
8ince~e=P&i-Q$-i=l-l-O~O=1,0nehasIk=(-l)k.
It follows that

PkQk-1 - %8--l = (-Ilk, k > 1. (lOA)

If GCD (Pk,Qk) = dk, then, by (IOA), dk] (-l)k. This implies that
dk = 1. Hence, GCD (Pk,Qk) = 1.

A simple example showing how to compute the rational ap-
proximations to an irreducible rational number is presented in
tabular form in Table II. For this example, S is the fraction
38/105. From the tabular form, when k = n = 6, one observes Rg
= 0. By (?‘A), S = Ss = Ps/Q6 = 38/105. For a more detailed dis-
cussion of the relation of Euclid’s algorithm to the continued
fraction associated with a rational element in the field of real
numbers, see [la].

pk pk-I (-Ilk
Sk-Sk-l=Qlr-~=QkQk-l> k>l [31

[41

bl
@I

171

PI

@I

[a

Or

REFERENCES

[I] W. C. Gore, “Transmitting binary symbols with Reed-Solomon
code,” Johns Hopkins Univ. EE Report No. 73-5, Baltimore, MD,
Apr. 19’73.

[2] A. Michelson, “A new decoder for the Reed-Solomon codes using

a fast transform technique,” Systems Engineering Technical Me-
morandum No. 52, Electronic Systems Group, Eastern Division
GTE Sylvania, Waltham, MA, Aug. 19’75.
D. Mandelbaum, “On decoding’Ree;d-Solomon codes,” IEEE Trans.
Inform. Theory, vol. IT-17, pp. 707-712, Nov. 1971.
W. W. Peterson, Error-Correcting Codes. Cambridge, MA: M.I.T.
Press, 1961, pp. 1688169.
C. M. Rader, “Discrete convolution via mersenne transforms,” IEEE
Trans. Comput., vol. C-21, pp. 1269-1273, Dec. 1972.
R. C. Agarwal and C. S. Burrus, “Number theoretic transform to
implement fast digital convolution,” in Proc. IEEE, vol. 63, pp.
550-560, Apr. 1975.
I. S. Reed and T. K. Truong, “Convolutions over residue classes of
quadratic integers,” IEEE Trans. Inform. Theory, vol. IT-22, pp.
468-475, July 1976.
J. H. MacClellan, “Hardware realization of a Fermat number
transform,” IEEE Trans. on Acoustics Speech, and Signal Pro-
cessing, vol. ASSP-24, pp. 216-225, June 1976.
J. Justesen, “On the complexity of decoding of Reed-Solomon
codes,” IEEE Trans. Inform Theory, vol. IT-22, pp. 237-238, Mar.
1976.

106 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. m24, NO. 1, JANUARY 19%

[Ill
[I21

I. S. Reed, T. K. Truong, and L. R. Welch, “The fast decoding of
Reed-Solomon codes using number theoretic transforms,” in the
Deep Space Network Progress Report 42-35, Jet Propulsion Lab-
oratory, Pasadena, CA, July 1976, pp. 64-78.
E. R. Berlekamp, Algebraic Coding Theory. New York:
McGraw-Hill, 1968, Ch. 7.
I. M. Vinogrodov, Elements of Number Theory. New York: Dover,
1954, Ch. 1.

Correspondence

An Improved Algorithm for Computing Logarithms over
GP(p) and Its Cryptographic Significance

STEPHEN C. POHLIG AND MARTIN E. HELLMAN,
MEMBER, IEEE

Abstract-A cryptographic system is described which is secure
if and only if computing logarithms over GF(p) is infeasible. Pre-
viously published algorithms for computing this function require
O(P’/~) complexity in both time and space. An improved algorithm
is derived which requires O(log2 p) complexity if p - 1 has only
small prime factors. Such values of p must be avoided in the cryp-
tosystem. Constructive uses for the new algorithm are also de-
scribed.

I. INTRODUCTION

This note considers the pair of inverse functions

y = ax (mod p) (1)
x = log, y over GF(p) (2)

which are referred to as the exponential and logarithmic functions
to the base CX, modulo p, where p is prime, and (Y is a fixed prim-
itive element of GF(p). Since a is primitive, x and y are in a

Manuscript received June 17,1976; revised April 14,1977. This work was sup-
ported in part by the National Science Foundation under Grant ENG 10173, and
in part by the Fannie and John Hertz Foundation.

S. C. Pohlig was with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA. He is now with the M.I.T. Lincoln Laboratory, Lexington,
MA 02173.

M. E. Hellman is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305.

one-to-one correspondence for integer values in the range 1 I xy
<p-l.

It is well-known [l, p. 3991 that exponentiation mod p is
computable with at most 2rlogs pl multiplications mod p, and
with only three words of memory, each [logs pl bits long, where
r-1 denotes the smallest integer equal to or greater than the en-
closed number. (All logarithms not expressly mod p are over the
reals and are to the base 2.) To give the flavor of the algorithm,
note that

cd8 = (((a2)2)2)2 - c?. (3)

The inverse problem of computing logarithms mod p is be-
lieved to be much harder, and the best previously published al-
gorithm [2, p. 91 requires 2[~‘/~1 multiplications mod p, in ad-
dition to other operations of comparable complexity. This algo-
rithm also requires 2rfi] words of memory, each [logs pl bits
long.

Exponentiation mod p might thus be a one-way function. An
invertible function f is said to be one-way if it is easy to compute
y = f (zc) for all x: in the domain, but it is computationally infea-
sible to compute f-l(y) for almost all y in the range off.

We have deliberately not given a precise definition of a com-
putation being “easy” or “infeasible.” In 1950, a computation
requiring one million instructions and 10 000 words of memory
could not have been called “easy,” while today it can be accom-
plished in a few seconds on a small computer. Similarly, a com-
putation which requires 1030 operations is infeasible today, but
will probably not even be difficult a hundred years hence. A
precise definition of a one-way function would therefore vary with
time and technology. It may be possible to avoid this problem by
using a currently acceptable definition of easy and a physics-

OOlS-9448/78/0100-0106$00.75 0 1978 IEEE

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on January 25, 2010 at 06:32 from IEEE Xplore. Restrictions apply.

CORRESPONDENCE 107

limited definition of infeasible. Any computation that is easy
today will be no harder in the future, and a 1060 bit memory will
always be unattainable because its construction requires more
mass than exists in the solar system, even if only one molecule
is needed per bit of memory. Thermodynamics places a limit of
approximately 1070 on the number of operations which can be
performed even if the entire energy output of the sun could be
harnessed forever [3], [4]. We prefer to avoid such conservative
definitions, however, because they may exclude practically
valuable one-way functions. It will be seen, however, that expo-
nentiation mod p may be able to satisfy even the most conser-
vative definition of a one-way function.

Currently, the primary use for one-way functions is in pro-
tecting the password file in a time-shared computer system [5]-
[7]. They have other related uses [8], [9]. Their existence is also
necessary to the existence of secure cryptographic systems, be-
cause any secure cryptosystem can be used to produce a one-way
function [9]; while the converse is not true in general, Section II
of this paper describes a cryptographic system which is secure
if and only if exponentiation mod p is one-way.

Sections III and IV develop an improved algorithm for com-
puting logarithms over GF(p). This algorithm has complexity
not much greater than that required for exponentiation mod p,
when p - 1 has only small prime factors, but is infeasible to
compute when p - 1 has a large prime factor. Although not pre-
viously published, the new algorithm was discovered indepen-
dently by Roland Silver some years ago, and more recently by
Richard Schroeppel and H. Block.

The improved algorithm dictates that p - 1 must have a large
prime factor if exponentiation mod p is to be used as a one-way
function or in a cryptosystem. Of course, just because Knuth’s
algorithm and the new one are not computable in practice for
certain values of p does not mean that there are not more efficient
algorithms for these values of p that are as yet undiscovered.

A second use of the improved algorithm is in problems where
it would be useful to rapidly compute logarithms over GF(p) for
arbitrary but large values of p. By choosing p to obtain the full
benefit of the improved algorithm, very large primes can be used.
Scholtz and Welch [lo] devised a multiple access code which
required the computation of logarithms over GF(p), and Merkle
and Hellman [ll] have devised a public-key distribution system
which utilizes our algorithm for computing logarithms over
GF(p).

Section V gives examples of primes at both extremes. A 137
digit prime is given for which the new algorithm is easily imple-
mented, and a 60 digit prime is given for which no known algo-
rithm can be implemented.

II. USE IN CRYPTOGRAPHY

It is well-known [la, p. 371 that if p is prime then

zP-l= 1 (mod p), llzlp-1. (4)
Consequently, arithmetic in the exponent is done modulo p -
1, not modulo p. That is,

zx szx(modP-l)(modp) (5)

for all integers X.
Based on this observation, we can construct a cryptosystem.

Let M, K, and C denote the plaintext message, key, and cipher-
text (cryptogram) with the restrictions

IIMlp-1, (6)
lIClp-1, (7)

11KIp-2, (8)
GCD(K,p - 1) = 1. (9)

In practice, M would probably be limited to be an 1 bit integer
where 1 = Llogz (p - l)]. Also, restrictions might be imposed on
K (e.g., K # 1) to avoid simple but improbable transformations.
Condition (9) guarantees that

D=K-l(modp-1) (10)

is well-defined with

Now let

11DIp-2. (11)

C q MK (mod p) (12)

be the enciphering operation. Then
M = CD (mod p) (13)

is the deciphering operation. Both operations are easily computed
and involve only one exponentiation mod p (equivalently 2 [log2
pj multiplications mod p). Computing D from K need be done
only once and also requires on the order of logz p operations using
Euclid’s algorithm [l, Section 4.5.21.

Finding the key through cryptanalysis, on the other hand, is
equivalent to computing a logarithm over GF(p) and is thus
impossible if and only if exponentiation mod p is a one-way
function. This is because

K = 1ogM C over GF(p) (14)
so that, even if the cryptanalyst has the advantage of knowing
a plaintext-ciphertext pair, it is as hard to find the key as to find
a logarithm over GF(p). Such a known plaintext cryptanalytic
attack [9] is a standard test applied to certify a system as secure.
It and variations of it occur in practice as well.

Note that M must be a primitive element of GF(p) for M and
C to uniquely determine K. We now show that if M is not prim-
itive, or if the cryptanalyst has a number of randomly chosen M
- C pairs all related by the same key, then his task is not light-
ened. To see this, observe that if M and C are related by K, that
is,

C = MK (mod p),

then so are M ’ and C’, where

(15)

and

M ’ = M ” (mod p) (16)

C’ = C” (mod p) (17)
for any integer n. Possession of a single M - C pair with M
primitive thus allows the cryptanalyst easily to generate a large
number of M ’ - C’ pairs also related by K. Building a table is
precluded by using values of p on the order of 2lOO or larger.

We have not been able to show that the above system can resist
a chosen plaintext attack [9] in which the cryptanalyst gets to
choose M and see the corresponding C, but neither have we found
a way for him to use this option to advantage over the known
plaintext attack.

There is a minor problem with the above cryptosystem in that
the most natural representation of K is as an integer between 1
and p - 1, but not all such integers are allowable keys because
of the restriction that GCD (K,p - 1) = 1. Fortunately, the
fraction p of usable keys is not too small. From the definition of
4(n), the Euler totient function,

P = dP - 1MP - 11, (18)

where 4(n) is the number of positive integers not exceeding and
relatively prime to n. It is known [13, p. 8261 that

P = rI (1 -p;‘),
PiI(P--1)

(19)

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on January 25, 2010 at 06:32 from IEEE Xplore. Restrictions apply.

108 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-24, NO. 1, JANUARY 1978

where (pi] are the prime divisors of p - 1. As noted in Section V,
primes of the form p = 2~’ + 1, with p’ prime, are the most
promising candidates for yielding a secure cryptosystem. Then,
with p large,

p = (1/2)[1- (l/p’)] = l/2. cm
Even if p # 2~’ + 1, a reasonable fraction of keys is usable be-
cause, for allp < 1.6 X 10103, p is greater than 0.1. For this range
of p, at most ten tries are needed on the average to find a suitable
key. The test involves Euclid’s algorithm and is therefore no more
complex than computing D from K. The effective loss in key size
is less than 4 bits, which is also quite negligible. The real question
concerning the utility of this cryptosystem is the difficulty of
computing logarithms over GF(p).

Rivest, Shamir, and Adleman [14] have noted that it can be
advantageous to perform the enciphering and deciphering op-
erations (12) and (13) modulo n, where n is the product of two
large primes. Then, instead of (lo), one uses D = K-l (mod 4(n)).
By keeping the factorization of n secret, it is possible to generate
a public key cryptosystem as defined in [9]. The enciphering key
(K,n) can be made public without compromising the deciphering
key (D,n), and yet it is easy for anyone to generate a pair of en-
ciphering and deciphering keys. Public key cryptosystems
eliminate the key distribution problem and allow the generation
of true digital signatures [9]. See [14] for details.

Another application of exponentiation modulo p to crypto-
graphy is given in [9]. There it is shown how these functions can
be used to securely “transmit” a key over an insecure channel
with no previous exchange of secret information. This capability
is a direct result of the commutivity of enciphering under two
different keys K1 and Kz, i.e.,

(MC)Kz = (MK2)Kl. (20)
The reader is referred to [9] for details. obtain

III. AN ALGORITHMFOR~ = 2n+1

+1, z@-1)/4(mod p)z -1
I ,

bl = 0
bl = 1.

The improved algorithm for computing logarithms mod p is
best understood by first considering the special case p = 2n + 1.
We are given (Y, p, and y, with (Y a primitive element of GF(p),
and must find x such that y = ox (mod p). We can assume 0 I 3c
I p - 2, since x = p - 1 is indistinguishable from x: = 0.

When p = 2 n + 1, x is easily determined by finding the binary
expansion (bo, . . . , b,-i] of x, i.e.,

n-1
(21)

I ne remaming bits of n are determined in a similar manner. This
algorithm is summarized in the flowchart of Fig. 1. To aid in
understanding this flowchart, note that, at the start of the ith
loop,

The least significant bit bc of x is determined by raising y to the
(p - I)/2 = 2n-1 power and applying the rule

y@-1)/2(modp)~ +1, b,, = 0

-1, b. = 1. (22)

This fact is established by noting that, since (Y is primitive,
(~(~-1)/2 E -1 (modp), C-3

and therefore
y(P-l)b s (ax)(P-1)/2 E (-1)x (modp). (24

The next bit in the expansion of x is then determined by let-
ting

where

z = yamb’o = ax1 (mod p), (25)

~1 = “x’ bi2i.
i=l

(26)

Clearly, xi is a multiple of four if and only if bl = 0. If bl = 1, then
xi is divisible by two but not by four. Reasoning as before, we

Fig. 1. Flowchartforalgorithm whenp = 2" + 1.

and

m = (p - 1)/2i+1 (28)

where
z = axi (mod p), (2%

n-l
xi = C bj2i

j-i (30)

Thus raising z to the mth power gives
Zm I akim) E a[(P-1)/214xi/2i)

c(-~)x/~'s (-I)& (modp), (31)
sothatzm~l(modp)ifandonlyifbi=O,andzm~-l(modp)
if and only if bi = 1.

IV. AN ALGORITHMFORARBITRARYPRIMES

We now generalize the above algorithm to arbitrary primes p;
this generalization is necessary because 216 + 1 is the largest
known prime of the form 2n + 1. Let

p - 1 ~pi"~;"...~k"k, Pi < Pi+1 (32)
be the prime factorization of p - 1, where the pi are distinct
primes and the ni are positive integers. The value of x (mod p?)
will be determined for i = 1 , . . . ,k, and the results will then be
combined via the Chinese remainder theorem [12, p. 481 to ob-

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on January 25, 2010 at 06:32 from IEEE Xplore. Restrictions apply.

CORRkPONDENCE 109

tain

x mod fi pri
>

=x(modp-1)=x (33)
i=l

since 0 I x: I p - 2. The Chinese remainder theorem can be
implemented in O(k logz p) operations and O(k log2 p) bits of
memory. (We count a multiplication mod p as one operation.)

Consider the following expansion of x (mod p?):

x (mod pr’) = ygol bjpf, (34)

where 0 I bj I pi - 1. The least significant coefficient, bo, is
determined by raising y to the (p - l)/pi power,

y(P-*)/Pi z a(P-*)xlPi G yf z (yi)h (mod p) (35)
where

yi = o((P-1)IPi (36)
is a primitive pith root of unity. There are therefore only pi
possible values for y(p-l)‘pi(mod p), and the resultant value
uniquely determines bo.

The next digit bl in the base pi expansion of x (mod p?) is
determined in a manner similar to that of Section III. Let

where
z=y*a -by = (~~1 (mod p), (37)

X1 = ygll bjpf. (38)

Now, raising z to the (p - 1)/p: power yields
z(P-~)/P? E ~(P-l).xilP? I yfllPi I (n)bl (mod p). (39)

Again, there are only pi possible values of z @--l)lp?, and this value
determines bl. This process is continued to determine all the
coefficients bj.

The flowchart of Fig. 2 summarizes the algorithm for com-
puting the coefficients (bj] of the expansion (34). This algorithm
is used k times to compute x (mod pl*) for i = 1,2,. - - ,k, and
these results are combined by the Chinese remainder theorem
to obtain X. The function gi (UJ) in Fig. 2 is defined by

YL gicw) = w (mod p), 0 5 gi(W) I pi - 1, (40)
where yi is defined in (36).

If all the prime factors (pi)F=l of p - 1 are small, then the gi (w)
functions are easily implemented as tables, and computing a
logarithm over GF(p) requires O(logz p)2 operations and only
minimal memory for the g;(w) tables. The dominant computa-
tional requirement is computing w = z”, which requires O(logz
p) operations. This loop is traversed ZF=lni times, and, if all pi
are small, Zf=in; is approximately logs p-it is never larger than
this. Thus when p - 1 has only small prime factors, exponen-
tiation mod p is not a good one-way function.

If, however, p - 1 possesses a large prime factor pk, then
computation of gi (w) when i = k is the dominant computational
requirement of this algorithm. The following lemma treats this
complexity, dropping the subscript i for notational conve-
nience.

Lemma: Let
w = yg (mod p) (41)

with 0 I g I pi - 1, with y = ~y(P-~)‘pi, and with (Y primitive.
Then, for given (Y and w, g can be computed with O(pf’-‘) (1 +
log2 pi)) operations which depend on w, and with O(pl log2 p)
bits of memory, for any 0 I r I 1. Unless r > l/z, precomputation
requiring O(p[log2 p[) operations is unimportant when compared
to the number of w-dependent operations. A multiplication or
addition mod p is counted as a single operation.

Proof: The proof uses a generalization of Knuth’s algorithm
for computing logarithms over GF(p) in O(p112 log2 p) operations

W-Z”(mod p)
bi-gi(W)

-7

z -z-phi (mod p)
p--p” (mod p)
n --n/Pi

Fig. 2. Flowchart for algorithm when p = &pi” + 1.

and bits of memory [2, p. 91. Let

m = fptl.

Then there exist integers c and d such that

(4%

g = cm + d, (43)
with

0 I c < [pi/ml = p,!-’ (44)
and

OId<m=p{. (45)
Solving (41) for g is equivalent to finding c and d such that

yd 5 wypCm (mod p). (46)
To find c and d, we can therefore precompute yd (mod p) for d
= 0,1,2, * * * ,m - 1 (in O(pr) operations), and then sort the re-
sulting values (in O(pf logs p[) operations). Next we compute w,
Wy-m, Wy-2m,. . . (mod p) and check for a match with the sorted
table of { rd). Each value of c tried requires one multiplication
mod p and logz pi comparisons, or (1 + logz p[) operations all
together. There are O(pi-‘) values of c to be tried. Q.E.D.

When r = 1, g(w) is implemented as a table lookup. When r =
0, g(w) is found by computing ya for g = 0,1,2, . . * ,pi - 1 until
yg = w (mod p). The lemma shows that, neglecting logarithmic
factors, the time-memory product can be held constant (since
pi~pf-~ = pi) as we go between the extremes of a table lookup and
an exhaustive trial-and-error search.

Since memory tends to be more costly than computation,
values of r < l/z are of most interest, and then the precomputa-
tional effort is not important.

Theorem: Let
p - 1 = pl”‘p;‘. . . pk”k, Pi <Pi+1 (47)

be the prime factorization of p - 1, where p is prime, the pi are
distinct primes, and ni 1 1. Then, for any (ri]f=i with all 0 I ri I
1, logarithms over GF(p) can be computed in O(Zf=ini [log2 p +
pf-“(I + loga p?)]) operations with O(logz pZf=i(l + ~7)) bits
of memory. Precomputation requires O(ZF=,(pF log2 pt’ + log2
p)) operations and is unimportant when rk < I/..

Remark: If p is such that all pi are small, then the required
computational effort is approximately log2 p times as great as
that required to evaluate one exponential. Because cryptanalytic

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on January 25, 2010 at 06:32 from IEEE Xplore. Restrictions apply.

effort should be at least log times as great as enciphering and
deciphering effort, the cryptosystem of Section II must avoid
using such values of p. However, whenpk, the largest prime factor
of p, is comparable in size top (e.g., p - 1 = 2pk), then the new
algorithm is almost no better than previously known algo-
rithms.

Proof: The proof follows from the lemma and the observa-
tion that the Chinese remainder theorem requires O(k) opera-
tions, O(k logs p) bits of memory, and O(k logs p) precomputa-
tion operations. The term XF=ini logs p in the number of opera-
tions accounts for w - .zn (mod p) and fl+- /3pi (mod p) in the
loop of Fig. 2. The loop is executed Z t= ini times.

V. DISCUSSION

The new algorithm is most efficient when p - 1 has only small
prime factors. For example, p = (P . 2448 + 1) is prime [15, p. 511
and requires 2 + 448 = 450 iterations of the loop shown in Fig.
2. The dominant computational requirement is for the 450 ex-
ponentiations mod p involved in computing w. Computing a
logarithm mod p is thus only 450 times as hard as computing an
exponential mod p, and the latter function is not one-way for this
choice of p. In consequence, the cryptosystem and method of key
exchange described in Section II are not secure for this choice of
p. By comparison, previous algorithms [2, p. 9] require over 1O65
operations and bits of memory to compute one logarithm over
GF(p) for this particular p.

The new algorithm is least efficient when p = 2~’ + 1, where
p’ is also prime. In this case, the dominant computational re-
quirement is to compute g(w) when pi = ps = p’. Indeed, once
g(w) is known, x = log, y over GF(p) is easily found since either
x = g(w), or x = g(w) + p’. Whenp = 2~’ + 1, the new algorithm
is essentially the same as Knuth’s, the exception being that r need
not be l/s. A computer program was used to search for large primes
of this form. One such prime wasp = 2~’ + 1, with

p’ = (2121 - 52. 72 - 112. 13.17.19.23.29.31.37
- 41.43.47 a 53 - 59) + 1. (48)

Both p and p’ require 60 decimal digits, i.e., are about 200 bits
long. A pair p and p’ of 25 digit primes of this form was also
found, namely

p’ = (213 - 5 * 7 - 11.13.. f 47 * 53 * 59) + 1. (49)
Note that three cannot be a factor of (p’ - l), since otherwise 2~’
+ 1 would be divisible by three and hence not prime. (One can
prove that the first p and p’ are primes by checking that six and
two are primitive elements of GF(p’) and GF(p), respectively.
For the second pair, three and two are the corresponding primi-
tive elements. In both cases, these are the smallest primitive el-
ements.)

When p = 2~’ + 1 with the p’ of (48) and r = l/s, computing
g(w) by the method used in the lemma requires more than 1030
operations and more than 1030 bits of memory. By choosing an-
other value of r, one or the other of these requirements can be
reduced, but both cannot be done simultaneously. Since both
requirements are infeasible today (and will be for the next 50
years even if current cost trends continue) the new algorithm for
computing logarithms mod p is infeasible for this value of p and
any choice of r. By going to a 200 digit prime of the form 2~’ +
1, one could invoke the previously mentioned physical arguments
to preclude use of the new algorithm forever. In contrast, expo-
nentiation requires only about 400 multiplications mod p and
three 200 bit words of memory for the 60 digit value of p, and only
1330 multiplications mod p and three 665 bit words of memory
when p is 200 digits long.

The new algorithm directly extends to all finite fields GF(pm)
and, in particular, is infeasible for computing logarithms over
GF(2m) when 2m - 1 is a large Mersenne prime. Using this choice

of field for the cryptosystem of Section II also has the advantage
thatallkeys11K<2m- 2 are usable, and that the plaintext
message contains an integral number of bits. In GF(2521) [15, p.
501, enciphering and deciphering require at most 1042 multipli-
cations (in the field), while cryptanalysis using the new algorithm
requires at least 252112 = 2.6 X 1O78 times as much computa-
tion.

If the new algorithm is at all close to optimal, it follows that
values of p exist for which exponentiation mod p would be a
one-way function, even under the most restrictive of definitions.
By implication, the cryptosystem of Section II would be secure
under the most conservative of definitions. The real question is
whether there are as yet undiscovered algorithms which are vastly
more efficient when p - 1 has a large prime factor.

We encourage research oriented toward finding such an algo-
rithm or toward establishing a large lower bound on the compu-
tational effort for finding logarithms mod p. Because the security
of this cryptosystem is equivalent to such an easily stated prob-
lem, there is more than the usual hope that its security can be
established through mathematical proof, if indeed it is secure.
Success in this endeavor would have a revolutionary impact on
cryptography.

REFERENCES

[l] D. E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1969.

[z] D. E. Knuth, The Art of Computer Programming, Vol. III: Sorting and
Searching. Reading. MA: Addison-Weslev. 1973.

I I “_

(31 R. W. Keyes, “Physical limits in digital electronics,” in Proc. IEEE, vol. 63,
pp. 740-767, May 1975.

[4] R. W. Landauer, “Irreversibility and heat generation in the computing pro-
cess,” IBM J. Res. Deuelop., vol. 5, pp. 183-191,1961.

[5] M. V. Wilkes, Time-Sharing Computer Systems. New York: American El-
sevier. 1968. ~~ ~~

[6] A. Evans, W. Kantrowitz, and E. Weiss, “A user authentication scheme not
requiring secrecy in the computer,” Comm. ACM, vol. 17, pp. 437-442, Aug.
1974.

[7] G. B. Purdy, “A high security log-in procedure,” Comm. of ACM, vol. 17, pp.
442-445. Aua. 1974.

[8] R. Merkie, “gecure communication over an insecure channel,” submitted to
Comm. of ACM.

191 W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans.
Inform Theory, vol. IT-22, pp. 644-654, Nov. 19761

[lo] R. A. Scholtz and L. R. Welch, “Generalized residue sequence,” in Proc. Int.
Conf. Comm.. Seattle. WA. June 1973.

I I

[ll] R. Merkle and M. E. Hellman, “Hiding information and receipts in trap door
knapsacks,” presented at 1977 IEEE Int. Symp. Information Theory, Ithaca,
NY, Oct. 1977; also to appear in IEEE Trans. Inform. Theory.

[12] R. G. Archibald, An Introduction to the Theory of Numbers. Columbus, OH:
Merrill, 1970.

(131 Handbook of Mathematical Functiona, M. Abramowitz and I. A. Stegun, Eds.
New York: Dover, 1965.

[14] R. L. Rive&, A. Shamir, L. Adleman, “On digital signatures and public-key
crvptosystems,” Dep. Elec. Enplr. and Camp Sci., M.I.T., Cambridge, MA,
T&h. Rep. MIT/L&/TM-82, Apr. 1977; also, to appear in Comm of ACM as
“A method for obtaining digital signatures and public-key cryptosystems.”

[15] N. J. A. Sloane, A Handbook of Integer Sequences. New York: Academic,
1973.

Optimal Source Coding for a Class of Integer Alphabets

PIERRE A. HUMBLET

Abstract-Let p(i) be a probability measure on the set of non-
negative integers. The Huffman optimum encoding technique is
extended to a class of p(i) including those whose tail decreases

Manuscript received August 5, 1976; revised May 2, 1977. This research was
supported by the Advanced Research Projects Agency of the U.S. Department of
Defense and was monitored by ONR, under Contract N00014-75-C-1183.

The author is with the Electronic Systems Laboratory, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA 02139.

110 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. n-24, NO. 1, JANUARY 1978

00189448/78/0100-0110$00.75 0 1978 IEEE
Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on January 25, 2010 at 06:32 from IEEE Xplore. Restrictions apply.

