CS548 Advanced Information Security

An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance Function

Stephen C. Pohlig and Margin E. Hellman IEEE Transactions on Information Theory, 1978
2010. 03. 09.

Kanghoon Lee, AIPR Lab., KAIST

Contents

What's the problem ?

Pair of Inverse Functions

$$
\begin{array}{rl}
y & \equiv \alpha^{x} \\
x & (\bmod p) \\
\equiv \log _{\alpha} y & o v e r \quad G F(p)
\end{array}
$$

where p is prime, α is a fixed primitive element of $G F(p)$
(1) $y \equiv \alpha^{x}(\bmod p): O\left(\log _{2} p\right)$ time complexity $\quad\left(\right.$ ex. $\left.\alpha^{18}=\left(\left(\left(\alpha^{2}\right)^{2}\right)^{2}\right)^{2} \alpha^{2}\right)$
(2) $x \equiv \log _{\alpha} y$ over $G F(p)$: Previously, $O(\sqrt{p})$ time \& space complexity

One-way Function : Original problem - easy Inverse problem - difficult

p-1 Must Have Large Prime Factor !

$$
x \equiv \log _{a} y \quad \text { over } \quad G F(p)
$$

\checkmark Can we solve this problem faster than $O(\sqrt{p})$ time ??
\checkmark Over GF(p), when p-1 has only small prime factors, the logarithm problem can be solved $\boldsymbol{O}\left(\boldsymbol{\operatorname { l o g }}^{2} p\right)$
\checkmark To make one-way function, p-1 must have at least one large prime factor

Use in Cryptography

\checkmark For plain-text M , key K , cipher-text C with the restrictions $1 \leq M, C \leq p-1, \quad 1 \leq K \leq p-2, \quad G C D(K, p-1)=1$ $C \equiv M^{K}(\bmod p)$
\checkmark For deciphering operation,
$\boldsymbol{M} \equiv \boldsymbol{C}^{\boldsymbol{D}}(\boldsymbol{\operatorname { m o d }} \boldsymbol{p}), \quad$ where $D \equiv K^{-1}(\bmod p-1)$
(D is uniquely determined because $G C D(K, p-1)=1$)
\checkmark Finding the key K is equivalent to computing
$\boldsymbol{K} \equiv \boldsymbol{\operatorname { l o g }}_{\boldsymbol{M}} \boldsymbol{C} \quad$ over $\boldsymbol{G F} \boldsymbol{F}(\boldsymbol{p})$

Background - Finite Field (Algebra)

\checkmark GF(p): Galois Field (a.k.a. Finite Field)
\rightarrow A field that contains only finitely many elements
\checkmark Computations over $G F(p)$
ex. When $p=5$ (i.e. $G F(5)$),
$3+4 \equiv 2(\bmod 5), 3-4 \equiv 4(\bmod 5)$
$3^{2}=9 \equiv 4(\bmod 5), \log _{3} 4 \equiv 2(\bmod 5)$
\checkmark Primitive Element: A generator of the multiplicative group of the field
ex. $3^{1} \equiv 3, \quad 3^{2} \equiv 4, \quad 3^{3} \equiv 2, \quad 3^{4} \equiv 1(\bmod 5)$
So, 3 is a primitive element of $G F(5)$

Background - Number Theory (1)

\checkmark Euler's φ-function (a.k.a. Euler's totient function)

$$
\begin{aligned}
\varphi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}\right) & =\left(p_{1}-1\right) p_{1}^{e_{1}}\left(p_{2}-1\right) p_{2}^{e_{2}} \cdots\left(p_{k}-1\right) p_{k}^{e_{k}}, \quad \text { where } p_{i}{ }^{\prime} s \text { are prime } \\
& =p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \prod_{p_{i}}\left(1-\frac{1}{p_{i}}\right)
\end{aligned}
$$

\checkmark The fraction ρ

$$
\rho=\frac{\varphi(p-1)}{p-1}=\prod_{p_{i} \mid(p-1)}\left(1-\frac{1}{p_{i}}\right) \quad\left(\forall p<1.6 \times 10^{103} \Rightarrow p>0.1\right)
$$

\checkmark For primes of the form $p=2 p^{\prime}+1$, with p^{\prime} prime, $\rho=\frac{1}{2}\left(1-\frac{1}{p^{\prime}}\right) \approx \frac{1}{2}$

Background - Number Theory (2)

\checkmark Fermat's Little Theorem
$z^{p-1} \equiv 1(\bmod p), \quad 1 \leq z \leq p-1$
\checkmark From the theorem
$z^{x} \equiv z^{x(\bmod p-1)}(\bmod p)$
\checkmark Chinese Remainder Theorem
Suppose that $n_{1}, n_{2}, \ldots, n_{k}$ are positive integers which are pairwise coprime.
For any integers $a_{1}, a_{2}, \ldots, a_{k}$, there exist an integer $x\left(\bmod n_{1} n_{2} \ldots n_{k}\right)$ satisfying $x \equiv a_{1}\left(\bmod n_{1}\right), x \equiv a_{2}\left(\bmod n_{2}\right), \cdots, x \equiv a_{k}\left(\bmod n_{k}\right)$
\checkmark c.f. Euler's Theorem
For any positive integer $n, z \quad(G C D(n, z)=1)$
$z^{\varphi(n)} \equiv 1(\bmod n)$

An Algorithm for $p=2^{n}+1$ (1)

\checkmark Given $\alpha, p, y,(\alpha$ is a primitive element of $G F(p))$
Must find x such that $y \equiv \alpha^{x}(\bmod p)$
\checkmark Let $x=\sum_{i=0}^{n-1} b_{i} 2^{i}$,
\checkmark Then, b_{0} is determined by

$$
y^{(p-1) / 2}(\bmod p)= \begin{cases}+1, & \text { if } b_{0}=0 \\ -1, & \text { if } b_{0}=1\end{cases}
$$

(\because) Since α is primitive, $\alpha^{(\mathrm{p}-1) / 2} \equiv-1(\bmod p)$
Therefore, $y^{(p-1) / 2}=\left(\alpha^{x}\right)^{(p-1) / 2} \equiv\left(\alpha^{(p-1) / 2}\right)^{x}(\bmod p)$

An Algorithm for $p=2^{n}+1$ (2)

\checkmark Now, b_{1} is determined by letting

$$
z \equiv y \alpha^{-b_{0}} \equiv \alpha^{x_{1}}(\bmod p), \quad \text { where } x_{1}=\sum_{i=1}^{n-1} b_{i} 2^{i}
$$

\checkmark Then,

$$
\begin{aligned}
z^{(p-1) / 4}(\bmod p) & \equiv\left(\alpha^{x_{1}}\right)^{(p-1) / 4} \equiv\left(\alpha^{(p-1) / 2}\right)^{x_{1} / 2} \equiv(-1)^{x_{1} / 2} \\
& \equiv \begin{cases}+1, & b_{1}=0 \\
-1, & b_{1}=1\end{cases}
\end{aligned}
$$

\checkmark Remaining bit of x

$$
\begin{aligned}
& m \equiv p-1 / 2^{i+1} \\
& z \equiv \alpha^{x_{i}}(\bmod p), \quad \text { where } x_{i}=\sum_{j=i}^{n-1} b_{j} 2^{j} \\
& z^{m}(\bmod p) \equiv \begin{cases}+1, & b_{i}=0 \\
-1, & b_{i}=1\end{cases}
\end{aligned}
$$

Flowchart for $p=\mathbf{2}^{n+1}$

An Algorithm for Arbitrary Primes (1)

\checkmark Generalize the algorithm to arbitrary primes p

- $2^{16}+1$ is the largest known prime of the form $2^{n}+1$
\checkmark Let $p-1=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}, \quad p_{i}<p_{i+1}$ where the p_{i} are distinct primes and the n_{i} are positive integers
\checkmark By Chinese Remainder Theorem, if the value of $x\left(\bmod p_{i}^{n_{i}}\right)$ is determined for all i, then

$$
x\left(\bmod \prod_{i=1}^{k} p_{i}^{n_{i}}\right)=x(\bmod p-1)=x
$$

An Algorithm for Arbitrary Primes (2)

\checkmark Consider the following expansion of $x\left(\bmod p_{i}^{n_{i}}\right)$
$x\left(\bmod p_{i}^{n_{i}}\right)=\sum_{j=0}^{n_{i}-1} b_{j} p_{i}{ }^{j}, \quad$ where $0 \leq b_{j} \leq p_{i}-1$
\checkmark Then,
$y^{(p-1) / p_{i}} \equiv \alpha^{(p-1) x / p_{i}} \equiv \gamma_{i}^{x} \equiv \gamma_{i}^{b_{0}}(\bmod p)$
where $\gamma_{i}=\alpha^{(p-1) / p_{i}}$
\rightarrow The resultant value uniquely determines b_{0}

An Algorithm for Arbitrary Primes (3)

\checkmark The function $g_{i}(w)$ is defined by
$\gamma_{i}^{g_{i}(w)} \equiv w(\bmod p), \quad 0 \leq g_{i}(w) \leq p_{i}-1$
\checkmark The resultant value, $y^{(p-1) / p_{i}} \equiv \gamma_{i}^{b_{0}}(\bmod p)$ determines b_{i} by $g_{i}(w)$
\checkmark So, dominant computational requirement: computing $\boldsymbol{g}_{i}(\boldsymbol{w})$

Flowchart for arbitrary primes

Time \& Space Complexity

Theorem

Let

$$
p-1=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}, \quad p_{i}<p_{i+1}
$$

be the prime factorization of $p-1$, where p is prime, the p_{i} are distinct primes, and the n_{i} are positive integer.
Then, for any $\left\{r_{i}\right\}_{i=1}^{k}$ with all $0 \leq r_{i} \leq 1$, logarithms over $G F(p)$ can be computed in $O\left(\sum_{i=1}^{k} n_{i}\left(\log _{2} p+p_{i}{ }^{1-r_{i}}\left(1+\log _{2} p_{i}^{r_{i}}\right)\right)\right)$ operations with $O\left(\log _{2} p \cdot \sum_{i=1}^{k}\left(1+p_{i}^{r_{i}}\right)\right)$ bits of memory.

Proof. [1]

Discussion

$\checkmark \quad p=2^{448} \cdot 5^{2}+1$ is a prime that $p-1$ has only small prime factors (i.e., 2,5)
$\rightarrow 2+448=450$ iterations of the loop in the flowchart \longrightarrow Not one-way
\rightarrow Dominant computational requirement: 450 exponentiations $\bmod p$
\checkmark When $p=2 p^{\prime}+1, \quad\left(p^{\prime}\right.$ is also prime)
(ex. $p^{\prime}=2^{121} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 \cdot 59+1$)
\rightarrow Dominant computational requirement: $g(w)$
function
\rightarrow computing $g(w)$: more than 10^{30} operations \& 10^{30} bits of memory $(r=1 / 2)$

References

[1] S. C. Pohlig and M. E. Hellman, An Improved Algorithm for Computing Logarithms over GF(p) and Its Cryptographic Significance, IEEE Transactions on Information Theory, 1978

