Random Oracles are Practical: A Paradigm for Designing Efficient Protocols

Mihir Bellare Phillip Rogaway

ACM Computer & Comm. Security 1993

presented by: Eun-kyung Kim

Agenda

- Definitions
 - Random Oracle Model
 - Notations
- Encryption
 - Polynomial Security
 - Chosen Cipher-text Security
 - Non-Malleability
- Signatures
- Instantiation

Abstract

- Random Oracle Model (ROM)
 - an ideal mathematical model for a hash function
 - The ROM that they claim more accurately models the real world while simultaneously making proofs easier

Motivation

- Large gap between the theoreticians' and practitioners' works and views
 - theoretical work gains security at cost of efficiency
 - theorists build PRFs from one-way functions, while in practice, oneway functions are built from PRFs
 - PRF: Pseudo Random Functions

Random Oracle Paradigm

- 1. Find a formal definition of the problem in the random oracle model
- 2. Devise a protocol that solves the problem
- 3. Prove the protocol satisfies definition
- 4. Replace oracle accesses by computation of a real function (e.g., hash function)

Notations

- $G: \{0,1\}^* \rightarrow \{0,1\}^{\infty}$ is a random generator
- *k* is the security parameter
- $H: \{0,1\}^* \rightarrow \{0,1\}^k$ is a random hash function
- f is a trapdoor permutation with inverse f^1
- $G(r) \oplus x$ denotes the bitwise XOR of x with the first |x| bits of the output of G(r)
- || denotes concatenation

Encryption

Goal

 possible but impractical in the standard setting become practical in the random oracle setting

Scheme

- extend the notion of public key encryption to the random oracle model
- ▶ PPT generator $G:1^k \rightarrow (E,D)$
 - PPT: Probabilistic, Polynomial Time
- encryption: $y \leftarrow E^R(x)$
- decryption: $x \leftarrow D^R(y)$

Polynomial Security

- by Goldwasser, Micali's notion (1984)
- B_f denotes a hard core predicate for f
- $E(x) = f(r_1) || ... || f(r_{|x|})$
 - r_i are randomly chosen such that $B_f(r_i) = x_i$
 - encryption length: $O(k \cdot |x|)$
 - encryption effort: $O(f \cdot |x|)$
 - decryption effort: $O(f^1 \cdot |x|)$
 - It is not practical!

Polynomial Security

- in Random Oracle Model
- Given CP-adversary (F,A) chosen plaintext security in the model is:

```
Pr[ R \leftarrow 2^{\circ};

(E,D) \leftarrow G(1^{k});

(m_{0},m_{1}) \leftarrow F^{R}(E);

b \leftarrow \{0,1\};

y \leftarrow E^{R}(m_{b}):

A^{R}(E,m_{0},m_{1},y) = b] \leq \frac{1}{2} + k^{-\omega(1)}
```

Polynomial Security

- $E(x) = f(r) || G(r) \oplus x$
 - ▶ E is the algorithm which on input x picks $r \leftarrow d(1^k)$
- encryption size O(|x| + k)

Chosen Ciphertext Security

- The scheme of the previous is not secure against RS-attack
 - Given "Rackoff-Simon"-adversary (F,A) chosen ciphertext security in this model is:

```
Pr[ R \leftarrow 2^{\infty};

(E,D) \leftarrow G(1^{k});

(m_{0},m_{1}) \leftarrow F^{R,D^{k}}(E);

b \leftarrow \{0,1\};

y \leftarrow E^{R}(m_{b}):

A^{R,D^{k}}(E,m_{0},m_{1},y) = b] \leq \frac{1}{2} + k^{-\omega(1)}
```

• Encryption by $E(x) = f(r) \mid\mid G(r) \oplus x \mid\mid H(rx)$

Non-Malleability

- An encryption algorithm is malleable if it is possible for an adversary to transform a cipher-text into another cipher-text which decrypts to a related plaintext
- Non-Malleability is that given the cipher-text it is impossible to generate a different cipher-text so that the respective plain texts are related

Non-Malleability

- Encryption by $E(x) = f(r) \mid\mid G(r) \oplus x \mid\mid H(rx)$
 - same as that of the previous
- Given adversary(F,A) security in the sense of malleability is:

```
Pr[R \leftarrow 2^{\infty}; \qquad Pr[R \leftarrow 2^{\infty}; \\ (E,D) \leftarrow G(1^{k}); \qquad (E,D) \leftarrow G(1^{k}); \\ \pi \leftarrow F^{R}(E); \qquad \pi \leftarrow F^{R}(E); \\ x \leftarrow \pi^{R}(1^{k}); \qquad x \leftarrow \pi^{R}(1^{k}); \\ y \leftarrow E^{R}(x); \qquad y' \leftarrow A^{R}(E,\pi): \\ p^{R}(x,D^{R}(y')) = 1]
```

is negligible!!

Results

- Efficient Encryption
 - ► $E^G(x) = f(r) \mid\mid G(r) \oplus x$:achieves polynomial/semantic security
 - ► $E^{G,H}(x) = f(r) \mid\mid G(r) \oplus x \mid\mid H(rx)$:against chosen ciphertext attack, non-malleable

Signatures

- A digital signature scheme:(G, S, V)
 - G: generator
 - S: signing algorithm
 - V: verifying algorithm
 - $G:1^k \rightarrow (PK, SK)$
 - PK: public key
 - SK: secret key
 - ► To sign message *m*
 - ▶ σ ← Sign^R(SK, m)
 - To verify (m, σ)
 - VerifyR(PK, m, σ) $\in \{0,1\}$

Signatures

- in Random Oracle Model
- Given signing adversary F, security is:

```
Pr[R \leftarrow 2^{\infty};

(PK,SK) \leftarrow G(1^k);

(m,\sigma) \leftarrow F^{R,Sign^R(SK,\cdot)}(PK):

Verify<sup>R</sup>(PK, m,\sigma) = 1]

is negligible!!
```

Instantiation Tips

- Do not instantiate based on the protocol
 - an appropriate instantiation should work for any protocol designed using a black box
- Avoid instantiations revealing internal structure
 - e.g. MD5(x||y||z) can be easily computed given |x|, MD5(x), and z
 - suggestions include:
 - truncating output: h(x) = the first 64 bits of MD5(x)
 - Iimiting input length: h(x) = MD5(x), where $|x| \le 400$
 - non-standard use: h(x) = MD5(x||x)

Wrap-up

- A random oracle is a mathematical abstraction used in cryptographic proofs
 - In practice, random oracles are typically used to model cryptographic hash functions in schemes where strong randomness assumptions are needed of the hash function's output
- Random Oracle Paradigm
 - The idea is to make use of has functions that are assumed in the analysis to behave randomly
 - This is a bridge between theory and practice