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What’s the problem ?

Pair of Inverse Functions

GF(p)overylogx

p)(modαy
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≡
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)(ofelementprimitivefixedaisprime,iswhere pGFp α

easyeasy

difficultdifficult

)(ofelementprimitivefixedaisprime,iswhere pGFp α

)(mod py xα≡① :  time complexity      (ex.                                         )

② :                                              :    Previously ,                  time & space complexity

One-way Function :  Original problem – easy

Inverse problem – difficult

)(overlog pGFyx α≡

)(log2 pO 2222218 )))((( ααα =

)( pO

Really ?Really ?



p-1 Must Have Large Prime Factor !

� Can we solve this problem faster than                  time ??

� Over GF(p),  when p-1 has only small prime factors,

the logarithm problem can be solved 

GF(p)overylogx α≡

)( pO

p)O(log
2

the logarithm problem can be solved 

� To make one-way function,

p-1  must have at least one large prime factor

p)O(log
2



Use in Cryptography

� For plain-text M,  key K,  cipher-text C with the restrictions

,

� For deciphering operation,

1)1,(,21,1,1 =−−≤≤−≤≤ pKGCDpKpCM

p)(modMC
K≡

)p(KD - 1modwhere, 1 −≡≡ p)(modCM
D

(D is uniquely determined because GCD(K, p-1) = 1)

� Finding the key K is equivalent to computing

GF(p)ClogK M over≡

)p(KD 1modwhere, −≡≡ p)(modCM



Background – Finite Field (Algebra)

� GF(p) :  Galois Field  (a.k.a. Finite Field)

� A field that contains only finitely many elements

� Computations over GF(p)

ex.   When p=5 (i.e.  GF(5)),

)5(mod24log,)5(mod493
)5(mod443,)5(mod243

2 ≡≡=
≡−≡+

� Primitive Element :  A generator of the multiplicative group of the field

ex.

So,  3 is a primitive element of GF(5)

)5(mod24log,)5(mod493 3

2 ≡≡=

)5(mod13,23,43,33 4321 ≡≡≡≡



Background - Number Theory (1)

� Euler’s      - function (a.k.a. Euler’s totient function)

� The fraction 
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� The fraction 

� For primes of the form                     , with p’ prime, 
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Background - Number Theory (2)

� Fermat’s Little Theorem

� From the theorem

� Chinese Remainder Theorem

11,)(mod11 −≤≤≡− pzpz p

)(mod)1(mod pzz pxx −≡

� Chinese Remainder Theorem

Suppose that n1, n2, …, nk are positive integers which are pairwise coprime.

For any integers a1, a2, …, ak ,  there exist an integer x (mod n1n2…nk )  satisfying

� c.f.  Euler’s Theorem

For any positive integer n, z   ( GCD(n,z)=1 )

)(mod1)( nz n ≡ϕ

)(mod,,)(mod,)(mod 2211 kk naxnaxnax ≡≡≡ L



An Algorithm for p = 2n+1  (1)

� Given                   ,    (       is a primitive element of GF(p) )

Must find x such that 

� Let                          ,   

� Then,         is determined by

yp,,α α
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An Algorithm for p = 2n+1  (2)

� Now,       is determined by letting

� Then,
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� Remaining bit of x
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Flowchart for p = 2n+1

START

Z�Y

β�α-1 (mod p)

m�(p-1)/2

i�0

bi�0 bi�1

Z�Z β (mod p)

β � β2 (mod p)

m�m/2

W=1
W=-1

W�Zm (mod p)

TEST W

m�m/2

i�i+1

i=n

HALT

TRUEFALSE



An Algorithm for Arbitrary Primes  (1)

� Generalize the algorithm to arbitrary primes p

• is the largest known prime of the form

� Let

where  the pi are distinct primes and the ni are positive integers

� By  Chinese Remainder Theorem,

1216 + 12 +n
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� By  Chinese Remainder Theorem,

if the value of                        is determined for all i,  then
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An Algorithm for Arbitrary Primes  (2)

� Consider the following expansion of 

� Then,
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� The resultant value uniquely determines 
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An Algorithm for Arbitrary Primes  (3)

� The function              is defined by

� The resultant value,                                              determines

by 
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� So,  dominant computational requirement :  computing
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Flowchart for arbitrary primes

START

Z�Y

β�α-1 (mod p)

n�(p-1)/pi

j�0

W�Zn (mod p)W�Zn (mod p)

bj �gi(W)

Z�Z β bj (mod p)

β � β pi (mod p)

N�n/pi

j�j+1

j=ni

HALT

TRUE

FALSE



Theorem

Let

be the prime factorization of p-1,  where p is prime, the pi are distinct 

primes, and the ni are positive integer.

Time & Space Complexity
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Then, for any              with all                   ,  logarithms over GF(p)  can be 

computed in                                                                           operations with           

bits of memory.
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Proof.  [1]



Discussion

� is a prime that p-1 has only small prime factors  (i.e.,  2, 5)

� 2+448 = 450  iterations of the loop in the flowchart

� Dominant computational requirement:  450 exponentiations mod p

� When                      ,   (p’ is also prime)

152 2448 +⋅=p
Not one-way 

function
Not one-way 

function

1'2 += pp� When                      ,   (p’ is also prime)

( ex.                                                                                                                        )

� Dominant computational requirement:  

� computing  g(w):  more than 1030 operations & 1030 bits of memory (r=1/2)

1'2 += pp

159534743413731292319171311752' 222121 +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=p

)(wg
One-way 
function
One-way 
function
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