters  it is how many oracles are used and what are 
their input /output  length requirements. Our thesis is 
that  an appropriate instantiation for a random oracle 
ought to work for any protocol which did not inten- 
tionally frustrate our method by anticipating the exact 
mechanism which would instantiate its oracles. 

A significant amount  of care must be taken in choos- 
ing a concrete function h to instantiate an oracle. Let 
us begin with some examples of some things that  don't 
work. 

Consider first the map MD5. This function does 
not make a suitable replacement for a random oracle 
since [41] has observed that  for any z there is a y such 
that  for any z, MD5(a:yz) can be easily computed given 
only Is:l, MD5(a:), and z. Structure like this shows up 
in applications; in particular, [41] points out that  this 
means MD5(az)  cannot be used as a message authenti- 
cation code of string a: under key a. 

Trying to overcome difficulties by avoiding a "struc- 
tured" operation like MD5, one might prefer a "lower 
level" primitive such as its compression function, 
p: {0, 1} 64° --~ {0, 1} 12s. This too does not make a suit- 
able replacement for a random oracle, as [8] has demon- 
strated that  collisions 'can be efficiently found in this 
map. 

Although standard hash functions are too structured 
to make good random oracles (as illustrated above), one 
doesn't  have to look much further; natural candidates 
include constructs like the following, or combinations of 
them: 

(1) A hash function with its output  truncated or folded 
in some manner; e.g., hi(a:) = the first 64 bits of 
MD5(a:). 

(2) A hash functions with its input lengths suitably 
restricted; e.g., h2(a:) : MD5(a:), where Izl < 400. 

(3) A hash function used in some nonstandard way; 
e.g., ha(a:) = MD5(a:z). 

(4) The "first block compression function" of a cryp- 
tographic hash function, e.g., h4: {0, 1} 512 
{0, 1} 12s being the compression of the 512 bit z, 
when MD5(a:) is computed. 

As an example, suppose one settles on the (purely 
heuristic) choice of a map h': {0, 1} 25s --+ {0, 1} 64 de- 
fined by h'(z) = the first 64 bits of h4((a:z) @ C), for 
a randomly chosen 512-bit constant C. s To extend 

a Choosing C at instantiation-time ensures that the algorith- 
mic goal is "independent" of its choice of oracle; it "separates" the 
instantiation of the random oracles used by different applications; 
and it provides a simple means of creating multiple "independent" 
random oracles. 

the domain and range as needed in a given applica- 
tion, one might first define h"(z)  = h'(a:(0))llh'(~(1))ll 
h'(a:(2))ll-.,  where Ixl = 224 and (i) is the encoding 
of i into 64 bits. Next, one extends h" by encod- 
ing each input Z by z ~ consisting of a:, the bit "1", 
and enough O's to make Iz'l a multiple of 128 bits. 

' where la:~[ = 128 and de- Now let a:l = z~...a:,~, 
fine h(a:) : h"(a:'o(O)) @ h"(z~(1)) f l ) . . .  @ h'(a::(n)) 
yielding a map which, for all practical purposes, takes 
h: {0, 1}* --, {0, 1} °°. Of course there are lots of other 
equally simple ways to instantiate a random oracle; this 
was only an example. 

7 Conc lus ion  

The protocols used in practice have almost always been 
designed by an iterated process of positing a concrete 
protocol, searching for a successful attack, finding one, 
and a t tempting to close it. This method has not worked 
well. By an insistence on defining our goals and prov- 
ably achieving them, modern cryptography offers more 
to practice than any specific set of results; it is a 
methodology beyond the process of iterated design to 
solve poorly specified tasks. Although when using our 
paradigm one "only" ends up with a result that  says 
"this protocol is secure to the extent that  h instanti- 
ates a random oracle," still, one has achieved very much 
more than declaring a protocol sound because no one 
has as yet come up with a successful attack. 
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A Proofs  for Encrypt ion  

We present proofs of security for some of the encryption 
schemes. We will assume (wlog) that  for any algorithm 
and any oracle for that  algorithm, all queries made of 
the oracle are distinct. 

THE E(z) : f(r) [[ G(r) ~ z SCHEME Is POLYNO- 
MIALLY SECURE. The proof is by contradiction. Let 
A = (F, A1) be an adversary that  defeats the protocol; 
infinitely often, it gains advantage A(k) for some inverse 
polynomial A. We construct an algorithm M(f ,  d, y) 
that,  when (f ,  f - l ,  d) *-- G(I~); r *-- d(lk); y ~-- f(r), 
manages significantly often to compute f - l ( y ) .  Al- 
gorithm M defines E based on f as specified by our 
scheme. It simulates the oracle G in the natural way 
(by itself flipping coins to answer queries) and samples 
(too, ml) ~ Fa(E).  If ever G is asked an r such that  
f ( r )  = y, then M outputs r and halts. Otherwise, 
the F(E) terminates and M chooses a ~- y [I s for 
s ~-- {0, 1} I'~°1. Then M simulates A~(E,  mo, ml ,a) ,  
watching the oracle queries that  A1 makes to see if there 
is any oracle query r for which f ( r )  = y. If there is, M 
outputs r.  Let Ak be the event that  A1 asks the query 
r = f - l ( y ) .  A1 has no advantage in distinguishing mo 
and ml  in the case that  A1 does not ask for the image 
of G at r. So 

1/2 + A(k) = Pr [A succeeds I A~]. Pr [Ak] + 

Pr [A succeeds Pr [ 9  

is at most Pr [A~] + 1/2. Thus Pr [Ak] > A(k) must be 
nonnegligible, and M succeeds nonnegligibly often in 
inverting f .  

THE E( z )  = f ( r )  [[ G ( r ) ~ z  ][ H ( r z )  SCHEME Is SE- 
CURE AGAINST CHOSEN CIPHERTEXT ATTACK. Let 
A = (F, At) be an RS-adversary that succeeds with 
probability 1/2 + A(k) for some nonnegligible function 
A(k). We construct an algorithm M(f, d, y) that com- 
putes .f-~(y) non-negligibly often, where (f, f-~,d) ,-- 
G,(I~); r ,-- d(l~); y ,-- d(r). Algorithm M begins by 
running F(E) where E is defined from f as specified 
by our scheme. F takes three oracles, namely, G, H 
and D G'H, whose queries are answered by F as fol- 
lows. If a query r to G satisfies f(r) -- y then M 
outputs r and halts; else it returns a random string 

of the appropriate length. If a query rz  to H satis- 
fies f ( r )  = y then M outputs r and halts; else it re- 
turns a random string of the appropriate length. To 
answer query a II w II b to D G,H algorithm M sees 
if it has already asked some query r of G and ru  of 
H,  where a = f ( r )  and w = G(r) ~ u, and if so re- 
turns u; else it returns invalid. If M completes the 
running of F(E) then it obtains an output  (too, m1). 
NowMrunsA l (E ,  mo, m l , a ) w h e r e a = y  ]] w II bfor 
w ~- {0, 1}l'n01 and b ~-- {0, 1} ~. Once again, M must 
simulate the behavior of queries to G, H,  and D G,H. 
This is done exactly as before, when F was being run 
by M. 

To see that  this construction works, first consider 
the "real" environment of A running with its oracles. 
Let A~ denote the event that  a II w IIb ~- F ( E ) ,  for 
some a, w, and b, and A made some oracle call of 
G(r)  or H( ru ) ,  where f ( r )  = a. Let Lk denote the 
event that  A1 asks D G,H some query a ]1 w H b where 
b = H( f - l (a )  II w@G(f-l(a))) ,  but A1 never asked its 
H-oracle for the image of f - l ( a )  [I w ~ G ( f - l ( a ) )  • Let 
n(k) denote the total number of oracle queries made. It 
is easy to verify that  Pr  [L~] < n(k)2 -~. It is also easy 
to see that  

er [A succeeds [L~ A A~] = 1/2. 

Thus 1/2 + A(k) = Pr [A succeeds ] is bounded above 
by 

Pr [A succeeds I L ]Pr 

Pr [A succeeds I L-~ A A~]Pr [L-~-k A A~]+ 

Pr [A succeeds I L~ A A~]Pr [L-~-~ A 

which is at most n(k)2 -k + Pr [A~] + 1/2. And so 

Pr >_ A(k) - n(k)2 

Now, returning to the simulation of A by M, note that 
M fails to behave like A with probability bounded by 
Pr [L~], and so 

Pr [M inverts f at y] > A(k) - n(k)2 -~+1 

which is still nonnegligible. This completes the proof. 

THE E(z )  = f ( r ) I I  G ( r ) ~  z II H(rz) SCHEME Is 
NON-MALLEABLE. Intuitively, the presence of a valid 
tag H(r%') in an encrypted string a' which is not a 
copy of an encryption provided to the adversary A acts 
as a "proof of knowledge" that A "knows" (can recover) 
z'. Now suppose A, seeing ~ = a [I w [[ b encrypt- 
ing z = G(f- l (a))  @ w, manages to come up with the 
encryption of a string z '  correlated to z. When r is 
not asked of G, adversary A cannot so correlate z to 
the (known value) z '  because of her having no idea of 
the value of G(r) .  Thus A must ask G the image of 
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r reasonably often. Whenever she does this, she has 
effectively inverted the trapdoor permutation. The ar- 
gument above can be formalized; we now sketch how to 
do so. 

Given an M-adversary ,4 = (F, A) and an interest- 
ing relation p, computed by polynomial time machine 
M, define the polynomial time algorithm A, (E ,  7r) as 
follows: 

A, (E ,  Tr) computes z ,  ~-- lr(l~); r ,  ~-- d(l~); 
I II 

A(f ,  lr, a,) .  If a', : a . ,  then A, outputs the 
/ encryption of 0. Otherwise, A, outputs c~,. 

We will prove that  le(k) - e,(k)] is negligible, where 
these quantities are as in the definition of non- 
malleability. Some case analysis is required to show 
this claim. It is based on considering two related ex- 
periments, the first to define v(k) and the second to 
define e,(k). We begin by describing Experiment 1. 
Here G ~-- 2°°; H 4-- 2°°; ( f , f - l , d )  ~- G,(I~); then 
E is our encryption algorithm as specified by f and 
D is the corresponding decryption; 7r ~-- F°,H(E);  

b = H(rz);  a = a II ~ II b; and ¢x' ~ A(E,  Tr, a)). 
Write a' = a'w'b', r' = f - l ( a ' ) ,  and z' = w' @G(r'), We 
are interested in the value of M a , S ( z ,  z', E, ~r) whose 
expectation, which we denote E~[p(z, z')], is precisely 
¢(k). In performing Experiment 1 we distinguish the 
following cases: 

Case I: a' : a. In this case, p(z, ~') = 0 by our 
definition of an interesting relation. 

Case  2: Assume Case 1 does not hold and .4 made no 
H-oracle query of r '~' :  

Case 2a. b' -- H(r%') .  This event happens with prob- 
ability 2 -~. 

Case 2b. b' ~ H(r%') .  In this case the encryption is 
garbled, the decryption is 0, and p(~, ~') = 0 by our 
definition of an interesting relation. 

Case 3- Suppose neither Case 1 nor Case 2 holds. 

Case 3a. For any string r '~ '  queried of H with 
H(r'z ' )  = b', either f(r') ~ a, or else G(r') (~ z' ~ w'. 
Then p(z, z ')  = 0. 

Case 3b. Here a '  is a valid encryption and A can ex- 
tract r '  and z'. distinguish. Let Ax denote the proba- 
bility of this case. We distinguish: 

Case 3b(i). When A has not made a G-oracle call of r 
and 

Case 3b(i] M G,H asks a query r. Let e(k) be a negligi- 
ble function bounding the probability of this case. Let 
A2 be the probability of this case. 

Case 3b(i)" M a ' s  asks no query r. 

Case 3b(ii). When A makes a G-oracle call of r. Let 
e(k) be a negligible function bounding the probability 
of this case. 

We can upper-bound E1Lo(~, z')] by 

E1Lo( . < Pr[Case 2hi. 2 - %  
Pr[Case 3b]. ELo(z, z')lCase 3b(i)]+ 
Pr[Case 3b(ii)] _< 2 -~ + Al(e(k) + A2) + e(k). 

We now describe Experiment 2. This is defined by 
G 4-- 2°°; H ~-- 2°°; ( f , f - l , d )  ~-- ~,(1~); then E 
is our encryption algorithm as specified by f and D 
is the corresponding decryption; ~ ~-- Fu,~(E);  z ~-- 
• "G'/C(lk); z .  *--- 7ra'H(l~); r ,  ~-- d(l~); a.  = f ( r , ) ;  
w = G ( r . ) •  b. = = , .  II w. II b,; 
~,  4-- A(E,  Tr, a,)).  Write ~', = a~,w',b~,, r'. : f - l ( a ' ) ,  
and z~, = w~, @ G(r~,) if a ,  = a',, 0 otherwise. We 
are interested in the value of M° 'H(z ,  zl,, E,  ~r) whose 
expectation, which we denote E2[p(z, z',)], is precisely 
c.(k).  

In analyzing Experiment 2 we perform the same 
case analysis as above. An important observation is 
that  in the Experiments 1 and 2, the distribution on 
third arguments to A is identical. Because of this, 
Prl[Case 3b] = Pr2[Case 3hi. Also, it is easy to see 
that  E1Lo(z, x')]Case 3b(i)"] = E2Lo(z, z')lCase 3b(i)"] 
One can then lower-bound E2[p(x, x',)[Case 3b(i)"] by 

E~Lo(z, x',)] _> Pr[Case 3b(i)"]. 
E2[p(z, x',)lCase 3b(i)'] > (;h - 2e(k))A2. 

Therefore [E[p(z, z')] - E[p(z, z~.)][ _< 4e(k) + 2 -k, and 
we are done. 
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