
An Improved Algorithm for Computing

Logarithms over GF(p) and Its Cryptographic

Significance Function

CS548 Advanced Information Security

Significance Function

2010. 03. 09.

Kanghoon Lee, AIPR Lab., KAIST

Stephen C. Pohlig and Margin E. Hellman

IEEE Transactions on Information Theory, 1978

Contents

Mathematical Backgrounds

Use in Cryptography

Introduction

Algorithm for Arbitrary Primes

Algorithm for p = 2n+1

Mathematical Backgrounds

Discussion

What’s the problem ?

Pair of Inverse Functions

GF(p)overylogx

p)(modαy

α

x

≡

≡

)(ofelementprimitivefixedaisprime,iswhere pGFp α

easyeasy

difficultdifficult

)(ofelementprimitivefixedaisprime,iswhere pGFp α

)(mod py xα≡① : time complexity (ex.)

② : : Previously , time & space complexity

One-way Function : Original problem – easy

Inverse problem – difficult

)(overlog pGFyx α≡

)(log2 pO 2222218)))(((ααα =

)(pO

Really ?Really ?

p-1 Must Have Large Prime Factor !

� Can we solve this problem faster than time ??

� Over GF(p), when p-1 has only small prime factors,

the logarithm problem can be solved

GF(p)overylogx α≡

)(pO

p)O(log
2

the logarithm problem can be solved

� To make one-way function,

p-1 must have at least one large prime factor

p)O(log
2

Use in Cryptography

� For plain-text M, key K, cipher-text C with the restrictions

,

� For deciphering operation,

1)1,(,21,1,1 =−−≤≤−≤≤ pKGCDpKpCM

p)(modMC
K≡

)p(KD - 1modwhere, 1 −≡≡ p)(modCM
D

(D is uniquely determined because GCD(K, p-1) = 1)

� Finding the key K is equivalent to computing

GF(p)ClogK M over≡

)p(KD 1modwhere, −≡≡ p)(modCM

Background – Finite Field (Algebra)

� GF(p) : Galois Field (a.k.a. Finite Field)

� A field that contains only finitely many elements

� Computations over GF(p)

ex. When p=5 (i.e. GF(5)),

)5(mod24log,)5(mod493
)5(mod443,)5(mod243

2 ≡≡=
≡−≡+

� Primitive Element : A generator of the multiplicative group of the field

ex.

So, 3 is a primitive element of GF(5)

)5(mod24log,)5(mod493 3

2 ≡≡=

)5(mod13,23,43,33 4321 ≡≡≡≡

Background - Number Theory (1)

� Euler’s - function (a.k.a. Euler’s totient function)

� The fraction

ϕ

ρ

∏ 







−=

−−−=

i

k

kk

p i

e

k

ee

i

e

kk

eee

k

ee

p
ppp

spppppppppp

1
1

primeare'where,)1()1()1()(

21

2121

21

221121

L

LLϕ

� The fraction

� For primes of the form , with p’ prime,

ρ

∏
−









−=

−
−

=
)1(|

1
1

1

)1(

pp ii
pp

pϕ
ρ ()1.0106.1 103 >⇒×<∀ pp

1'2 += pp
2

1

'

1
1

2

1
≈








−=
p

ρ

Background - Number Theory (2)

� Fermat’s Little Theorem

� From the theorem

� Chinese Remainder Theorem

11,)(mod11 −≤≤≡− pzpz p

)(mod)1(mod pzz pxx −≡

� Chinese Remainder Theorem

Suppose that n1, n2, …, nk are positive integers which are pairwise coprime.

For any integers a1, a2, …, ak , there exist an integer x (mod n1n2…nk) satisfying

� c.f. Euler’s Theorem

For any positive integer n, z (GCD(n,z)=1)

)(mod1)(nz n ≡ϕ

)(mod,,)(mod,)(mod 2211 kk naxnaxnax ≡≡≡ L

An Algorithm for p = 2n+1 (1)

� Given , (is a primitive element of GF(p))

Must find x such that

� Let ,

� Then, is determined by

yp,,α α

)(mod py xα≡

∑
−

=

=
1

0

2
n

i

i

ibx

0b





=−

=+
=−

1if,1

0if,1
)(mod

0

02/)1(

b

b
py p

)(mod)()(Therefore,

)(mod1primitive,isSince)(

2/)1(2/)1(2/)1(

1)/2-(p

py

p

xppxp −−− ≡=

−≡

αα

ααQ

An Algorithm for p = 2n+1 (2)

� Now, is determined by letting

� Then,

1b

∑
−

=

− =≡≡
1

11 2where,)(mod10
n

i

i

i

xb
bxpyz αα




=−
=+≡

−≡≡≡ −−−

0,1

)1()()()(mod

1

2/2/2/)1(4/)1(4/)1(111

b

pz
xxppxp αα

� Remaining bit of x





=−
=+≡
1,1
0,1

1

1

b
b

∑
−

=

+

=≡

−≡
1

1

2where,)(mod
2

1

n

ij

j

ji

x

i

bxpz

p
m

iα





=−
=+≡
1,1
0,1

)(mod
i

im

b
b

pz

Flowchart for p = 2n+1

START

Z�Y

β�α-1 (mod p)

m�(p-1)/2

i�0

bi�0 bi�1

Z�Z β (mod p)

β � β2 (mod p)

m�m/2

W=1
W=-1

W�Zm (mod p)

TEST W

m�m/2

i�i+1

i=n

HALT

TRUEFALSE

An Algorithm for Arbitrary Primes (1)

� Generalize the algorithm to arbitrary primes p

• is the largest known prime of the form

� Let

where the pi are distinct primes and the ni are positive integers

� By Chinese Remainder Theorem,

1216 + 12 +n

121 ,1 21

+<=− ii

n

k

nn
pppppp k

L

� By Chinese Remainder Theorem,

if the value of is determined for all i, then

xpxpx
k

i

n

i
i =−=∏

=

)1(mod)(mod
1

)(mod in

ipx

An Algorithm for Arbitrary Primes (2)

� Consider the following expansion of

� Then,

)(mod in

ipx

10where,)(mod
1

0

−≤≤=∑
−

=
ij

n

j

j

ij

n

i pbpbpx
i

i

ii
b

i

x

i

pxppp
py

/)1(/)1(
)(mod0−− ≡≡≡ γγα

� The resultant value uniquely determines

ipp

i

/)1(
where

−=αγ

0b

An Algorithm for Arbitrary Primes (3)

� The function is defined by

� The resultant value, determines

by

)(mod0/)1(
py

b

i

pp i γ≡−

)(wgi

1)(0,)(mod
)(−≤≤≡ ii

wg

i pwgpwiγ

)(wgi

ib

by

� So, dominant computational requirement : computing

)(wgi

(w)gi

Flowchart for arbitrary primes

START

Z�Y

β�α-1 (mod p)

n�(p-1)/pi

j�0

W�Zn (mod p)W�Zn (mod p)

bj �gi(W)

Z�Z β bj (mod p)

β � β pi (mod p)

N�n/pi

j�j+1

j=ni

HALT

TRUE

FALSE

Theorem

Let

be the prime factorization of p-1, where p is prime, the pi are distinct

primes, and the ni are positive integer.

Time & Space Complexity

121 ,1 21

+<=− ii

n

k

nn
pppppp k

L

i

Then, for any with all , logarithms over GF(p) can be

computed in operations with

bits of memory.

{ }k
ii

r
1= 10 ≤≤ ir

()∑ ++=
−k

i

r

i

r

ii
ii pppnO 1 2

1

2))log1((log

()∑ +⋅ =
k
i

r

i
ippO 12)1(log

Proof. [1]

Discussion

� is a prime that p-1 has only small prime factors (i.e., 2, 5)

� 2+448 = 450 iterations of the loop in the flowchart

� Dominant computational requirement: 450 exponentiations mod p

� When , (p’ is also prime)

152 2448 +⋅=p
Not one-way

function
Not one-way

function

1'2 += pp� When , (p’ is also prime)

(ex.)

� Dominant computational requirement:

� computing g(w): more than 1030 operations & 1030 bits of memory (r=1/2)

1'2 += pp

159534743413731292319171311752' 222121 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=p

)(wg
One-way
function
One-way
function

References

[1] S. C. Pohlig and M. E. Hellman, An Improved Algorithm for Computing Logarithms

over GF(p) and Its Cryptographic Significance, IEEE Transactions on Information

Theory, 1978

