CS548 Advanced Information Security

Efficient Algorithms for Pairing-Based Cryptosystems

Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott Proceedings of Crypto, 2002

> 2010. 04. 22. Kanghoon Lee, AIPR Lab., KAIST

- ✓ Problems of Pairing-Based Cryptosystems
 - Expensive bilinear pairing computations (e.g. Weil or Tate pairing)

✓ Goals

- To make entirely practical systems
- Theoretical guarantees
- Several efficient algorithms for the arithmetic operations
- ✓ Contributions of this paper
 - Definition of point tripling \rightarrow *Faster scalar multiplication in characteristic 3*
 - Improved square root computation over $F_{p^m} \rightarrow \underline{Important for the point compression}$
 - A variant of Miller's algorithm $\rightarrow \underline{Efficient\ computation\ of\ Tate\ pairing}$ (In characteristics 2 and 3, complexity reduction of Tate pairing is from $O(m^3)$ to $O(m^2)$)

Mathematical Preliminaries (1)

- ✓ Finite Field, F_{p^m} : the field with p^m elements
 - *p* (prime number) : <u>*characteristic*</u> of F_{p^m}
 - *m* (positive integer) : <u>extension degree</u>
 - $F_q^* \equiv F_q \{0\}$ (simply write F_q with $q=p^m$)
- ✓ Elliptic Curve $E(F_q)$
 - The set of solutions (x, y) over F_q to an equation of form $E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ with additional *point at infinity*, O
 - There exists an abelian group law on *E*, $P_3 = P_1 + P_2$
- ✓ The number of points of $E(F_q)$, $n = #E(F_q)$, called <u>order</u> of the curve over the field F_q
- ✓ The order of point P: the least nonzero integer r such that rP=O
- ✓ E[r] : the set of all points of order *r* in *E*
 - E(K)[r] : the set of all points of order r to the particular subgroup E(K)

Mathematical Preliminaries (2)

- ✓ <u>Security multiplier k</u>
 - If $r \mid q^{k}-1$ and r does not divide $q^{s}-1$ for any 0 < s < k
- ✓ Some cryptographically interesting supersingular elliptic curves

curve equation	underlying field	curve order	k
$E_{1,b}: y^2 = x^3 + (1-b)x + b, \ b \in \{0,1\}$	\mathbb{F}_p	p + 1	2
$E_{2,b}: y^2 + y = x^3 + x + b, \ b \in \{0, 1\}$	\mathbb{F}_{2^m}	$2^m + 1 \pm 2^{(m+1)/2}$	4
$E_{3,b}: y^2 = x^3 - x + b, \ b \in \{-1, 1\}$	\mathbb{F}_{3^m}	$3^m + 1 \pm 3^{(m+1)/2}$	6

- ✓ <u>Divisor</u> : a formal sum of points on the curve F_{p^m}
- ✓ <u>The degree of a divisor</u> $A = \sum_{P} a_{P}(P)$ is the sum $A = \sum_{P} a_{P}$

Mathematical Preliminaries (3)

- ✓ Tate Pairing
 - Let *I* be a natural number coprime to *q*
 - The <u>Tate pairing of order l</u> is the map $e_l : E(F_q)[l] \times E(F_{q^k})[l] \rightarrow F_{q^k}^*$ as $e_l(P,Q) = f_P(A_Q)^{(q^k-1)/l}$
- ✓ Tate pairing satisfies the following properties
 - (Bilinearity) $e_{\ell}(P_1 + P_2, Q) = e_{\ell}(P_1, Q) \cdot e_{\ell}(P_2, Q)$ and $e_{\ell}(P, Q_1 + Q_2) = e_{\ell}(P, Q_1) \cdot e_{\ell}(P, Q_2)$ for all $P, P_1, P_2 \in E(\mathbb{F}_q)[\ell]$ and all $Q, Q_1, Q_2 \in E(\mathbb{F}_{q^k})[\ell]$. It follows that $e_{\ell}(aP, Q) = e_{\ell}(P, aQ) = e_{\ell}(P, Q)^a$ for all $a \in \mathbb{Z}$.
 - (Non-degeneracy) If $e_{\ell}(P,Q) = 1$ for all $Q \in E(\mathbb{F}_{q^k})[\ell]$, then P = O. Alternatively, for each $P \neq O$ there exists $Q \in E(\mathbb{F}_{q^k})[\ell]$ such that $e_{\ell}(P,Q) \neq 1$.
 - (Compatibility) Let $\ell = h\ell'$. If $P \in E(\mathbb{F}_q)[\ell]$ and $Q \in E(\mathbb{F}_{q^k})[\ell']$, then $e_{\ell'}(hP,Q) = e_{\ell}(P,Q)^h$.

KAIST

Scalar Multiplication in Characteristic 3 (1)

- ✓ Arithmetic on the curve $E_{3,b}$
 - Let $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3)$
 - By definition, -O = O, $-P_1 = (x_1, -y_1)$, $O + P_1 = P_1 + O = P_1$
 - Furthermore,

$$\begin{split} P_1 &= -P_2 &\Rightarrow P_3 = O. \\ P_1 &= P_2 &\Rightarrow \lambda \equiv 1/y_1, \ x_3 = x_1 + \lambda^2, \ y_3 = -(y_1 + \lambda^3). \\ P_1 &\neq -P_2, \ P_2 \Rightarrow \lambda \equiv \frac{y_2 - y_1}{x_2 - x_1}, \ x_3 = \lambda^2 - (x_1 + x_2), \ y_3 = y_1 + y_2 - \lambda^3. \end{split}$$

✓ Double-and-add method : V = kP, $k \in Z$, $k = (k_t ... k_1 k_0)_2$ where $k_i \in \{0,1\}$ Double-and-add scalar multiplication:

set
$$V \leftarrow P$$

for $i \leftarrow t - 1, t - 2, \dots, 1, 0$ do {
set $V \leftarrow 2V$
if $k_i = 1$ then set $V \leftarrow V + P$
}
return V

Scalar Multiplication in Characteristic 3 (2)

- ✓ Point Tripling for $E_{3,b}$
 - P = (x, y)
 - $3P = (x_3, y_3)$ with the folumas,

$$x_3 = (x^3)^3 - b$$

$$y_3 = -(y^3)^3$$

✓ Triple-and-add method : V = kP, $k \in Z$, $k = (k_t ... k_1 k_0)_3$ where $k_i \in \{-1,0,1\}$

Triple-and-add scalar multiplication:

set
$$V \leftarrow P$$
 if $k_t = 1$, or $V \leftarrow -P$ if $k_t = -1$
for $i \leftarrow t - 1, t - 2, \dots, 1, 0$ do {
set $V \leftarrow 3V$
if $k_i = -1$ then set $V \leftarrow V + P$
if $k_i = -1$ then set $V \leftarrow V - P$
}
return V

V Square Root Extraction

- ✓ Elliptic curve equation $E: y^2 = f(x)$ over F_q
- ✓ In a finite field F_{p^m} where $p \equiv 3 \pmod{4}$ and odd m, the best algorithm to compute a square root → $O(m^3)$

✓ A solution of
$$x^2 = a$$
, is given by $x = a^{(p^m+1)/4}$
• If $m = 2k+1$ for some k , $\frac{p^m+1}{4} = \frac{p+1}{4} \left[p(p-1) \sum_{i=0}^{k-1} (p^2)^i + 1 \right]$,

so that

$$a^{(p^m+1)/4} = [(a^{\sum_{i=0}^{k-1} (p^2)^i})^{p(p-1)} \cdot a]^{(p+1)/4}.$$

✓ $a^{\sum_{i=0}^{k-1}u^i}$ where $u = p^2$ can be verified by induction

$$a^{1+u+\dots+u^{k-1}} = \begin{cases} (a^{1+u+\dots+u^{\lfloor k/2 \rfloor - 1}}) \cdot (a^{1+u+\dots+u^{\lfloor k/2 \rfloor - 1}})^{u^{\lfloor k/2 \rfloor}}, & k \text{ even,} \\ ((a^{1+u+\dots+u^{\lfloor k/2 \rfloor - 1}}) \cdot (a^{1+u+\dots+u^{\lfloor k/2 \rfloor - 1}})^{u^{\lfloor k/2 \rfloor}})^{u \cdot a}, & k \text{ odd.} \end{cases}$$

 $\checkmark O(m^2 \log m) \quad F_p$ operations

Computing the Tate Pairing

- ✓ Tate Pairing, $e_l : E(F_q)[l] \times E(F_{a^k})[l] \to F_{a^k}^*$
 - Let $P \in E(F_q)[l]$, $Q \in E(F_{q^k})[l]$ $e_l(P,Q) = f_P(A_Q)^{(q^k 1)/l}$
- \checkmark To find the function f_{P} and then evaluate its value at A_{O}
- ✓ Miller's Formula [1, Theorem 2]

Theorem 2 (Miller's formula). Let P be a point on $E(\mathbb{F}_q)$ and f_c be a function with divisor $(f_c) = c(P) - (cP) - (c-1)(O), c \in \mathbb{Z}$. For all $a, b \in \mathbb{Z}$, $f_{a+b}(Q) = f_a(Q) \cdot f_b(Q) \cdot g_{aP,bP}(Q) / g_{(a+b)P}(Q).$

where
$$(g_{aP,bP}) = (aP) + (bP) - (-(a+b)P) - 3(O),$$

 $(g_{(a+b)P}) = ((a+b)P) + (-(a+b)P) - 2(O).$

V Miller's Algorithm

 \checkmark Miller's algorithm:

```
set f \leftarrow 1 and V \leftarrow P
for i \leftarrow t - 1, t - 2, \dots, 1, 0 do {
set f \leftarrow f^2 \cdot g_{V,V}(Q)/g_{2V}(Q) and V \leftarrow 2V
if \ell_i = 1 then set f \leftarrow f \cdot g_{V,P}(Q)/g_{V+P}(Q) and V \leftarrow V + P
}
return f
```

- ✓ Example Computation of the Tate Pairing [2, Appendix B]
 - *p* = 43, *k* = 2, *l* = 11
 - Supersingular elliptic curve $E: y^2 = x^3 + x$, order = 44
 - Distortion map $\phi(x, y) = (-x, iy)$
 - P = (23,8), Q = (20,8t)
 - Using the Miller's algorithm, $t([2]P, Q)^{(p^{2}+1)/l} = (40t+28)^{168} = 23t + 26$, $t(P, Q)^{(p^{2}+1)/l} = (13t+38)^{168} = 3t + 11$
 - We know that $t([2]P, Q) = t(P, Q)^2$

Improvement of Miller's Algorithm (1)

- ✓ Irrelevant denominators
 - When computing $e_n(P, \phi(Q))$ and ϕ is a distortion map, the g_{2V} and g_{V+P} denominators in Miller's algorithm can be discarded
 - Distorsion maps

curve (see table 1)	underlying field	distortion map	$\operatorname{conditions}$
$E_{1,0}$	$\mathbb{F}_p, p > 3$	$\phi_1(x,y) = (-x,iy)$	$i \in \mathbb{F}_{p^2}, \\ i^2 = -1$
$E_{2,b}, b \in \{0,1\}$	\mathbb{F}_{2^m}	$\phi_2(x,y) = (x+s^2, y+sx+t)$	$s, t \in \mathbb{F}_{2^{4m}}, \\ s^4 + s = 0, \\ t^2 + t + s^6 + s^2 = 0$
$E_{3,b}, b \in \{-1,1\}$	\mathbb{F}_{3^m}	$\phi_3(x,y) = (-x + r_b, iy)$	$r_b, i \in \mathbb{F}_{3^{6m}}$ $r_b^3 - r_b - b = 0,$ $i^2 = -1$

✓ Evaluation of f_n with more efficient <u>triple-and-add</u> method in characteristic 3

•
$$(f_{3a}) = (f_a) + (g_{aP,aP}) + (g_{2aP,aP}) - (g_{2aP}) - (g_{3aP})$$

• With discarding the irrelevant denominators

 $f_{3b}(Q) = f_b^3(Q) \cdot g_{aP,aP}(Q) \cdot g_{2aP,aP}(Q)$

Improvement of Miller's Algorithm (2)

- ✓ Speeding up the Final Powering
 - Evaluation of the Tate pairing $e_n(P,Q)$ includes a final raising to the power of $(p^{km}-1)/n$
 - Exponent part \rightarrow similar way to the square root algorithm
- ✓ Fixed-base Pairing Precomputation
 - When computing $e_n(P,Q)$, P is either fixed (e.g. base point on the curve) or used repeatedly (e.g. public key)
 - Precompute $e_n(P,Q)$

✓ Timings for Boneh-Lynn-Shacham (BLS) verification and Boneh-Franklin identitybased encryption (IBE) (ms)

operation	original $[3, 14]$	ours
BLS verification	2900	53
IBE encryption	170	48 (preprocessed: 36)
IBE decryption	140	30 (preprocessed: 19)

- ✓ Future works
 - Apply to more general algebraic curves, e.g., a fast *n*-th root algorithm

- [1] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott, Efficient Algorithms for Pairing-Based Cryptosystems, Proceedings of Crypto, 2002
- [2] Marcus Stogbauer, Efficient Algorithms for Pairing-Based Cryptosystems, Diploma Thesis, Darmastay University of Technology, 2004

