
Practical Cryptanalysis of iso/iec 9796-2 and

emv Signatures

Jean-Sébastien Coron1, David Naccache2,
Mehdi Tibouchi2, and Ralf-Philipp Weinmann1

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg

{jean-sebastien.coron,ralf-philipp.weinmann}@uni.lu
2 École normale supérieure

Département d’informatique, Groupe de Cryptographie
45, rue d’Ulm, f-75230 Paris Cedex 05, France
{david.naccache,mehdi.tibouchi}@ens.fr

Abstract. In 1999, Coron, Naccache and Stern discovered an existential
signature forgery for two popular rsa signature standards, iso/iec 9796-
1 and 2. Following this attack iso/iec 9796-1 was withdrawn. iso/iec
9796-2 was amended by increasing the message digest to at least 160
bits. Attacking this amended version required at least 261 operations.

In this paper, we exhibit algorithmic refinements allowing to attack
the amended (currently valid) version of iso/iec 9796-2 for all modulus
sizes. A practical forgery was computed in only two days using 19 servers
on the Amazon ec2 grid for a total cost of � us$800. The forgery was
implemented for e = 2 but attacking odd exponents will not take longer.
The forgery was computed for the rsa-2048 challenge modulus, whose
factorization is still unknown.

The new attack blends several theoretical tools. These do not change
the asymptotic complexity of Coron et al.’s technique but significantly
accelerate it for parameter values previously considered beyond reach.

While less efficient (us$45,000), the acceleration also extends to emv
signatures. emv is an iso/iec 9796-2-compliant format with extra redun-
dancy. Luckily, this attack does not threaten any of the 730 million emv
payment cards in circulation for operational reasons.

Costs are per modulus: after a first forgery for a given modulus, ob-
taining more forgeries is virtually immediate.

Keywords: digital signatures, forgery, rsa, public-key cryptanalysis,
iso/iec 9796-2, emv.

1 Introduction

rsa [34] is certainly the most popular public-key cryptosystem. A chosen-cipher-
text attack against rsa textbook encryption was described by Desmedt and

S. Halevi (Ed.): CRYPTO 2009, LNCS 5677, pp. 428–444, 2009.
c© International Association for Cryptologic Research 2009

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 429

Odlyzko in [17]. In rsa textbook encryption, a message m is simply
encrypted as:

c = me mod N

where N is the rsa modulus and e is the public exponent.
As noted in [31], Desmedt and Odlyzko’s attack also applies to rsa signatures:

σ = μ(m)d mod N

where μ(m) is an encoding function and d the private exponent. Desmedt and
Odlyzko’s attack only applies if the encoding function μ(m) produces integers
much smaller than N . In which case, one obtains an existential forgery under a
chosen-message attack. In this attack the opponent can ask for signatures of any
messages of his choosing before computing, by his own means, the signature of a
(possibly meaningless) message which was never signed by the legitimate owner
of d.

As of today, two encoding function species co-exist:

1. Ad-hoc encodings are “handcrafted” to thwart certain classes of attacks.
While still in use, ad-hoc encodings are currently being phased-out. pkcs#1
v1.5 [26], iso/iec 9796-1 [22] and iso/iec 9796-2 [23,24] are typical ad-hoc
encoding examples.

2. Provably secure encodings are designed to make cryptanalysis equivalent to
inverting rsa (possibly under additional assumptions such as the Random
Oracle Model [2]). oaep [3] (for encryption) and pss [4] (for signature) are
typical provably secure encoding examples.

For ad-hoc encodings, there is no guarantee that forging signatures is as hard as
inverting rsa. And as a matter of fact, many such encodings were found to be
weaker than the rsa problem. We refer the reader to [8,11,10,25,15,20] for a few
characteristic examples. It is thus a practitioner’s rule of thumb to use provably
secure encodings whenever possible. Nonetheless, ad-hoc encodings continue to
populate hundreds of millions of commercial products (e.g. emv cards) for a
variety of practical reasons. A periodic re-evaluation of such encodings is hence
necessary.

iso/iec 9796-2 is a specific μ-function standardized by iso [23]. In [16], Coron,
Naccache and Stern discovered an attack against iso/iec 9796-2. Their attack
is an adaptation of Desmedt and Odlyzko’s cryptanalysis which could not be
applied directly since in iso/iec 9796-2, the encoding μ(m) is almost as large
as N . iso/iec 9796-2 can be used with hash-functions of diverse digest-sizes
kh. Coron et al. estimated that attacking kh = 128 and kh = 160 will require
(respectively) 254 and 261 operations. After Coron et al.’s publication iso/iec
9796-2 was amended and the current official requirement (see [24]) is kh ≥ 160.
It was shown in [13] that iso/iec 9796-2 can be proven secure (in the random
oracle model) for e = 2 and if the digest size kh is a least 2/3 the size of the
modulus.

In this paper, we describe an improved attack against the currently valid
(amended) version of iso/iec 9796-2, that is for kh = 160. The new attack

430 J.-S. Coron et al.

applies to emv signatures as well. emv is an iso/iec 9796-2-compliant format
with extra redundancy. The attack is a Coron et al. forgery with new refinements:
better message choice, Bernstein’s smoothness detection algorithm (instead of
trial division), large prime variant and optimized exhaustive search.

Using these refinements, a forgery for iso/iec 9796-2 was computed in only
two days, using a few dozens of servers on the Amazon ec2 grid, for a total cost
of us$800. The forgery was implemented for e = 2 but attacking odd exponents
will not take longer. We estimate that under similar conditions an emv signa-
ture forgery would cost us$45,000. Note that all costs are per modulus. After
computing a first forgery for a given N , additional forgeries come at a negligible
cost.

2 The iso/iec 9796-2 Standard

iso/iec 9796-2 is an encoding standard allowing partial or total message recovery
[23,24]. Here we consider only partial message recovery. As we have already
mentioned, iso/iec 9796-2 can be used with hash-functions hash(m) of diverse
digest-sizes kh. For the sake of simplicity we assume that kh, the size of m and
the size of N (denoted k) are all multiples of 8; this is also the case in the emv
specifications.

The iso/iec 9796-2 encoding function is:

μ(m) = 6A16‖m[1]‖hash(m)‖BC16
where the message m = m[1]‖m[2] is split in two: m[1] consists of the k−kh−16
leftmost bits of m and m[2] represents all the remaining bits of m. The size of
μ(m) is therefore always k − 1 bits.

The original version of the standard recommended 128 ≤ kh ≤ 160 for partial
message recovery (see [23], §5, note 4). The new version of iso/iec 9796-2 [24]
requires kh ≥ 160. The emv specifications also use kh = 160.

3 Desmedt-Odlyzko’s Attack

In Desmedt and Odlyzko’s attack [31] (existential forgery under a chosen-message
attack), the forger asks for the signature of messages of his choice before comput-
ing, by his own means, the signature of a (possibly meaningless) message that
was never signed by the legitimate owner of d. In the case of Rabin-Williams
signatures (see the full version of the paper [12]), it may even happen that the
attacker factors N ; i.e. a total break.

The attack only applies if μ(m) is much smaller than N and works as follows:

1. Select a bound B and let P = {p1, . . . , p�} be the list of all primes smaller
than B.

2. Find at least � + 1 messages mi such that each μ(mi) is a product of primes
in P.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 431

3. Express one μ(mj) as a multiplicative combination of the other μ(mi), by
solving a linear system given by the exponent vectors of the μ(mi) with
respect to the primes in P.

4. Ask for the signatures of the mi for i �= j and forge the signature of mj .

In the following we assume that e is prime; this includes e = 2. We let τ be the
number of messages mi obtained at step 2. We say that an integer is B-smooth
if all its prime factors are smaller than B. The integers μ(mi) obtained at step
2 are therefore B-smooth and we can write for all messages mi, 1 ≤ i ≤ τ :

μ(mi) =
�∏

j=1

p
vi,j

j (1)

To each μ(mi) we associate the �-dimensional vector of the exponents modulo e:

V i = (vi,1 mod e, . . . , vi,� mod e)

Since e is prime, the set of all �-dimensional vectors modulo e forms a linear
space of dimension �. Therefore, if τ ≥ � + 1, one can express one vector, say
V τ , as a linear combination of the others modulo e, using Gaussian elimination,
which gives for all 1 ≤ j ≤ � :

V τ = Γ · e +
τ−1∑

i=1

βiV i

for some Γ = (γ1, . . . , γ�) ∈ Z
�. That is,

vτ,j = γj · e +
τ−1∑

i=1

βi · vi,j

Then using (1), one obtains :

μ(mτ) =
�∏

j=1

p
vτ,j

j =
�∏

j=1

p
γj ·e+

τ−1∑
i=1

βi·vi,j

j =

⎛

⎝
�∏

j=1

p
γj

j

⎞

⎠
e

·
�∏

j=1

τ−1∏

i=1

p
vi,j ·βi

j

μ(mτ) =

⎛

⎝
�∏

j=1

p
γj

j

⎞

⎠
e

·
τ−1∏

i=1

⎛

⎝
�∏

j=1

p
vi,j

j

⎞

⎠
βi

=

⎛

⎝
�∏

j=1

p
γj

j

⎞

⎠
e

·
τ−1∏

i=1

μ(mi)βi

That is:

μ(mτ) = δe ·
τ−1∏

i=1

μ(mi)βi , where we denote: δ =
�∏

j=1

p
γj

j (2)

432 J.-S. Coron et al.

Therefore, we see that μ(mτ) can be written as a multiplicative combination of
the other μ(mi). For rsa signatures, the attacker will ask for the signatures of
m1, . . . , mτ−1 and forge the signature of mτ using the relation:

στ = μ(mτ)d = δ ·
τ−1∏

i=1

(
μ(mi)d

)βi = δ ·
τ−1∏

i=1

σβi

i mod N

In the full version of the paper [12] we describe the corresponding forgery for
Rabin-Williams signatures, where, in some cases, the attacker may even factor N .

The attack’s complexity depends on � and on the probability that the integers
μ(mi) are B-smooth. The reader is referred to the full version of the paper [12]
for a complexity analysis (see also [14]). In practice, the attack is feasible only
if the μ(mi) are relatively small (e.g. less than 200 bits).

4 Coron-Naccache-Stern’s Attack

In iso/iec 9796-2, the encoding function’s output μ(m) is as long as N . This
thwarts Desmedt and Odlyzko’s attack. Coron-Naccache-Stern’s workaround [16]
consisted in generating messages mi such that a linear combination ti of μ(mi)
and N is much smaller than N . Then, the attack can be applied to the integers
ti instead of μ(mi).

More precisely, Coron et al. observed that it is sufficient to find a constant a
and messages mi such that:

ti = a · μ(mi) mod N

is small, instead of requiring that μ(mi) is small. Namely, the factor a can be
easily dealt with by regarding a−1 mod N as an “additional factor” in μ(mi);
to that end we only need to add one more column in the matrix considered in
Section 3. In their attack Coron et al. used a = 28.

Obtaining a small a·μ(m) mod N is done in [16] as follows. From the definition
of iso/iec 9796-2:

μ(m) = 6A16 ‖ m[1] ‖ hash(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + hash(m) · 28 + BC16

Euclidean division by N provides b and 0 ≤ r < N < 2k such that:

(6A16 + 1) · 2k = b ·N + r

Denoting N ′ = b ·N one can write:

N ′ = 6A16 · 2k + (2k − r)
= 6A16 ‖ N ′[1]‖N ′[0]

where N ′ is k + 7 bits long and N ′[1] is k − kh − 16 bits long.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 433

Consider the linear combination:

t = b ·N − a ·μ(m)
= N ′ − 28 ·μ(m)

By setting m[1] = N ′[1] we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖ m[1] ‖ hash(m)‖BC0016

= ���6A16 ‖���N ′[1] ‖ N ′[0]
−���6A16 ‖���N ′[1] ‖ hash(m)‖BC0016

= N ′[0]− (hash(m)‖BC0016) < 2kh+16

For kh = 160, the integer t is therefore at most 176-bits long.
The forger can thus modify m[2] (and therefore hash(m)), until he gets a

set of messages whose t-values are B-smooth and express one such μ(mτ) as a
multiplicative combination of the others. As per the analysis in [16], attacking the
instances kh = 128 and kh = 160 requires (respectively) 254 and 261 operations.

5 The New Attack’s Building-Blocks

We improve the above complexities by using four new ideas: we accelerate
Desmedt-Odlyzko’s process using Bernstein’s smoothness detection algorithm
[6], instead of trial division; we also use the large prime variant [1]; moreover,
we modify Coron et al.’s attack by selecting better messages and by optimizing
exhaustive search to equilibrate complexities. In this section we present these
new building-blocks.

5.1 Bernstein’s Smoothness Detection Algorithm

Bernstein [6] describes the following algorithm for finding smooth integers.

Algorithm: Given prime numbers p1, . . . , p� in increasing order and positive
integers t1, . . . , tn, output the p�-smooth part of each tk:

1. Compute z ← p1 × · · · × p� using a product tree.
2. Compute z1 ← z mod t1, . . . , zn ← z mod tn using a remainder tree.
3. For each k ∈ {1, . . . , n}: Compute yk ← (zk)2

e

mod tk by repeated squaring,
where e is the smallest non-negative integer such that 22e ≥ tk.

4. For each k ∈ {1, . . . , n}: output gcd(tk, yk).

We refer the reader to [5] for a description of the product and remainder trees.

Theorem 1 (Bernstein). The algorithm computes the p�-smooth part of each
integer tk, in O(b log2 b log log b) time, where b is the number of input bits.

434 J.-S. Coron et al.

In other words, given a list of nt integers ti < 2a and the list of the first � primes,
the algorithm will detect the B-smooth ti’s, where B = p�, in complexity:

O(b · log2 b · log log b)

where b = nt · a + � · log2 � is the total number of input bits.
When nt is very large, it becomes more efficient to run the algorithm k times,

on batches of n′
t = nt/k integers. We explain in the full version of the paper [12]

how to select the optimal n′
t, and derive the corresponding running time.

Bernstein recommends a number of speed-up ideas of which we used a few.
In our experiments we used the scaled remainder tree [7], which replaces most
division steps in the remainder tree by multiplications. This algorithm is fastest
when fft multiplications are done modulo numbers of the form 2α− 1: we used
this Mersenne fft multiplication as well, as implemented in Gaudry, Kruppa
and Zimmermann’s gmp patch [19]. Other optimizations included computing
the product z only once, and treating the prime 2 separately.

Bernstein’s algorithm was actually the main source of the attack’s improve-
ment. It proved � 1000 faster than the trial division used in [16].

5.2 The Large Prime Variant

An integer is semi-smooth with respect to y and z if its greatest prime factor
is ≤ y and all other factors are ≤ z. Bach and Peralta [1] define the function
σ(u, v), which plays for semi-smoothness the role played by Dickman’s ρ function
for smoothness (see the full version of the paper [12]): σ(u, v) is the asymptotic
probability that an integer n is semi-smooth with respect to n1/v and n1/u.

After an integer ti has had all its factors smaller than B stripped-off, if the
remaining factor ω is lesser than B2 then ω must be prime. This is very easy to
detect using Bernstein’s algorithm. As Bernstein computes the B-smooth part
zi of each ti, it only remains to check whether ti/zi is small enough. In most
cases it isn’t even necessary to perform the actual division since comparing the
sizes of ti and zi suffices to rule out most non-semi-smooth numbers.

Hence, one can use a second bound B2 such that B < B2 < B2 and keep the
ti’s whose remaining factor ω is ≤ B2, hoping to find a second ti with the same
remaining factor ω to divide ω out. We refer the reader to the full version of the
paper [12] for a detailed analysis of the large prime variant in our context.

5.3 Constructing Smaller a · μ(m) − b · N Candidates

In this paragraph we show how to construct smaller ti = a ·μ(mi)− b ·N values
for iso/iec 9796-2. Smaller ti-values increase smoothness probability and hence
accelerate the forgery process.

We write:

μ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = hash(m), with 0 < x < 2k−kh−16.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 435

We first determine a, b > 0 such that the following two conditions hold:

0 < b ·N − a · μ(0, 0) < a · 2k−8 (3)
b ·N − a · μ(0, 0) = 0 mod 28 (4)

and a is of minimal size. Then by Euclidean division we compute x and r such
that:

b ·N − a · μ(0, 0) = (a · 2kh+8) · x + r

where 0 ≤ r < a · 2kh+8 and using (3) we have 0 ≤ x < 2k−kh−16 as required.
This gives:

b ·N − a · μ(x, 0) = b ·N − a · μ(0, 0)− a · x · 2kh+8 = r

Moreover as per (4) we must have r = 0 mod 28; denoting r′ = r/28 we obtain:

b ·N − a · μ(x, h) = r − a · h · 28 = 28 · (r′ − a · h)

where 0 ≤ r′ < a · 2kh . We then look for smooth values of r′ − a · h, whose size
is at most kh plus the size of a.

If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy
both conditions (3) and (4); heuristically each of the two conditions is satisfied
with probability � 2−8; therefore, we can expect to find such an {a, b} pair. For
example, for the rsa-2048 challenge, we found {a, b} to be {625, 332}; therefore,
for rsa-2048 and kh = 160, the integer to be smooth is 170-bits long (instead
of 176-bits in Coron et al.’s original attack). This decreases further the attack’s
complexity.

6 Attacking iso/iec 9796-2

We combined all the building-blocks listed in the previous section to compute
an actual forgery for iso/iec 9796-2, with the rsa-2048 challenge modulus. The
implementation replaced Coron et al.’s trial division by Bernstein’s algorithm,
replaced Coron et al.’s a · μ(m) − b ·N values by the shorter ti’s introduced in
paragraph 5.3 and took advantage of the large prime variant. Additional speed-
up was obtained by exhaustive searching for particular digest values. Code was
written in C++ and run on 19 Linux-based machines on the Amazon ec2 grid.
The final linear algebra step was performed on a single pc.

6.1 The Amazon Grid

Amazon.com Inc. offers virtualized computer instances for rent on a pay by the
hour basis, which we found convenient to run our computations. Various models
are available, of which the best-suited for cpu-intensive tasks, as we write these
lines, features 8 Intel Xeon 64-bit cores clocked at 2.4ghz supporting the Core2
instruction set and offering 7gb ram and 1.5tb disk space. Renting such a
capacity costs us$0.80 per hour (plus tax). One can run up to 20 such instances

436 J.-S. Coron et al.

in parallel, and possibly more subject to approval by Amazon (20 were enough
for our purpose so we didn’t apply for more).

When an instance on the grid is launched, it starts up from a disk image
containing a customizable unix operating system. In the experiment, we ran a
first instance using the basic Fedora installation provided by default, installed
necessary tools and libraries, compiled our own programs and made a disk image
containing our code, to launch subsequent instances with. When an instance
terminates, its disk space is freed, making it necessary to save results to some
permanent storage means. We simply rsync’ed results to a machine of ours.
Note that Amazon also charges for network bandwidth but data transmission
costs were negligible in our case.

All in all, we used about 1,100 instance running hours (including setup and
tweaks) during a little more than two days. While we found the service to be
rather reliable, one instance failed halfway through the computation, and its
intermediate results were lost.

6.2 The Experiment: Outline, Details and Results

The attack can be broken down into the following elementary steps, which we
shall review in turn:

1. Determining the constants a, b, x, μ(x, 0) for the rsa-2048 challenge modulus
N .

2. Computing the product of the first � primes, for a suitable choice of �.
3. Computing the integers ti = bN − aμ(mi), and hence the sha-1 digests, for

sufficiently many messages mi.
4. Finding the smooth and semi-smooth integers amongst the ti’s.
5. Factoring the smooth integers, as well as the colliding pairs of semi-smooth

integers, obtaining the sparse, singular matrix of exponents, with � rows and
more than � columns.

6. Reducing this matrix modulo e = 2, with possible changes in the first row
(corresponding to the prime 2) depending on the Jacobi symbols (2|ti) and
(2|a).

7. Finding nontrivial vectors in the kernel of this reduced matrix and inferring
a forgery.

Steps 2–4 were executed on the Amazon ec2 grid, whereas all other steps were
run on one offline pc. Steps 3–4, and to a much lesser extent step 7, were the
only steps that claimed a significant amount of cpu time.

Determining the constants. The attack’s complexity doesn’t depend on the
choice of N . Since N has to be congruent to 5 mod 8 for Rabin-Williams signa-
tures, we used the rsa-2048 challenge. The resulting constants were computed
in sage [35]. We found the smallest {a, b} pair to be {625, 332}, and the μ(x, 0)
value given in the full version of the paper [12]. The integers ti = bN − aμ(x, hi)
are thus at most 170-bits long.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 437

Product of the first primes. The optimal choice of � for 170 bits is about
221. Since the Amazon instances are memory-constrained (less than 1gb of ram
per core), we preferred to use � = 220. This choice had the additional advantage
of making the final linear algebra step faster, which is convenient since this step
was run on a single off-line pc. Computing the product of primes itself was done
once and for all in a matter of seconds using mpir.

Hashing. Since the attack’s smoothness detection part works on batches of
ti’s (in our cases, we chose batches of 219 integers), we had to compute digests
of messages mi in batches as well. The messages themselves are 2048-bit long,
i.e. as long as N , and comply with the structure indicated in the full version of
the paper [12]: a constant 246-byte prefix followed by a 10-byte seed. The first
two bytes identify a family of messages examined on a single core of one Amazon
instance, and the remaining eight bytes are explored by increments of 1 starting
from 0.

Messages were hashed using Openssl’s sha-1 implementation. For each mes-
sage, we only need to compute one sha-1 block, since the first three 64-byte
blocks are fixed. This computation is relatively fast compared to Bernstein’s al-
gorithm, so we have a bit of leeway for exhaustive search. We can compute a
large number of digests, keeping the ones likely to give rise to a smooth ti. We
did this by selecting digests for which the resulting ti would have many zeroes
as leading and trailing bits.

More precisely, we looked for a particular bit pattern at the beginning and
at the end of each digest hi, such that finding n matching bits results in n
null bits at the beginning and at the end of ti. The probability of finding n
matching bits when we add the number of matches at the beginning and at the
end is (1+n/2) ·2−n, so we expect to compute 2n/(1+n/2) digests per selected
message. We found n = 8 to be optimal: on average, we need circa 50 digests to
find a match, and the resulting ti is at most 170−8 = 162 bit long (once powers
of 2 are factored out).

Note that faster (e.g. hardware-enhanced) ways to obtain digests can signifi-
cantly reduce the attack’s complexity (cf. the full version of the paper [12]). We
considered for example an fpga-based solution called copacobana [32], which
could in principle perform a larger amount of exhaustive search, and accelerate
the attack dramatically. It turned out that our attack was fast enough, hence
pursuing the hardware-assisted search idea further proved unnecessary, but a
practical attack on emv (cf. section 8) could certainly benefit from hardware
acceleration.

Finding smooth and semi-smooth integers. Once a batch of 219 appro-
priate ti’s is generated, we factor out powers of 2, and feed the resulting odd
numbers into our C++ implementation of Bernstein’s algorithm. This implemen-
tation uses the mpir multi-precision arithmetic library [21], which we chose over
vanilla gmp because of a number of speed improvements, including
J.W. Martin’s patch for the Core2 architecture. We further applied Gaudry,
Kruppa and Zimmermann’s fft patch, mainly for their implementation of
Mersenne fft multiplication, which is useful in the scaled remainder tree [7].

438 J.-S. Coron et al.

We looked for B-smooth as well as for (B, B2)-semi-smooth ti’s, where B =
16,290,047 is the 220-th prime, and B2 = 227. Each batch took � 40 seconds to
generate and to process, and consumed about 500mb of memory. We ran 8 such
processes in parallel on each instance to take advantage of the 8 cores, and 19
instances simultaneously.

The entire experiment can be summarized as follows:

16,230,259,553,940
digest computations

↓
339,686,719,488 ti’s in

647,901 batches of 219 each
↙ ↘

684,365 366,302 collisions between
smooth ti’s 2,786,327 semi-smooth ti’s

↘ ↙
1,050,667-column matrix

↓
algebra on 839,908 columns
having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving 432,903 signatures

Finding the 1,050,667 columns (slightly in excess of the � = 220 = 1,048,576
required) took a little over 2 days.

Factoring and finding collisions. The output of the previous stage is a large
set of text files containing the smooth and semi-smooth ti’s together with the
corresponding message numbers. Turning this data into a matrix suitable for
the linear algebra stage mostly involved text manipulation in Perl to convert it
to commands that could be piped into pari/gp [33]. The resulting 1,048,576×
1,050,667 matrix had 14,215,602 non-zero entries (13.5 per column on average,
or 10−5 sparsity; the columns derived from the large prime variant tend to have
twice as many non-zero entries, of course).

Linear algebra. We found non-zero kernel elements of the final sparse matrix
over GF(2) using Coppersmith’s block Wiedemann algorithm [9] implemented in
wlss2 [27,30], with parameters m = n = 4 and κ = 2. The whole computation
took 16 hours on one 2.7ghz personal computer, with the first (and longest) part
of the computation using 2 cores, and the final part using 4 cores.

The program discovered 124 kernel vectors with Hamming weights ranging
from 337,458 to 339,641. Since columns obtained from pairs of semi-smooth
numbers account for two signatures each, the number of signature queries re-
quired to produce the 124 corresponding forgeries is slightly larger, and ranges
between 432,903 and 435,859.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 439

Being written with the quadratic sieve in mind, the block Wiedemann algo-
rithm in wlss2 works over GF(2). There exist, however, other implementations
for different finite fields.

Evidencing forgery. An interesting question is that of exhibiting a compact
evidence of forgery. In the full version of the paper [12] we exhibit statistical
evidence that a multiplicative relation between iso/iec 9796-2 signatures, (i.e.
a forgery) was indeed constructed.

Fewer signature queries. In the full version of the paper [12] we address the
question of reducing the number of signature queries in the attack.

7 Cost Estimates

The experiment described in the previous section can be used as a benchmark to
estimate the attack’s cost as a function of the size of the ti’s, denoted a; this will
be useful for analyzing the security of the emv specifications, where a is bigger
(204 bits instead of 170 bits).

Table 1. Bernstein+Large prime variant. Estimated parameter trade-offs, running
times and costs, for various ti sizes.

a = log2 ti log2 � Estimated TotalTime log2 τ ec2 cost (us$)

64 11 15 seconds 20 negligible
128 19 4 days 33 10

160 21 6 months 38 470

170 22 1.8 years 40 1,620

176 23 3.8 years 41 3,300

204 25 95 years 45 84,000

232 27 19 centuries 49 1,700,000

256 30 320 centuries 52 20,000,000

Results are summarized in Table 1. We assume that the ti’s are uniformly
distributed a-bit integers and express costs as a function of a. Cost figures do
not include the linear algebra step whose computational requirements are very
low compared to the smoothness detection step. Another difference with our
experiment is that here we do not assume any exhaustive search on the ti’s; this
is why the cost estimate for a = 170 in Table 1 is about the double of the cost
of our experimental iso/iec 9796-2 forgery.

Running times are given for a single 2.4ghz pc. Costs correspond to the
Amazon ec2 grid, as in the previous section. Estimates show that the attack is
feasible up to � 200 bits, but becomes infeasible for larger values of a. We also
estimate log2 τ , where τ is the number of messages in the forgery.

440 J.-S. Coron et al.

8 Application to emv Signatures

emv is a collection of industry specifications for the inter-operation of payment
cards, pos terminals and atms. The emv specifications [18] rely on
iso/iec 9796-2 signatures to certify public-keys and to authenticate data. For
instance, when an Issuer provides application data to a Card, this data must be
signed using the Issuer’s private key Si. The corresponding public-key Pi must
be signed by a Certification Authority (ca) whose public-key is denoted Pca.
The signature algorithm is rsa with e = 3 or e = 216 + 1. The bit length of all
moduli is always a multiple of 8.

emv uses special message formats; 7 different formats are used, depending
on the message type. We first describe one of these formats: the Static Data
Authentication, Issuer Public-key Data (sda-ipkd), and adapt our attack to it.
We then consider the other six formats.

8.1 emv Static Data Authentication, Issuer Public-key Data
(sda-ipkd)

We refer the reader to §5.1, Table 2, page 41 in emv [18]. sda-ipkd is used by
the ca to sign the issuer’s public-key Pi. The message to be signed is as follows:

m = 0216‖X‖Y ‖Ni‖0316
where X represents 6 bytes that can be controlled by the adversary and Y
represents 7 bytes that cannot be controlled. Ni is the Issuer’s modulus to be
certified. More precisely, X = id‖date where id is the issuer identifier (4 bytes)
and date is the Certificate Expiration Date (2 bytes); we assume that both can
be controlled by the adversary. Y = csn‖C where csn is the 3-bytes Certificate
Serial Number assigned by the ca and C is a constant. Finally, the modulus to
be certified Ni can also be controlled by the adversary.

With iso/iec 9796-2 encoding, this gives:

μ(m) = 6A0216‖X‖Y ‖Ni,1‖hash(m)‖BC16
where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the
modulus size and kh = 160 as in iso/iec 9796-2.

8.2 Attacking sda-ipkd

To attack sda-ipkd write:

μ(X, Ni,1, h) = 6A0216 · 2k1 + X · 2k2 + Y · 2k3 + Ni,1 · 2k4 + h

where Y is constant and h = hash(m)‖BC16. We have:
⎧
⎪⎪⎨

⎪⎪⎩

k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 441

Generate a random ka-bit integer a, where 36 ≤ ka ≤ 72, and consider the
equation:

b ·N − a · μ(X, 0, 0) = b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

If we can find integers X and b such that 0 ≤ X < 248 and:

0 ≤ b ·N − a · μ(X, 0, 0) < a · 2k3 (5)

then as previously we can compute Ni,1 by Euclidean division:

b ·N − a · μ(X, 0, 0) = (a · 2k4) ·Ni,1 + r (6)

where 0 ≤ Ni,1 < 2k3−k4 as required, and the resulting b · N − a · μ(X, Ni,1, h)
value will be small for all values of h.

In the above we assumed Y to be a constant. Actually the first 3 bytes of Y
encode the csn assigned by the ca, and may be different for each new certificate
(see the full version of the paper [12]). However if the attacker can predict the
csn, then he can compute a different a for every Y and adapt the attack by
factoring a into a product of small primes.

Finding small X and b so as to minimize the value of

|b ·N − a ·X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|
is a Closest Vector Problem (cvp) in a bi-dimensional lattice; a problem that
can be easily solved using the lll algorithm [28]. We first determine heuristically
the minimal size that can be expected; we describe the lll attack in the full
version of the paper [12].

Since a ·6A0216 ·2k1 is an (k+ka)-bit integer, with X � 248 and b � 2ka , odds
are heuristically reasonable to find X and b such that:

0 ≤ b ·N − a · μ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 � a · 2k−48−ka = a · 2k3+72−ka

which is (72− ka)-bit too long compared to condition (5). Therefore, by exhaus-
tive search we will need to examine roughly 272−ka different integers a to find
a pair (b, X) that satisfies (5); since a is ka-bits long, this can be done only if
72 − ka ≤ ka, which gives ka ≥ 36. For ka = 36 we have to exhaust the 236

possible values of a.
Once this is done we obtain from (6):

t = b ·N − a · μ(X, Ni,1, h) = r − a · h
with 0 ≤ r < a · 2k4 . This implies that the final size of t values is 168 + ka bits.
For ka = 36 this gives 204 bits (instead of 170 bits for plain iso/iec 9796-2).
The attack’s complexity will hence be higher than for plain iso/iec 9796-2.

In the full version of the paper [12] we exhibit concrete (a, b, X) values for
ka = 52 and for the rsa-2048 challenge; this required � 223 trials (109 minutes
on a single pc). We estimate that for ka = 36 this computation will take roughly
13 years on a single pc, or equivalently us$11,000 using the ec2 grid.

442 J.-S. Coron et al.

Table 1 shows that attacking 204-bit ti’s would cost � us$84,000. As for the
iso/iec 9796-2 attack, we can decrease this cost by first doing exhaustive search
on the bits of hash(m) to obtain a smaller t-value. We found that with 8 bits
of exhaustive search cost drops to � us$45,000 (without the matrix step, but in
our attack algebra takes a relatively small amount of time).

8.3 Summary

In the full version of the paper [12] we provide an analysis of the other formats
in the emv specifications, with corresponding attacks when such attacks exist.
We summarize results in Table 2 where an X represents a string that can be
controlled by the adversary, while Y cannot be controlled. The size of the final
t-value to be smooth is given in bits. Note that cost estimates are cheaper than
Table 1 because we first perform exhaustive search on 8 bits of hash(m) =
sha-1(m); however here we do take into account the cost of computing these
sha-1(m) values.

Table 2. Various emv message formats. X denotes a data field controllable by the
adversary. Y is not controllable. Data sizes for X, Y and t are expressed in bits.

emv mode Format |X| |Y | |t| ec2 cost (us$)

sda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

sda-sad Y - k − 176 - -

odda-ipkd 0216‖X‖Y ‖Ni‖0316 48 56 204 45,000

odda-icc-pkd 0416‖X‖Y ‖Nicc‖0316‖data 96 56 204 45,000

odda-dad1 Y - k − 176 - -

odda-dad2 Y - k − 176 - -

icc-pin 0416‖X‖Y ‖Nicc‖0316 96 56 204 45,000

Table 2 shows that only four of the emv formats can be attacked, with the
same complexity as the sda-ipkd format. The other formats seem out of reach
because the non-controllable part Y is too large.

Note that these attacks do not threaten any of the 730 million emv payment
cards in use worldwide for operational reasons: the Issuer and the ca will never
accept to sign the chosen messages necessary for conducting the attack.

9 Conclusion

This paper exhibited a practically exploitable flaw in the currently valid iso/iec
9796-2 standard and a conceptual flaw in emv signatures. The authors recom-
mend the definite withdrawal of the ad-hoc encoding mode in iso/iec 9796-2
and its replacement by a provably secure encoding function such as pss.

Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures 443

References

1. Bach, E., Peralta, R.: Asymptotic semismoothness probabilities. Mathematics of
Computation 65(216), 1701–1715 (1996)

2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Proceedings of CCS 1993, pp. 62–73. ACM, New York (1993)

3. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption: How to encrypt with
RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111.
Springer, Heidelberg (1995)

4. Bellare, M., Rogaway, P.: The Exact security of digital signatures: How to sign with
RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
399–416. Springer, Heidelberg (1996)

5. Bernstein, D.J.: Fast Multiplications and its applications. Algorithmic Number
Theory 44 (2008)

6. Bernstein, D.J.: How to find smooth parts of integers (2004/05/10),
http://cr.yp.to/papers.html#smoothparts

7. Bernstein, D.J.: Scaled remainder trees (2004/08/20),
http://cr.yp.to/papers.html#scaledmod

8. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA
encryption standard. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp.
1–12. Springer, Heidelberg (1998)

9. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block
Wiedemann algorithm. Mathematics of Computation 62(205), 333–350 (1994)

10. Coppersmith, D., Coron, J.-S., Grieu, F., Halevi, S., Jutla, C.S., Naccache, D.,
Stern, J.P.: Cryptanalysis of iso/iec 9796-1. Journal of Cryptology 21, 27–51
(2008)

11. Coppersmith, D., Halevi, S., Jutla, C.: iso 9796-1 and the new, forgery strategy,
Research contribution to P.1363 (1999),
grouper.ieee.org/groups/1363/Research

12. Coron, J.S., Naccache, D., Tibouchi, M., Weinmann, R.P.: Practical Cryptanalysis
of ISO / IEC 9796-2 and EMV Signatures, Cryptology ePrint Archive, Report
2009/203, http://eprint.iacr.org/

13. Coron, J.-S.: Security proofs for partial domain hash signature schemes. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 613–626. Springer, Heidelberg (2002)

14. Coron, J.-S., Desmedt, Y., Naccache, D., Odlyzko, A., Stern, J.P.: Index calcula-
tion attacks on RSA signature and encryption. Index calculation attacks on RSA
signature and encryption Designs, Codes and Cryptography 38(1), 41–53 (2006)

15. Coron, J.-S., Naccache, D., Joye, M., Paillier, P.: New attacks on pkcs#1
v1.5 encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807,
pp. 369–381. Springer, Heidelberg (2000)

16. Coron, J.-S., Naccache, D., Stern, J.P.: On the security of RSA padding. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 1–18. Springer, Heidelberg (1999)

17. Desmedt, Y., Odlyzko, A.: A chosen text attack on the RSA cryptosystem and
some discrete logarithm schemes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS,
vol. 218, pp. 516–522. Springer, Heidelberg (1986)

18. EMV, Integrated circuit card specifications for payment systems, Book 2. Security
and Key Management. Version 4.2 (June 2008), http://www.emvco.com

19. Gaudry, P., Kruppa, A., Zimmermann, P.: A gmp-based implementation of
Schőnhage-Strassen’s large integer multiplication algorithm. In: Proceedings of
issac 2007, Waterloo, Ontario, Canada, pp. 167–174. ACM Press, New York (2007)

http://cr.yp.to/papers.html#smoothparts
http://cr.yp.to/papers.html#scaledmod
grouper.ieee.org/groups/1363/Research
http://eprint.iacr.org/
http://www.emvco.com

444 J.-S. Coron et al.

20. Grieu, F.: A chosen messages attack on the iso/iec 9796-1 signature scheme.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 70–80. Springer,
Heidelberg (2000)

21. Hart, W.B., et al.: Multiple Precision Integers and Rationals,
http://www.mpir.org

22. ISO / IEC 9796, Information technology – Security techniques – Digital signature
scheme giving message recovery, Part 1: Mechanisms using redundancy (1999)

23. ISO / IEC 9796-2, Information technology – Security techniques – Digital signature
scheme giving message recovery, Part 2: Mechanisms using a hash-function (1997)

24. ISO / IEC 9796-2:2002, Information technology – Security techniques – Digital
signature schemes giving message recovery – Part 2: Integer factorization based
mechanisms (2002)

25. Joux, A., Naccache, D., Thomé, E.: When e-th roots become easier than factoring.
In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 13–28. Springer,
Heidelberg (2007)

26. Kaliski, B.: pkcs#1: RSA Encryption Standard, Version 1.5, RSA Laboratories
(November 1993)

27. Kaltofen, E., Lobo, A.: Distributed matrix-free solution of large sparse linear sys-
tems over finite fields. Algorithmica 24, 331–348 (1999)

28. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 513–534 (1982)

29. Lenstra Jr., H.: Factoring integers with elliptic curves. Annals of Mathemat-
ics 126(2), 649–673 (1987)

30. Lobo, A.: wlss2: an implementation of the homogeneous block Wiedemann algo-
rithm, www4.ncsu.edu/~kaltofen/software/wiliss

31. Misarsky, J.-F.: How (not) to design RSA signature schemes. In: Imai, H., Zheng,
Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 14–28. Springer, Heidelberg (1998)

32. Paar, C., Schimmer, M.: copacobana: A Codebreaker for des and other ciphers,
www.copacobana.org

33. The PARI Group, PARI/GP, version 2.3.4, Bordeaux (2008),
http://pari.math.u-bordeaux.fr

34. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and
public key cryptosystems. Communications of the acm 21, 120–126 (1978)

35. The sage development team, sage mathematics software, Version 3.3 (2009),
http://www.sagemath.org

http://www.mpir.org
www4.ncsu.edu/~kaltofen/software/wiliss
www.copacobana.org
http://pari.math.u-bordeaux.fr
http://www.sagemath.org

	Practical Cryptanalysis of iso/iec 9796-2 and emv Signatures
	Introduction
	The iso/iec 9796-2 Standard
	Desmedt-Odlyzko's Attack
	Coron-Naccache-Stern's Attack
	The New Attack's Building-Blocks
	Bernstein's Smoothness Detection Algorithm
	The Large Prime Variant
	Constructing Smaller a (m)-b N Candidates

	Attacking iso/iec 9796-2
	The Amazon Grid
	The Experiment: Outline, Details and Results

	Cost Estimates
	Application to emv Signatures
	emv Static Data Authentication, Issuer Public-key Data (sda-ipkd)
	Attacking sda-ipkd
	Summary

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

