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VW  What’s the problem ?

X

y = a (mod p)

x = log,y over GF(p) *

where p 1s prime, « is a fixed primitive element of GF(p)

@ y=a’ (modp) : O(log, p) time complexity (ex. ' =(((a’)*)*)’a’ )

@ x=log,y over GF(p): Previously, 0(\/;) time & space complexity

One-way Function : Original problem — easy
Inverse problem — difficult




VW  p-1 Must Have Large Prime Factor !

x=log y over GF(p)

v" Can we solve this problem faster than O(\/;) time ??

v" Over GF(p), when p-1 has only small prime factors,

the logarithm problem can be solved O(Ingp)

v" To make one-way function,
p-1 must have at least one large prime factor




W  Usein Cryptography

v' For plain-text M, key K, cipher-text C with the restrictions
1<M,C<p-1, 1£K<p-2, GCDKK, p-1)=1
C=M" (mod p)

v For deciphering operation,
M =C” (mod p), where D=K"' (modp—-1)

(D is uniguely determined because GCD(K, p-1) = 1)

v" Finding the key K is equivalent to computing
K = log, C over GF(p)



W  Background - Finite Field (Algebra)

v' GF(p) : Galois Field (a.k.a. Finite Field)

=>» A field that contains only finitely many elements

v' Computations over GF(p)

ex. When p=5 (i.e. GF(5)),

3+4=2 (mod5), 3—4=4 (mod5)
3’ =9=4 (mod5), log,4=2 (mod5)

v" Primitive Element : A generator of the multiplicative group of the field
ex. 3'=3, 3°=4, 3=2, 3*=1(mod5)

So, 3is a primitive element of GF(5)



W  Background - Number Theory (1)

v" Euler’s ¢ - function (a.k.a. Euler’s totient function)

o(p"'p," - p.")=(p,-Dp," (P, -Dp,” - (p, —Dp,”* , where p,'s are prime

e e e 1
=D, Py Dy H[l__J

D pi

v" The fraction p

_plp-1) _ 1
LT T 11 (l pl) (Vp<1.6x10® = p>0.1)

p:il(p-1)

1
v' For primes of the form p =2p'+1, with p’prime, p= 5(1 —ij ~



W  Background - Number Theory (2)

v Fermat’s Little Theorem

z"'=1(mod p), 1<z<p-1

v From the theorem

Zx EZx(modp—l) (mOd p)

v" Chinese Remainder Theorem
Suppose that n,, n,, ..., n, are positive integers which are pairwise coprime.
For any integers a,, a,, ..., a,, there exist an integer x (mod n;n,...n, ) satisfying

x=a, (modn), x=a, ((modn,), -, x=a, (mod n,)

v' c.f. Euler’s Theorem
For any positive integern, z ( GCD(n,z)=1)
z?™ =1 (mod n)



VW  AnAlgorithm for p =2"+1 (1)

v Given a, p, ¥y, («a isa primitive element of GF(p))

Must find x such that y=a” (mod p)
n—l1 .
v o Let x= Zbl.Z’ ,
i=0

v' Then, b, is determined by
+1, if b, =0

72 (mod p) =
yo o (modp) {—1, if b, =1

() Since ¢ is primitive, a®"? =-1 (mod p)

Therefore, y*™""% =(a*)?™""? =(«”™""*)* (mod p)



VW  AnAlgorithm for p = 2"+1 (2)

v Now, b, is determined by letting
z=ya ™ =a™ (modp), where x, = Zn_lb.Zi

i=1 !

v" Then,

Z(p—l)/4 (mOdp) — (axl )(p—l)/4 = (a(p—l)/Z)x1/2 — (_1)x1/2

v" Remaining bit of x
-1
m= p 2i+1

X; . n-1 ;
z=a'(modp), wherex, = j:l_bj2f

m 1, b =0
z (modp)z{il’ B 1

n oy
NAIDI




YV  Flowchart for p = 2"+1

b.<1
/<7 B (mod p)

B < B%(mod p)
m<m/2
i€<i+l

W<EZ™ (mod p)




W  An Algorithm for Arbitrary Primes (1)

v" Generalize the algorithm to arbitrary primes p
« 2'° 41 is the largest known prime of the form 2" +1

ny

v olet p—l=p’p,"-pt . Pi<Pu
where the p; are distinct primes and the n; are positive integers

v" By Chinese Remainder Theorem,

if the value of x(mod p,") is determined for all i, then

k
X (modH p,")=x(modp-1)=x
i=1



W  An Algorithm for Arbitrary Primes (2)

v’ Consider the following expansion of x (mod p,")

n;—1 .
x (mod p,") = ijpl.] , Where 0<b, < p, 1
=0

v' Then,

(Db — o (P D¥/ Py

y " =y" (mod p)

where y, =a""'"

= The resultant value uniquely determines b,



W  An Algorithm for Arbitrary Primes (3)

v' The function g (w) is defined by

gi(

Vi Y=w (modp), 0s<g(w)<p, -1

v’ The resultant value, 7 V7 =% (mod p) determines b.
Y Vi P i
by g,(w)

v' So, dominant computational requirement : computing g.(w)



V Flowchart for arbitrary primes

W<Z" (mod p)
bj <g(W)

Z€<7 B % (mod p)
B < B P (mod p)

FALSE




Vv Time & Space Complexity

| Theorem

Let

ny

p=1=p"p,"p™, P <p

be the prime factorization of p-1, where p is prime, the p, are distinct
primes, and the n; are positive integer.

Then, for any {’”i }k with all 0 <r, <1, logarithms over GF(p) can be

i=1
computed in O (Zf.‘zl n,(log, p+ pil‘”‘ (1+1log, pl,rf ))) operations with
0] (log2 p-Y (+p/ )) bits of memory.

Proof. [1]



W  Discussion

v o p= 2% .52 41 is a prime that p-1 has only small prime factors (i.e., 2, 5)

- 2+448 = 450 iterations of the loop in the flowchart

- Dominant computational requirement: 450 exponentiations mod p

v' When p=2p'+1, (p’isalso prime)
(ex. p'=2"".57.7.11713-17-19-23-29-31-37-41-43-47-53-59+1 )

- Dominant computational requirement: g(w) *

- computing g(w): more than 103° operations & 103° bits of memory (r=1/2)
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