
Improving Privacy and Security in Multi-Authority
Attribute-Based Encryption

Melissa Chase
Microsoft Research

1 Microsoft Way
Redmond, WA 98052, USA

melissac@microsoft.com

Sherman S.M. Chow∗
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, NY 10012, USA

schow@cs.nyu.edu

ABSTRACT
Attribute based encryption (ABE) [13] determines decryp-
tion ability based on a user’s attributes. In a multi-authority
ABE scheme, multiple attribute-authorities monitor differ-
ent sets of attributes and issue corresponding decryption
keys to users, and encryptors can require that a user ob-
tain keys for appropriate attributes from each authority be-
fore decrypting a message. Chase [5] gave a multi-authority
ABE scheme using the concepts of a trusted central author-
ity (CA) and global identifiers (GID). However, the CA in
that construction has the power to decrypt every ciphertext,
which seems somehow contradictory to the original goal of
distributing control over many potentially untrusted author-
ities. Moreover, in that construction, the use of a consistent
GID allowed the authorities to combine their information
to build a full profile with all of a user’s attributes, which
unnecessarily compromises the privacy of the user. In this
paper, we propose a solution which removes the trusted cen-
tral authority, and protects the users’ privacy by preventing
the authorities from pooling their information on particular
users, thus making ABE more usable in practice.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

General Terms
Security, Algorithms, Design

Keywords
attribute based encryption, anonymous credential, privacy,
multi-authority, removing trusted party

∗Work done while an intern with Microsoft Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

1. INTRODUCTION
We often identify people by their attributes. In 2005, Sa-

hai and Waters [13] proposed a system (described in more re-
cent terminology as a key-policy attribute-based encryption
(ABE) system for threshold policies) in which a sender can
encrypt a message specifying an attribute set and a number
d, such that only a recipient with at least d of the given at-
tributes can decrypt the message. However, the deployment
implications of their scheme may not be entirely realistic,
in that it assumes the existence of a single trusted party
who monitors all attributes and issues all decryption keys.
Instead, we often have different entities responsible for mon-
itoring different attributes of a person, e.g. the Department
of Motor Vehicles tests whether you can drive, a university
can certify that you are a student, etc. Thus, Chase [5] gave
a multi-authority ABE scheme which supports many differ-
ent authorities operating simultaneously, each handing out
secret keys for a different set of attributes.

However, this solution was still not ideal. There are two
main problems: one concern of security of the encryption,
the other the privacy of the users.

1.1 Protecting the User’s Privacy
Since each authority is responsible for different attributes,

we want to allow them to issue decryption keys indepen-
dently, without having to communicate with one another.
As argued in [5], in order to prevent collusion in such a set-
ting, we need some consistent notion of identity. (Otherwise,
a user could easily obtain keys from one authority and then
give them all to a friend.) The solution in that work is to
require that each user have a unique global identifier (GID),
which they must present to each authority (and to require
that the user prove in some way that he is the owner of
the GID he presents).1 Unfortunately, the mere existence
of GID makes it very hard for the users to guarantee any
kind of privacy. Because a user must present the same GID
to each authority, it is very easy for colluding authorities to
pool their data and build a “complete profile” of all of the
attributes corresponding to each GID. However, this might
be undesirable, particularly if the user uses the ABE system
in many different settings, and wishes to keep information
about some of those settings private.

This situation seems to be unavoidable if all one’s at-
tributes are determined by some kind of public identity like
a name or SSN – in that case users will need to identify
themselves in any case in order to get the decryption keys
for a certain set of attributes, so privacy is unavoidably com-

1see [5] for further discussion.

121

promised. However, there are many attributes which do not
belong to this category. The ability to drive is a good exam-
ple. One should be able to prove the ability to do something
in an examination and then get the corresponding creden-
tial, without presenting any identifying information. Alter-
natively, one might interact with a service via a pseudonym
(e.g. a login name) and wish to obtain attributes relating to
this interaction without revealing one’s full identity.

Regardless, as the attribute-authorities (AAs) are respon-
sible for managing each user’s attributes, it seems inevitable
that they will learn which subsets of its attributes are held
by different users. However, we could imagine applications
where some of the authorities are different online service
providers giving attributes related to online activities like
blog/wiki contributions, access to online news sites, partic-
ipation in social networking sites, or purchases at an online
store. In this case, it would make sense for the user to be able
to maintain different, unlinkable attribute sets with each au-
thority. At the same time, it also makes sense for each AA to
gather the statistics of their system usage (e.g. the number
of users subscribed a particular service as indicated by the
number of users who requested a decryption key for a certain
attribute) without compromising individual’s privacy.

1.2 Removing the Trusted Authority
The solution presented in [5] assumed the presence of a

single trusted “central authority” (CA) in addition to the at-
tribute authorities. This CA did not manage any attributes,
but was responsible for issuing each user a unique key.

To see why the CA is crucial in [5], we first recall the intu-
ition. The idea was that, for each user, each AA would use
his own secret (not known by other AAs) to generate a share
of a system-wide master secret key. The authorities needed
to be able to generate these shares independently (i.e. with-
out communicating with any other authority during user key
issuing). At the same time, in order to prevent collusion it is
necessary to use a different sharing for each user. This made
it difficult to guarantee that all shares always add up to the
same master secret. The solution was to have the CA issue
each user a special value to cancel out all these shares from
the AAs and enable the user to “recover” a function of the
system-wide master secret key. Obviously, this computation
requires the CA to know the master secret of the system,
and the secret information of each AA. This implies that it
must also have the power to decrypt any ciphertext.

However, this decryption power seems somehow contra-
dictory to the original motivation of distributing control of
the attributes over many potentially untrusted authorities.
Thus, we asked whether it would be possible to instead dis-
tribute the functionality of the CA over all of the AAs, so
that as long as some of them are honest, the scheme will still
be secure.

1.3 Our Contributions
Here we present a multi-authority ABE with user privacy

and without the trusted authority. These requirements are
non-trivial to satisfy, due in both cases to the collusion re-
sistance requirement of ABE.

Brent Waters suggested an approach for removing the
CA requirement, in which each pair of attribute authori-
ties would share a secret key. We formalize this idea, and
prove that it is secure as long as at least two of the AAs are

honest. The new solution uses techniques for distributed
pseudorandom functions (PRF) introduced in [11].

Note that Lin et al. [10] recently proposed a different ap-
proach for building a multi-authority ABE scheme without
a central authority. However, their construction requires de-
signers to fix a constant m for the system, which directly de-
termines efficiency. The resulting construction is such that
any group of m + 1 colluding users will be able to break
security of the encryption. Our scheme on the other hand is
secure no matter how many users collude.

We also present an anonymous key issuing protocol which
allows multi-authority ABE with enhanced user privacy – 1)
we allow the users to communicate with AAs via pseudonyms
instead of having to provide their GIDs in the clear, and 2)
we prevent the AAs from pooling their data and linking mul-
tiple attribute sets belonging to the same user.

As a building block we construct a protocol for an obliv-
ious computation of a key of the form (SK · PRFβ(u))γ ,
where u is a user’s GID, 2 SK represents some secret infor-
mation related to the private key of an authority, β is the
secret seed for the PRF owned by an authority and γ corre-
sponds to some secret related to an attribute controlled by
an authority. The key is produced obliviously, i.e. without
either the authority or the user revealing any of their se-
cret information ((SK, β, γ) or u respectively). We chose to
present the protocol in this “generic” way (without coupling
with any particular ABE scheme) to illustrate its applica-
bility. Our protocol can be applied to Chase system (with a
little modification) in a rather straightforward manner (see
full version for details). We also show how to efficiently
apply this protocol to our scheme which removes the CA.
(In this case the keys are a bit more complex, so we need
somewhat more involved techniques - see Section 5.)

Finally, our results may be of additional interest because
they show new applications of the distributed PRF of Naor,
Pinkas, and Reingold [11], and a generalization of the obliv-
ious PRF techniques of Jarecki and Liu [9].

2. RELATED WORK

2.1 ABE for Different Policies
ABE is actually a generalization of IBE (identity-based

encryption [14]): in an IBE system, ciphertexts are associ-
ated with only one attribute (the identity).

The ABE scheme of Sahai-Waters [13] was proposed as a
fuzzy IBE scheme, which allowed for some error tolerance
around the chosen identity. In more recent terminology,
it would be described as a key-policy (KP) ABE scheme
that allows for threshold policies. Key-policy means that
the encryptor only gets to label a ciphertext with a set of
attributes. The authority chooses a policy for each user that
determines which ciphertexts he can decrypt. A threshold
policy system would be one in which the authority speci-
fies an attribute set for the user, and the user is allowed to
decrypt whenever the overlap between this set and the set
associated with a particular ciphertext is above a threshold.

Goyal et al. [8] proposed a KP-ABE scheme which sup-
ports any monotonic access formula consisting of AND, OR,
or threshold gates. A construction for KP-ABE with non-
monotonic access structures (which also include NOT gates,
i.e. negative constraints in a key’s access formula) was pro-

2See footnote 6.

122

posed by Ostrovsky, Sahai and Waters [12]. All of these
schemes are characterized as key-policy ABE since the access
structure is specified in the private key, while the attributes
are used to describe the ciphertexts.

The roles of the ciphertexts and keys are reversed in the
ciphertext-policy ABE (CP-ABE) introduced by Bethen-
court, Sahai and Waters [2], in that the ciphertext is en-
crypted with an access policy chosen by an encryptor but a
key is simply created with respect to an attributes set. The
security of their scheme is argued in the generic group model.
Recently, [15] proposed CP-ABE constructions based on a
few different pairing assumptions which work for any access
policy that can be expressed in terms of an LSSS matrix.

In this paper, we will look only at the KP-ABE setting.
We will look at both the simple threshold, and the more
complicated monotonic access structure case, and will build
a construction based on the same assumptions as Sahai and
Waters [13] and Goyal et al.[8]. Both non-monotonic access
structures and the ciphertext policy schemes require much
stronger assumptions, and very different techniques, so we
will not consider these cases in our work.

2.2 Multi-Authority ABE
All of the prior work described above considers the sce-

nario where all of the attributes are monitored by a single
authority. However, as we mentioned in Section 1, it seems
natural that one might want to divide control of the various
attributes over many different authorities. The main chal-
lenge here is to guarantee that two colluding users cannot
each obtain keys from a different authority, and then pool
their keys to decrypt a message that they are not entitled
to. Furthermore, in the multi-authority case, we may wish
to allow for some of the authorities to be untrusted. The
techniques for single authority ABE cannot be easily gen-
eralized in this case – they rely on the fact that the single
authority can generate all of a user’s keys at once, to en-
sure that they can only be used together, and cannot be
combined with any other user’s keys.

The only multi-authority ABE schemes we are aware of
are Chase’s original proposal [5] (which has already been dis-
cussed in Section 1) and the very recent Lin et al. extension
[10]. Both schemes are KP-ABE and operate in a setting
where multiple authorities are responsible for disjoint sets
of attributes. The disadvantages of Chase’s scheme have
already been discussed in Section 1.

The scheme of [10], like the scheme we will present here,
has the advantage that it does not rely on a central authority.
However, their scheme only achieves m-resilience, in that se-
curity is only guaranteed against a maximum of m colluding
users. (In contrast, the results of [5] and our new results con-
sider a much stronger model, which remains secure against
any number of colluding users.) And this is not merely an
issue of formal security: Lin et al. demonstrated a collusion
attack of m+ 1 users [10]. In their scheme m is the number
of secret keys that each authority obtains from a distributed
key generation protocol. (This also means m must be deter-
mined when the system is initialized.) Clearly, for a large-
scale system, m should set reasonably high in order to guar-
antee security (a very loose desirable lower bound should
be N2, where N is the number of authorities). This im-
poses burdens on the interactive distributed key generation
protocol among all the authorities, and on their secure stor-
age. Finally, O(m) online modular operations are required

by each authority to issue secret keys to a user. We further
note that this weaker notion of security seems undesirable.
It may be of commercial interest to have as many users as
possible, yet it simultaneously increases the risk of being
compromised. (Even if users themselves are not malicious,
one might worry about malware on a user’s machine, or
information leaked unintentionally through side channels.)
Thus, we argue that it is still a very important open prob-
lem to design an efficient and secure multi-authority ABE
scheme without a trusted CA, and this is one of the problems
we will attempt to solve here.

2.3 Anonymous Credentials
Up until now, there has been little relationship between

anonymous credentials and ABE (except a recent work in
[6] which borrows some techniques from anonymous creden-
tial to address the key-escrow problem of IBE). In our new
schemes we will make use of some basic techniques in anony-
mous credential systems to protect the privacy of ABE users.

In an anonymous credential system (see [3, 4]), users wish
to obtain and prove possession of credentials while remain-
ing anonymous. In such work it is assumed that each user
has a unique secret key (and there are different proposals for
how to prove that a given key is valid and to prevent users
from loaning out their keys). Then the user can interact
with each authority under a different pseudonym in such a
way that it is impossible to link multiple pseudonyms be-
longing to the same user. At the same time, all of a user’s
pseudonyms, and the resulting credentials, are tied to the
same secret key so that the user can prove that he has both
attribute set A from one authority and set B from another.

We will use techniques from anonymous credentials to al-
low the users to obtain decryption keys from the authorities
without revealing their GID’s.

The basic idea is to let the GID play the role of the anony-
mous credential secret key. We will now assume that each
user has a unique and secret GID value. He interacts with
authorities using pseudonyms based on this value, and thus
obtains decryption keys.3 Thus, we will replace the GID
with the assumption that each user has unique secret key
as in an anonymous credential system. Guaranteeing that
this secret key is unique involves a number of subtle issues.
Standard techniques can be found from the anonymous cre-
dential literature. Note, however, that anonymous creden-
tials do not immediately solve the privacy issue in an ABE
setting. Consider the following proposal: The user interacts
with the authority via a pseudonym. When the user wants to
obtain decryption keys corresponding to a set of attributes,
he proves (via the anonymous credential system) that he is
the owner of a credential for these attributes. Then he uses
the ABE system to obtain decryption keys. This idea seems
straightforward, but in fact it is unclear how to satisfy our
security and privacy requirements. First, the existing con-
structions for multi-authority ABE schemes (by Chase [5]
and Lin et al. [10]) require that the user presents the GID
in the clear to each authority. The authority then uses this
GID to generate the user’s decryption keys, in order to en-
sure collusion-resistance. This obviously does not provide
any user privacy. On the other hand, if the user was allowed

3Another option would be to allow the user to reveal the
GID to select authorities, but to require that there be some
additional secret information that was known only to the
user, to prevent impersonation.

123

to present a different anonymized value to each authority,
then we would no longer be able to guarantee the security
of the multi-authority ABE against colluding users.

Instead, we will solve the privacy problem by designing a
protocol by which a user can obtain a set of decryption keys
for his secret GID without revealing any information about
that GID to the authority. At the same time, the authority
is guaranteed that the agreed upon decryption keys are the
only thing that the user learns from the transaction.

Finally, we stress that, although we use several elements
of anonymous credential systems, our solution does not en-
crypt with respect to a user’s secret key. This is still strictly
an attribute-based encryption system, in which decryption
ability is determined only by a user’s attributes. The secret
key/GID is only used in communicating with the various
authorities, and in determining the appropriate decryption
keys.

3. PRELIMINARIES

3.1 Notations and Complexity Assumptions
Let G1 and G2 be two cyclic multiplicative groups of prime
order q generated by g1 and g2 respectively, ê : G1 × G2 →
GT be a bilinear map such that ∀x ∈ G1, y ∈ G2 and a,
b ∈ Zq, ê(xa, yb) = ê(x, y)ab and ê(g1, g2) 6= 1. Let ψ :
G2 → G1 be a computable isomorphism from G2 to G1,
with ψ(g2) = g1. (G1,G2) are said to be admissible bilinear
groups if the group action in G1, G2, the isomorphism ψ and
the bilinear mapping ê are all efficiently computable.

Definition 1. The Decisional Diffie-Hellman (DDH) prob-
lem in prime order group G = 〈g〉 is defined as follows: on
input g, ga, gb, gc ∈ G, decide if c = ab or c is a random
element of Zq.

Definition 2. Let algorithm BDH Gen(1λ) output the pa-
rameters (ê(·, ·), q, g1, g2,G1,G2,GT) where there is an effi-
ciently computable isomorphism ψ from G2 to G1. The De-
cisional Bilinear Diffie-Hellman (DBDH) problem is defined
as follows: given g1 ∈ G1, g2, g

a
2 , g

b
2, g

c
2 ∈ G2 and Z ∈ GT as

input, decide if Z = ê(g1, g2)abc or ê(g1, g2)R for R ∈R Zq.

The security of the ABE schemes by Sahai-Waters [13],
Goyal et al. [8], and Chase [5], and of our construction rely
on the intractability of the DBDH problem.

Definition 3. The k-Decisional Diffie-Hellman Inversion
(k-DDHI) problem in prime order group G = 〈g〉 is defined

as follows: On input a (k + 2)-tuple g, gs, gs
2
, . . . , gs

k

, gu ∈
Gk+2, decide if u = 1/s or u is a random element of Zq.

For our key issuing protocol, we will use a modified version
of the of the Dodis-Yampolskiy PRF [7], suggested in [9],
which relies on the intractability of the k-DDHI problem in
group G1 of a pairing. Note that k-DDHI is solvable when
given a DDH oracle, thus we must also make the following
assumption:

Definition 4. Let BDH Gen(1λ) output the parameters
for a bilinear mapping ê : G1 × G2 → GT . The eXternal
Diffie-Hellman (XDH) assumption states that, for all proba-
bilistic polynomial time adversaries A, the DDH problem is
hard in G1. This implies that there does not exist an effi-
ciently computable isomorphism ψ′ : G1 → G2.

3.2 Definitions of Multi-Authority ABE
We begin by defining a multi-authority ABE scheme with

a trusted setup (but without an online trusted CA), and
without any privacy guarantees. For now, we consider a key-
policy threshold scheme, where the user’s decryption key
corresponds to a set of attributes and a threshold value.
(See Section 6 for an extension to more general policies.) In
Section 4 we will discuss an extension which allows a user
to obtain decryption keys without leaking his GID, and in
Section 5 we will discuss an extension which replaces Setup
with an interactive protocol between the authorities.

In a multi-authority ABE system, we have many attribute
authorities, and many users. There are also a set of system-
wide public parameters available to everyone (either created
by a trusted party, or by a distributed protocol between
the authorities). A user can choose to go to an attribute
authority, prove that it is entitled to some of the attributes
handled by that authority, and request the corresponding
decryption keys. The authority will run the attribute key
generation algorithm, and return the result to the user. Any
party can also choose to encrypt a message, in which case
he uses the public parameters together with an attribute
set of his choice to form the ciphertext. Any user who has
decryption keys corresponding to an appropriate attribute
set can use them for decryption.

In what follows, we use GID to denote the global identity
of a user and A to denote a set of attributes. We use Au and
AC to denote the attribute set of a user and that specified
by a ciphertext respectively. We assume all the attribute
sets can be partitioned into N disjoint sets, handled by the
N attribute authorities, and we use a subscript k to denote
the attributes handled by the authority k.

Definition 5. An N-authority ABE scheme consists of
four algorithms:

1. via (params, {(apkk, askk)}k∈{1,...N})
$← Setup(1λ, N)

the randomized key generation algorithm takes a secu-
rity parameter λ ∈ N and the number of authorities
N ∈ N, and outputs the system parameters params
and N public/private key pairs (apkk, askk), one for
each attribute authority k ∈ {1, . . . N}. The thresh-
old values {dk}k∈{1,...N} for each authority are also in-
cluded in params. For simplicity, we assume params
and {apkk}k∈{1,...N} are the implicit inputs of the rest
of the algorithms.

2. via uskk[GID,Ak]
$← AKeyGen(askk,GID,Ak) the at-

tribute authority k uses its secret key askk to output
a decryption key corresponding to the attribute set Ak
for the user with identity GID.

3. via C
$← Enc({Ak}k∈{1,...N},m) a sender encrypts a

message m for the set of attributes {Ak}, resulting in a
ciphertext C, where Ak denotes a subset of the attribute
domain of the authority k.

4. via m← Dec({uskk[GID,Ak]}k∈{1,...N}, C) a user GID
who possesses a sufficient set of decryption keys
{uskk[GID,Ak]} from each authority k decrypts C to
recover m.

Definition 6. An N-authority ABE scheme satisfies the
consistency property if for all λ,N ∈ N, all identities GID

124

and all messages m, for all {Auk} and {ACk } such that |ACk ∩
Auk | > dk for all authorities k ∈ {1, . . . , N},

Pr[params← Setup(1λ, N);C
$← Enc({ACk }k∈{1,...N},m);

Dec({AKeyGen(askk,GID,Auk)}k∈{1,...N}, C) = m] = 1

, where the probability is taken over the random coins of
all the algorithms in the expressions above.

Definition 7. An N-authority ABE scheme is (t, n, ε)-
secure against selective-attribute attack if all t-time adver-
saries A compromising at most n authorities have advantage
at most ε in making the game below return 1.

Experiment Expsaa
N−ABE,A(λ)

(AC = {AC1 , . . . ,ACN},Kcorr ⊂ [1, N]})← A;
if |Kcorr| > n then return 0;
{Uk}k/∈Kcorr ← ∅;
(params, {(apkk, askk)}k∈{1,...N})

$← Setup(1λ, N);

(m∗0,m
∗
1, st)

$← AAKeyGenO(·,·,·)(‘find′,
params, {apkk}k∈{1,...N}, {askk}k∈Kcorr);

b
$← {0, 1}; C∗ $← Enc(AC ,m∗b);

b′
$← AAKeyGenO(·,·,·)(‘guess′, C∗, st);

if b 6= b′ then return 0 else return 1;

where st is state information, and the attribute-key genera-
tion oracle AKeyGenO(GID,Auk , k) is defined as:

if (k ∈ Kcorr) return ⊥;
if (∃Auk ′ s.t. (GID,Auk ′) ∈ Uk) return ⊥; 4

if (|Auk ∩ ACk | ≥ dk)
∧ {∀j 6= k, [(j ∈ Kcorr)
∨(∃Auj s.t. ((GID,Auj) ∈ Uj∧|Auj ∩ACj | ≥ dj))]}

return ⊥;
Uk ← Uk∪(GID,Auk); return AKeyGen(askk,GID,Auk).

4. AUTHORITY-UNLINKABLE ABE
As mentioned before, a multi-authority ABE system which

requires a user to present his unique identifier to every au-
thority would have severe privacy shortcomings. In partic-
ular, it will be trivial for the various authorities to combine
their data and assemble a complete picture of all of a user’s
attributes in all domains. To avoid this we look to related
work on anonymous credentials [3, 4]. We will treat the
GID as the user’s secret key. Then the user can form differ-
ent pseudonyms based on this GID to use when interacting
with different authorities. When the user wishes to obtain
decryption keys for certain attributes associated with this
authority, he performs an interactive protocol with the au-
thority. As a result of this protocol, he gets decryption keys
tied to the GID that corresponds to his pseudonym. These
can then be combined with decryption keys obtained from
other authorities using other pseudonyms for the same GID.
However, from the authorities’ point of view the GID is com-
pletely hidden. In fact it is even infeasible for two authorities
to tell that they are talking to the same user.

4As in all ABE schemes to date, users are not allowed to
simply add attributes to their decryption key set. Instead,
a user who wants to update his attribute set must receive
an entirely new set of keys. In the multi-authority case (see
e.g. [5]), this means that a user cannot simply return to an
authority with the same GID – he must obtain new keys
from all authorities.

4.1 Framework and Security Requirements
Our definition of an authority-unlinkable ABE scheme ex-

tends the definition in Section 2.2 by adding an interactive
protocol to allow the user to obtain a decryption key from
the authority without revealing his GID.

Definition 8. An N-authority-unlinkable ABE scheme
is an N-authority ABE scheme with three extra algorithms
(params and {apkk}k∈{1,...N} are omitted from the input):

1. (nym, aux)
$← FormNym(GID) probabilistically outputs

a pseudonym for identity GID, and some auxiliary in-
formation aux.

2. Obtain(apkk,GID,Ak, nym, aux)↔ Issue(askk,Ak, nym)
are two interactive algorithms which execute a user se-
cret key issuing protocol between a user and the at-
tribute authority k. The user takes as input the public
key apkk of the attribute authority k, an attribute set
Ak, an identity GID, and the corresponding pseudonym
nym with auxiliary information aux, and gets what
AKeyGen(askk,GID,Ak) outputs, i.e. a decryption key
for identity GID corresponding to the attribute set Ak.
The attribute authority gets the secret key askk, the
set of attributes Ak and the pseudonym nym as input,
and gets nothing as output.

with the following properties

1. (nym, aux)
$← FormNym(GID) produces a commitment

nym to the user’s GID with randomness aux,

2. Obtain ↔ Issue form a secure two party computation
(2PC) protocol for the following functionality F , where
({(apkk, askk)}k∈{1,...N}) is as output by Setup(1λ, N):

F takes as public input the authority’s public key apkk,
the user’s pseudonym nym, and the attribute set Ak. It
also receives as secret input the user’s identity GID and
the corresponding aux, and the authority’s secret key
askk. It outputs the result of AKeyGen(askk,GID,Ak)
to the user.

4.2 Generic Anonymous Key Issuing Protocol
Here we present a “generic” protocol such that a user with

a private value u ∈ Zq and an authority with private keys
α, β, γ ∈ Zq can jointly compute the value (hαg1/(β+u))γ for
commonly known g, h ∈ G5. Only the user gets this output,
and all other information is hidden.

The roles of each private value will be apparent when this
protocol is used as the anonymous key issuing protocol for
the ABE system to be presented in Section 5. The basic
intuition is that the structure of the final value (hαg1/(β+u))γ

resembles a product of hα, which corresponds to something
related to the private key of an authority, and a randomizer
computed as PRFβ(u), where β is the secret seed for Dodis-
Yampolskiy PRF [7], and u is the GID of the user. 6 γ
corresponds to some secret related to an attribute.

5We also require that the discrete logarithm between g and
h be unknown to any corrupt user.
6 In order for this to be a valid PRF, we need u to be
chosen from some predefined polynomial-sized domain. Al-
ternatively, we can choose u = H(GID) for hash function H,
and the result will be secure in the random oracle model.

125

User u Attribute Authority

ρ1 ∈R Zq, 2PC←−−−−−−−−→ x := (β + u)ρ1, τ ∈R Zq

ρ2 ∈R Zq
X1, X2,PoK(α, τ, x)
←−−−−−−−−−− X1 := gτ/x, X2 = hατ

Y := (Xρ1
1 X2)ρ2

Y,PoK(ρ2)
−−−−−−−−−−→

D := Z1/ρ2
Z,PoK(τ, γ)
←−−−−−−−−−− Z := Y γ/τ

Figure 1: Our anonymous ABE key issuing protocol

Figure 1 shows our protocol for anonymous key issuing.
In each step, PoK represents a proof of knowledge of the
secret values used in the computation. For simplicity we
have omitted the statement being proved. Here the first
step denotes a 2PC protocol which takes (u, ρ1) from the
user and β from the authority and returns x := (β + u)ρ1

mod q to the authority. This can be done via a general 2PC
protocol for a simple arithmetic computation. Alternatively,
we can do this more efficiently using the construction in
[1]. The necessary proofs of knowledge (PoK) for the above
statements can be efficiently realized, e.g. via a Schnorr
protocol.

Theorem 1. The above protocol is a secure 2PC protocol
for computing (hαg1/(β+u))γ , assuming that the underlying
arithmetic 2PC and zero knowledge proofs are secure, and
(for security against corrupt user) that DDH is hard.

Proof. To see note that Z1/ρ2 = Y γ/(τρ2) = (X
ρ1γ/τ
1 ·

X
γ/τ
2) = (hαg1/(β+u))γ . To show security we consider the

cases of corrupt issuer and corrupt user below.

Corrupt issuer.
For a corrupt issuer, our simulator proceeds as follows:

SimU First, it will run the arithmetic 2PC simulator for
computation of (β+u)ρ1. This 2PC will extract β from
the issuer and expect to be provided with x = ρ1(β+u)
mod q. We will choose a random value x ∈R Zq, and
give it to the arithmetic 2PC simulator. Note that this
is correctly distributed, since for any x, β, u, there is
some ρ1 such that x = ρ1(β + u) mod q. Next, our
simulator will receive X1, X2 from the adversary, and
two corresponding zero knowledge proofs. We will use
the extractor for the proof system to extract α. We will
choose a random Y ∈R G and return it. (Again, this
will be distributed exactly as in a real execution.) Fi-
nally, we will receive Z from the adversary, and use the
extractor to extract γ from the corresponding proof.
We will give α, β, γ to the trusted party, and receive
(hαg1/(β+u))γ , which will be the user’s private output.

Consider a hybrid simulator HybU that takes as input the
user’s identifier u. It first runs the arithmetic 2PC simulator
for the computation of x (with the correct output value ac-
cording to u), and then completes the protocol as the honest
user would. This is clearly indistinguishable from the real
user’s protocol by the security of the arithmetic 2PC.

Now, assuming that the proof of knowledge scheme is se-
cure, HybU should be indistinguishable from the above simu-
lator SimU . This is because the values x, Y used by SimU will
be distributed identically to those in HybU . (Since ρ1, ρ2 are

chosen at random in the real protocol, x will be distributed
uniformly over Zq, and Y will be distributed uniformly over
G in the real protocol as in the simulated protocol.) Thus,
interaction with our simulator is indistinguishable from in-
teraction with an honest user.

Corrupt user.
For a corrupt user, our simulator proceeds as follows:

SimI First, it will run the arithmetic 2PC simulator for
computation for (β + u)ρ1 (in the process it will ex-
tract u). Next the simulator will choose random values
X1, X2 ∈R G, and send them to the user. It will receive
Y from the user, and extract ρ2 from the correspond-
ing proof. Then it will send u to the trusted party and
receive D = (hαg1/(β+u))γ . Finally, it will compute
Z = Dρ2 and send it to the user.

Consider a hybrid simulator HybI that takes as input the
issuer secrets α, β, γ. It will compute x = (β + u)ρ1 using
the arithmetic 2PC simulator. When the 2PC simulator
provides u, ρ1 and asks for output, it will correctly compute
x = ρ1(β+u). Then it will complete the execution as in the
real protocol. This protocol is clearly indistinguishable from
the real protocol by the security of the arithmetic 2PC.

Next, we consider a second hybrid Hyb′I which proceeds
as in HybI , but which uses the zero-knowledge simulator for
all proofs of knowledge. This must be indistinguishable by
the zero-knowledge property of the proof system. Now we
need only show that this second hybrid is indistinguishable
from the interaction with the above simulator.

Consider the following reduction from DDH: Given g,A =
ga, B = gb, C = gc, and we must decide whether c = ab or
c ∈R Zq. We set h = Aθ, for θ ∈R Zq. As described
in SimI , we run the arithmetic 2PC simulator to compute
x = ρ1(β + u), and to extract u. Then we compute X1 =

B(1/x), X2 = Cθα, and send them to the adversary, along
with a simulated proof of knowledge. We receive Y and ex-
tract ρ2 from the corresponding proof. Finally, we compute
Z = (g1/(β+u)Aαθ)γρ2 , and return it to the user.

Note that, assuming that the proofs of knowledge are se-
cure, if c = ab, X1, X2, Z will be distributed correctly, and
this will be indistinguishable from Hyb′I . On the other hand,
if c is random, then X1, X2 are just values chosen at random
from G, as in SimI . Thus, any adversary that can distinguish
Hyb′I from SimI will allow us to solve DDH. We conclude
that under the DDH assumption, interaction with SimI is
indistinguishable from interaction with a real authority.

Thus our construction is a secure 2PC protocol.

5. PROPOSED MULTI-AUTHORITY ABE

5.1 Removing the Trusted Authority
We review the motivation behind the use of the CA, and

show how to avoid it. To have a concrete discussion, we
assume the following details of an ABE system. The master
public key is ê(g1, g2)msk and the message m is encrypted by
ê(g1, g2)s·msk ·m where s is the randomness of the ciphertext.

Simple Secret Sharing Allows Collusion.
To allow for multiple attribute authorities, the first step is

to distribute the master secret key msk across the different
attribute authorities. However, care must be taken to pre-
vent collusion attacks so that users A and B who each have

126

the appropriate attributes from one of two different author-
ities cannot combine their knowledge to decrypt something
neither of them is entitled to.

Now let’s look at what happens when we want to divide
this msk among the authorities. Consider the two-authority
case. Suppose we use a trivial additive sharing of the master
secret key y1 + y2 = msk where one authority uses y1 and
the other uses y2, and a scheme where an honest user gets
a decryption key based on gy1 and gy2 from the respective
authorities. Then a user A with enough attributes from the
first authority can recover ê(g1, g2)y1s, and similarly, user
B with enough attributes from the second authority can
recover ê(g1, g2)y2s. Even if neither alone has sufficient at-
tributes from both authorities, together they will be able
recover ê(g1, g2)s·msk and hence the message m. Thus we
cannot use a straightforward sharing of the master secret
key between the authorities.

The basic idea is to use a different sharing for each user.
But, since we do not want these authorities to communicate
among themselves for every secret key request, how can they
ensure that the values used for each user always sum to msk?

Using PRFs to make the Key “User-Specific”.
The answer in [5] was to require that authorities com-

pute shares deterministically, each using their own PRF, and
then to have a separate CA, whose job was to ensure that
the sharing would add up: it would know each authority’s
PRF seed as well as the msk, it would use this information
generate the shares used for each user, and it would gener-
ate the appropriate final share. Specifically, for user GID,
each authority k uses share gPRFk(GID), and the CA gives to

user GID the value gmsk−
PN

k=1(PRFk(GID)), where PRFk(·)
denotes a pseudorandom function using authority k’s secret
seed. A user GID with enough attributes from authority k
can recover ê(g1, g2)s·PRFk(GID) from the ciphertext. Then
this can be combined with the “matching” value obtained
from the CA and some component in the ciphertext to re-
cover the session key ê(g1, g2)s·msk.

Ideas behind Our Proposal.
The beauty of a PRF family is that no polynomial-time

adversary can distinguish (with significant advantage) be-
tween a randomly chosen function and a truly random func-
tion (in contrast with a degree m polynomial used in [10]).
The idea here (suggested by Waters) idea is to eliminate
the need for the CA by using a set of PRFs whose output
values on any particular input always sum to zero. Each
pair of authorities (j, k) shares a secret PRF seed seedjk
(again, this sharing is done once and for all at the ini-
tial setup stage). This means there are O(N2) PRFs to
be used in total. The final “random-looking” Fk(GID) used
by each authority is a linear combination of N − 1 basic
PRFs. More specifically, it is the summation of all of these
PRFs, each weighted by either 1 or −1. An appropriate
choice of summation and subtraction makes all these PRF
values cancel each other when Fk(GID) for different k are
added together. Informally, such a “sum-of-PRF” construc-
tion still looks pseudorandom to any adversary who knows
less than N − 2 of a particular authority k’s secret seeds
seedkj (i.e. to any adversary controlling less than N − 2
other authorities). The final composite PRF is computed as
Fk(GID) =

P
j<k PRF jk(GID) −

P
j>k PRF jk(GID). This

PRF construction is similar to the simplest construction in
[11], where it is used to build a distributed key distribution
center.

5.2 Adding the Anonymous Key Issuing
Before we can apply our oblivious key issuing protocol,

we need to make suitable modifications to the scheme used
in [5]. In particular, Chase assumes a PRF with range Zq
and generates decryption keys blinded by g

PRFk(GID)
1 . Here

instead, we wish to use the modified Dodis-Yampolskiy PRF
(DY-PRF), which has range G1. We observe that the PRF
in the exponent used in [5] can be replaced by DY-PRF so
that the values are instead blinded by PRFk(GID).With this
modification and a little twist in the key structure, we can
directly apply our key issuing protocol.

While our anonymous key issuing protocol is general enough
to allow issuing keys of the form (SK · PRF (u))1/ti where
SK is the secret key held by the key-issuing authority and
u is a private value of the key-requesting user (e.g. GID),
a straightforward adoption in the CA-less multi-authority
ABE may result in a fairly inefficient system. To see this,

recall that the keys are of the form g
p(i)/ti
1 Fk(u)1/ti for poly-

nomial p (this gives us “user-specific secret keys” which pro-
vides collusion-resistance) for each attribute i ∈ Au. This
means that our key issuing protocol will be invoked O(|Au|)
times. On top of that, we require O(N2) copies of the under-
lying PRF in order to remove the trusted authority, which
makes a total of O(N2|Au|) invocations of our key issuing
protocol, an undesirably high price for preserving user pri-
vacy.

Instead, we will make the number of invocations indepen-
dent of |Au|, by introducing extra randomness in the at-
tribute key issuing process. We add N − 1 blinding factors
Rkj to the secret value ask used to generate the attribute
keys from authority k. The objective is to make the at-
tribute part of the decryption key independent of user GID
(but still different for each user) so that it can be generated
without interaction with the user. We then use these R’s to
play the role of master secret key in the key issuing protocol,

i.e. g
Rkj

1 ·PRFkj(u) will be issued to user u for each value j.
In the decryption process, the user will recover a function of
p(0), and can then use these values to remove the blinding.

To see how the new key structure ensures collusion resis-
tance, when a user has enough attributes from a particular
authority, he can recover a term with these R terms embed-
ded (because of the way we define p(0)). The user secret key

contains the term g
Rkj

1 · PRFkj(u), which is the only other
information about these R terms. Intuitively, to get rid of
these R terms will introduce the user-specific PRF value,
which can only be cancelled out by the other PRF values
for the same user, as hinted in the previous subsection.

5.3 Construction
Our final CA-less multi-authority anonymous ABE works

as follows:

Setup.
The setup stage starts by the following initializations.

• (System Parameter) Given a security parameter λ and

a public random string S ∈ {0, 1}poly(λ), the authori-
ties generate an admissible bilinear group parameters
〈ê(·, ·), ψ(·), q, g1, g2,G1,G2,GT 〉 from BDH Gen(1λ; S).

127

• (Collision-Resistant Hash Function (CRHF)) The au-
thorities also generate from S a CRHF H : {0, 1}∗ →
Zq, which takes the user’s global identifier GID as an
input. We denote the corresponding output by u.

Since the groups have prime order q and no hidden struc-
ture, this can safely be generated from public coins, so each
authority can do this independently. The next stage is an
interactive protocol. We assume the authorities have au-
thenticated channels with one another.

• (Master Public/Secret Key) Each authority k picks
vk ∈R Zq and sends Yk = ê(g1, g2)vk to the other au-
thorities. They all individually compute Y =

Q
Yk =

ê(g1, g2)
P

k vk .

• (PRF Seed) Each pair of authorities engages in a 2-
party key exchange such that each authority k shares
with another authority j a seed skj ∈ Zq which is
only known to them and not to any other authority
i /∈ {j, k}. We define skj = sjk.

• (PRF Base) Each authority k randomly picks xk ∈ Zq
and computes yk = g

xk
1 , which defines a pseudoran-

dom function PRFkj(·) that can only be computed by

authority k and j. Define PRFkj(u) = g
xkxj/(skj+u)

1 ,

which can be computed by y
xj/(skj+u)

k or y
xk/(skj+u)

j .

Each authority k also gives non-interactive proofs of knowl-
edge of vk and xk.

The rest of the setup can be carried out by each authority
autonomously:

• (Attribute Public/Private Key) Authority k proceeds
as follows: for each attribute i ∈ {1, . . . , nk} it picks

tk,i ∈ Zq and computes Tk,i = g
tk,i

2 .

Each authority k stores

〈xk, {skj}j∈{1,...,N}\{k}, {tk,i}i∈[1,...,nk]}〉

securely as its private key. Finally the system parameters
params are published as follows:

〈Y = ê(g1, g2)
P

k vk , {yk, {Tk,i = g
tk,i

2 }i∈[1,...,nk]}}k∈[1,...,N]}〉.

({yk}k∈[1,...,N] is only used by the authority.)

Key Issuing.
To get the key, user u executes the following with each

authority k.

1. For j ∈ {1, . . . , N}\{k}, user u starts N − 1 indepen-
dent invocations of our anonymous key issuing proto-
col for g = y

xk
j , h = g1, αk = δkjRkj , βk = skj and

γk = δkj where Rkj ∈ Zq is randomly picked by au-
thority k and δkj = 1 if k > j and −1 otherwise. As a

result, user u obtains Dkj = g
Rkj

1 PRFkj(u) for k > j

or Dkj = g
Rkj

1 /PRFkj(u) for k < j.

2. Authority k randomly picks a degree dk polynomial
pk(·) with pk(0) = vk −

P
j∈{1,...,N}\{k}Rkj .

3. Authority k issues Sk,i = g
p(i)/tk,i

1 for each eligible
attribute i for the user.

4. User u computesDu =
Q

(k,j)∈{1,...,N}×({1,...,N}\{k})Dkj

= gRu
1 , where Ru =

P
(k,j)∈{1,...,N}×({1,...,N}\{k})Rkj .

(Note that All PRF terms in the above project cancel
each other out by the choice of δkj .)

Encryption.
To encrypt m for attribute set {AC1 , . . . ,ACN}, pick s ∈R

Zq, return 〈E0 = mY s, E1 = gs2, {Ck,i = T sk,i}i∈AC
k
,∀k∈[1...N]〉.

(Note that this is identical to the encryption algorithm in
[5].

Decryption.

1. For each authority k ∈ [1, . . . N]:

(a) For any dk attributes i ∈ ACk ∩Auk , pair up Sk,i and

Ck,i, i.e. compute ê(Sk,i, Ck,i) = ê(g1, g2)spk(i).

(b) Interpolate all the values ê(g1, g2)spk(i) to get Pk =

ê(g1, g2)spk(0) = ê(g1, g2)s(vk−
P

j 6=k Rkj).

2. Multiply Pk’s together to getQ = ê(g1, g2)s(
P
{vk}−Ru)

= Y s/ê(gRu
1 , gs2).

3. Compute ê(Du, E1) ·Q = ê(gRu
1 , gs2) ·Q = Y s.

4. Recover m by E0/Y
s.

5.4 Confidentiality

Theorem 2. The construction of N-authority ABE de-
scribed in Section 5.3 is a (poly(t), N − 2, ε)-secure multi-
authority ABE under the assumption that no t-time algo-
rithm can solve DBDH or q-DDHI with probability ε better
than 1/2, where q is polynomial in t.

Theorem 3. The construction of N-authority ABE de-
scribed in Section 5.3 is an authority unlinkable ABE under
the XDH assumption, and the assumption that the underly-
ing 2PC and zero knowledge proofs of knowledge are secure.

The full proofs can be found in the full version. The intu-
ition behind our reduction to DBDH problem is as follows:
We are given a DBDH problem instance ga2 , g

b
2, g

c
2, Z. We

choose the secret key share of one honest attribute authority
to be something that S cannot compute (ab). Then decrypt-
ing the challenge ciphertext would require computing a func-
tion of this value (ê(gab1 , C2)). The original Sahai-Waters
single authority scheme [13] had techniques for setting up
a challenge ciphertext, and for issuing decryption keys for
attribute sets that were insufficient to decrypt the challenge.
What makes things challenging in the multi-authority case
is that the adversary can request decryption keys for suffi-
cient attribute sets from all but one of the authorities. And
we do not know a priori which authority that one will be.
Thus, we have to set up our parameters so that we can set
any of our authorities as the one that corresponds to the
uncomputable portion of the master key.

The way we do this in the proof is first to choose at ran-
dom an authority k∗ and form its parameters based on this
uncomputable value. If it turns out that this is the author-
ity from which the adversary requests insufficient attributes
for user u, then we are all set, and we can simply reuse
the Sahai-Waters techniques. If not, we use the fact that,

128

in our scheme, the authority does not give out keys only
based on its share of the secret – it also incorporates some
pseudorandom values based on the seeds that it shares with
other authorities. Thus, we can pretend the challenge values
are incorporated in this pseudorandomness. (If only honest
parties know the seed of a PRF, then in our reduction we
can replace it with any other “random-looking” function.)
This of course means that at least one other authority must
adjust its pseudorandomness to compensate, and we choose
this authority to be one of the other honest authorities from
which the adversary does not request sufficient attributes.
(The security game guarantees that there must be at least
one other such authority.)

Finally, recall that our anonymous key issuing protocol
requires that the discrete logarithm between g1 = gxjxk and
h = g1 be unknown. This condition is satisfied since a col-
lusion of N − 2 AAs cannot learn the discrete logarithm xj
if the authority j is outside the collusion group. (In this
case the colluding parties will only see yj = g

xj

1 and a cor-
responding zero-knowledge proof of knowledge of xj .)

5.5 Efficiency
The above construction requires that each authority store

N−1 seeds and run N−1 invocations of our anonymous key
issuing protocol for each user. The user in turn has to store
|Auk | + 1 values for each authority k. The main overhead is
on the side of the authority, and even so, it seems a fairly
small cost to pay in exchange for guaranteeing security when
any N − 2 out of N authorities are corrupted.

For initial setup, we do not require any explicit distributed
key generation (DKG). Thanks to the non-interactive zero-
knowledge proof, the number of communication rounds is
quite minimal (2 rounds). When compared with the trusted
CA approach, the load on the authorities is still somewhat
higher in that they must participate in an initial setup phase
and communicate with all other authorities. However, it
seems unavoidable given that we have no party who is guar-
anteed to be trusted. Finding an approach that would avoid
this limitation, while still providing the strong security guar-
antees that we consider, is a very interesting problem.

A detailed comparison among different multi-authority
ABE proposals is given in Table 1. “Tolerance” refers to the
maximum colluding set against which a system remains se-
cure. “DKG instance” refers to the number of invocations of
the distributed key generation protocol required among the
AAs in the setup stage. “Ciphertext” refers to the ciphertext
overhead, i.e. the ciphertext size minus the plaintext size.
For a fair comparison with Lin et al.’s scheme [10], since our
scheme is secure against polynomially-many users, we sug-
gest m should be much larger than N , since it seems reason-
able to assume there are more malicious users than malicious
authorities. Our system performs better when m > N − 1.
The efficiency of our scheme compares favorably with that
of previous multi-authority ABE schemes, even though we
provide a stronger security guarantee.

6. EXTENSIONS

6.1 Supporting Large Universe
In our basic construction, the universe of attributes is con-

strained by the size of the public parameters (specifically

Properties Chase [5] Lin et al. [10] Ours

Tolerance 0 CA m users (N − 2) AAs
DKG Instance 0 m+ 2 0
AA Key Size |Ak|+ 1 |Ak|+m+ 1 |Ak|+N
User Key Size |Au|+ 1 |Au| |Au|+ 1

Ciphertext |AC |+ 1 |AC | |AC |+ 1

Table 1: Comparisons of Different ABE Proposals

{Tk,i}). This contrasts with the large universe model (first
introduced in [13]), in which the universe of attributes is
exponentially large, but public parameter size depends on
a fixed maximum on the number of attributes allowed in a
ciphertext. That approach also has the advantage that any
arbitrary string can be used as an attribute via the use of a
collision resistant hash function. A large universe construc-
tion was presented in [13] and a similar concept has been
used in [8].

Our anonymous key issuing protocol and the removal of
the central authority technique can also be applied to the
multi-authority version of the large universe and complex
access structure construction in [8]. We highlight five major
distinctions of the large universe construction:

1. Functions {Tk(i)} : Zq → G1 are used to replace the
group elements Tk,i for attribute i of each authority k.
Tk(i) is publicly computable.

2. Ck,i in the ciphertext is changed from T sk,i to Tk(i)s.

3. g
p(i)/tk,i

1 in the user secret key is replaced with g
p(i)
1 Tk(i)r.

4. Since the randomness r is introduced in the user secret
key, gr2 is also given to “cancel out” r in the decryption.

5. To decrypt a ciphertext, merely computing ê(g
p(0)
1 ·

Tk(i)r, gs2) results in ê(g1, g2)sp(0) · ê(Tk(i)r, gs2), so the
later term should be cancelled out by ê(Tk(i)s, gr2).

While the proof of confidentiality in [8] relies critically on the
construction of Tk(i) in the simulation, the key idea of the
multi-authority scheme in [5] is that p(0) will be set as the
PRF computed on the user’s GID, and thus this technique
is independent of how Tk(i) is constructed. As hinted at in
the intuition provided in the proof of our basic scheme, the
crux in our proof for multi-authority ABE is about how to
embed an unknown master secret key (which is related to
the solution of the hard problem) by taking advantage of the
pseudorandom values blinding the user secret key. We can
show security by applying the same techniques as in section
5. (Details of the proof are deferred to the full version.)

6.2 Complex Access Structure
Another limitation of our basic construction as described

in Section 5 is that it only supports simple dk-out-of-n thresh-
old policies, while Goyal et al.’s construction [8] supports a
tree access structure. When we consider the tree as a circuit,
the interior nodes consist of t-out-of-n gates for arbitrary
values of t and n, and each leaf node is associated with an
attribute and has value 1 if that attribute is present in a
given ciphertext.

This tree is the key idea behind the complex access struc-
ture construction. A polynomial px is chosen for each node

129

x in the tree. These polynomials are chosen in a top-down
manner, starting from the root node r, such that the de-
gree of the polynomial px is one less than the threshold
value tx of that node. The value pr(0) at the root node
depends on the AKeyGen algorithm. (In our case pr(0) =
vk −

P
j∈{1,...,N}\{k}Rkj .) For the other nodes x of the

tree, px(0) is defined to be pparent[x](index[x]) where parent[x]
denotes the parent node of x and index[x] is merely a dis-
tinct number for each node at the same level. Using the
same approach as in [5], it is not difficult to see that the
same tree-based key-structure can be used in our schemes,
simply by changing how the root key p(0) is generated.

6.3 Variable Thresholds across Authorities
Our basic construction requires the user to have enough

attributes from every authority, but we can easily let the
encryptor leave out a certain subset of authorities by ask-
ing each authority to issue to every user a decryption key
corresponding to dk dummy attributes.7

Generalizing, each encryptor can reduce the threshold for
a chosen set of authorities by adjusting the number of dummy
variables included for those authorities accordingly. Suppose
dmax is the maximum threshold. If the encryptor wanted
to require d′ < dmax of the attributes, he could encrypt
with respect to dmax − d′ dummy attributes in additional
to the usual attributes. This does not incur heavy penalty
in the efficiency of the system, especially when we have a
large universe construction to host the dummy attributes.

The use of dummy variables for flexible threshold policy
in the ciphertext was suggested in [5]. We note that our
scheme also allows flexibility in setting the threshold policy
in the key, simply due to the fact that our scheme supports
different threshold values dk for different users.

7. CONCLUSION
It is unrealistic to assume there is a single authority which

can monitor every single attribute of all users. Multi-authority
attribute-based encryption enables a more realistic deploy-
ment of attribute-based access control, such that different
authorities are responsible for issuing different sets of at-
tributes. The original solution by Chase employs a trusted
central authority and the use of a global identifier for each
user, which means the confidentiality depends critically on
the security of the central authority and the user-privacy
depends on the honest behavior of the attribute-authorities.
We propose an attribute-based encryption scheme without
the trusted authority, and an anonymous key issuing proto-
col which works for both existing schemes and for our new
construction. We hope that our work gives a more practice-
oriented attribute based encryption system.

Acknowledgement
We thank Brent Waters for suggesting the sum of PRFs
construction.

7In contrast to a normal threshold cryptosystem, here the
threshold will only be reduced if the encryptor chooses to
do so (by including dummy attributes in the ciphertext at-
tribute set). Thus, each ciphertext may have a different
threshold.

8. REFERENCES
[1] Mira Belenkiy, Jan Camenisch, Melissa Chase,

Markulf Kohlweiss, Anna Lysyanskaya, and Hovav
Shacham. Randomizable Proofs and Delegatable
Anonymous Credentials. In CRYPTO, LNCS.
Springer, 2009. To appear.

[2] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-Policy Attribute-Based Encryption. In
IEEE Symposium on Security and Privacy, pages
321–334. IEEE Computer Society, 2007.

[3] Stefan Brands. Rethinking Public Key Infrastructure
and Digital Certificates – Building in Privacy. PhD
thesis, Eindhoven Inst. of Tech. 1999.

[4] Jan Camenisch and Anna Lysyanskaya. Efficient
Non-transferable Anonymous Multi-show Credential
System with Optional Anonymity Revocation. In
EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer Verlag, 2001.

[5] Melissa Chase. Multi-authority Attribute Based
Encryption. In TCC, volume 4392 of LNCS, pages
515–534. Springer, 2007.

[6] Sherman S.M. Chow. Removing Escrow from
Identity-Based Encryption. In Public Key
Cryptography, volume 5443 of LNCS, pages 256–276.
Springer, 2009.

[7] Yevgeniy Dodis and Aleksandr Yampolskiy. A
Verifiable Random Function with Short Proofs and
Keys. In Public Key Cryptography, volume 3386 of
LNCS, pages 416–431. Springer, 2005.

[8] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent
Waters. Attribute-Based Encryption for Fine-Grained
Access Control of Encrypted Data. In Computer and
Communications Security, pages 89–98. ACM, 2006.

[9] Stanislaw Jarecki and Xiaomin Liu. Efficient Oblivious
Pseudorandom Function with Applications to
Adaptive OT and Secure Computation of Set
Intersection. In TCC, pages 577–594. Springer, 2009.

[10] Huang Lin, Zhenfu Cao, Xiaohui Liang, and Jun Shao.
Secure Threshold Multi Authority Attribute Based
Encryption without a Central Authority. In
INDOCRYPT, volume 5365 of LNCS, pages 426–436.
Springer, 2008.

[11] Moni Naor, Benny Pinkas, and Omer Reingold.
Distributed Pseudo-random Functions and KDCs. In
EUROCRYPT, volume 1592 of LNCS, pages 327–346.
Springer, 1999.

[12] Rafail Ostrovsky, Amit Sahai, and Brent Waters.
Attribute-Based Encryption with Non-Monotonic
Access Structures. In Computer and Communications
Security, pages 195–203, 2007.

[13] Amit Sahai and Brent Waters. Fuzzy Identity-Based
Encryption. In EUROCRYPT, volume 3494 of LNCS,
pages 457–473. Springer, 2005.

[14] Adi Shamir. Identity-Based Cryptosystems and
Signature Schemes. In CRYPTO, pages 47–53.
Springer, 1984.

[15] Brent Waters. Ciphertext-Policy Attribute-Based
Encryption: An Expressive, Efficient, and Provably
Secure Realization. Cryptology ePrint 2008/290.

130

