CS548 Advanced Information Security

Efficient Algorithms for Pairing-Based Cryptosystems

Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott Proceedings of Crypto, 2002
2010. 04.22.

Kanghoon Lee, AIPR Lab., KAIST

Contents

Introduction

\checkmark Problems of Pairing-Based Cryptosystems

- Expensive bilinear pairing computations (e.g. Weil or Tate pairing)
\checkmark Goals
- To make entirely practical systems
- Theoretical guarantees
- Several efficient algorithms for the arithmetic operations
\checkmark Contributions of this paper
- Definition of point tripling \rightarrow Faster scalar multiplication in characteristic 3
- Improved square root computation over $F_{p^{m}} \rightarrow$ Important for the point compression
- A variant of Miller's algorithm \rightarrow Efficient computation of Tate pairing (In characteristics 2 and 3, complexity reduction of Tate pairing is from $O\left(m^{3}\right)$ to $O\left(m^{2}\right)$)

Mathematical Preliminaries (1)

\checkmark Finite Field, $F_{p^{m}}$: the field with p^{m} elements

- $\quad p$ (prime number) : characteristic of $F_{p^{m}}$
- m (positive integer) : extension degree
- $F_{q}^{*} \equiv F_{q}-\{0\} \quad$ (simply write F_{q} with $q=p^{m}$)
\checkmark Elliptic Curve $E\left(F_{q}\right)$
- The set of solutions (x, y) over F_{q} to an equation of form $E: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ with additional point at infinity, O
- There exists an abelian group law on $E, P_{3}=P_{1}+P_{2}$
\checkmark The number of points of $E\left(F_{q}\right), n=\# E\left(F_{q}\right)$, called order of the curve over the field F_{q}
\checkmark The order of point P : the least nonzero integer r such that $r P=0$
$\checkmark E[r]$: the set of all points of order r in E
- $E(K)[r]$: the set of all points of order r to the particular subgroup $E(K)$

Mathematical Preliminaries (2)

\checkmark Security multiplier k

- If $r \mid q^{k}-1$ and r does not divide $q^{s}-1$ for any $0<s<k$
\checkmark Some cryptographically interesting supersingular elliptic curves

curve equation	underlying field	curve order	k
$E_{1, b}: y^{2}=x^{3}+(1-b) x+b, b \in\{0,1\}$	\mathbb{F}_{p}	$p+1$	2
$E_{2, b}: y^{2}+y=x^{3}+x+b, b \in\{0,1\}$	$\mathbb{F}_{2^{m}}$	$2^{m}+1 \pm 2^{(m+1) / 2}$	4
$E_{3, b}: y^{2}=x^{3}-x+b, b \in\{-1,1\}$	$\mathbb{F}_{3^{m}}$	$3^{m}+1 \pm 3^{(m+1) / 2}$	6

\checkmark Divisor: a formal sum of points on the curve $F_{p^{m}}$
$\checkmark \underline{\text { The degree of a divisor }} A=\sum_{P} a_{P}(P)$ is the sum $A=\sum_{P} a_{P}$

Mathematical Preliminaries (3)

\checkmark Tate Pairing

- Let / be a natural number coprime to q
- The Tate pairing of order lis the map $e_{l}: E\left(F_{q}\right)[l] \times E\left(F_{q^{k}}\right)[l] \rightarrow F_{q^{k}}^{*}$ as $e_{l}(P, Q)=f_{P}\left(A_{Q}\right)^{\left(q^{k}-1\right) / l}$
\checkmark Tate pairing satisfies the following properties
$-($ Bilinearity $) e_{\ell}\left(P_{1}+P_{2}, Q\right)=e_{\ell}\left(P_{1}, Q\right) \cdot e_{\ell}\left(P_{2}, Q\right)$ and $e_{\ell}\left(P, Q_{1}+Q_{2}\right)=$ $e_{\ell}\left(P, Q_{1}\right) \cdot e_{\ell}\left(P, Q_{2}\right)$ for all $P, P_{1}, P_{2} \in E\left(\mathbb{F}_{q}\right)[\ell]$ and all $Q, Q_{1}, Q_{2} \in E\left(\mathbb{F}_{q^{k}}\right)[\ell]$. It follows that $e_{\ell}(a P, Q)=e_{\ell}(P, a Q)=e_{\ell}(P, Q)^{a}$ for all $a \in \mathbb{Z}$.
- (Non-degeneracy) If $e_{\ell}(P, Q)=1$ for all $Q \in E\left(\mathbb{F}_{q^{k}}\right)[\ell]$, then $P=O$. Alternatively, for each $P \neq O$ there exists $Q \in E\left(\mathbb{F}_{q^{k}}\right)[\ell]$ such that $e_{\ell}(P, Q) \neq 1$.
- (Compatibility) Let $\ell=h \ell^{\prime}$. If $P \in E\left(\mathbb{F}_{q}\right)[\ell]$ and $Q \in E\left(\mathbb{F}_{q^{k}}\right)\left[\ell^{\prime}\right]$, then $e_{\ell^{\prime}}(h P, Q)=e_{\ell}(P, Q)^{h}$.

Scalar Multiplication in Characteristic 3 (1)

\checkmark Arithmetic on the curve $E_{3, b}$

- Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right), P_{3}=\left(x_{3}, y_{3}\right)$
- By definition, $-O=O,-P_{1}=\left(x_{1},-y_{1}\right), \quad O+P_{1}=P_{1}+O=P_{1}$
- Furthermore,

$$
\begin{aligned}
& P_{1}=-P_{2} \quad \Rightarrow P_{3}=O . \\
& P_{1}=P_{2} \quad \Rightarrow \lambda \equiv 1 / y_{1}, x_{3}=x_{1}+\lambda^{2}, y_{3}=-\left(y_{1}+\lambda^{3}\right) . \\
& P_{1} \neq-P_{2}, P_{2} \Rightarrow \lambda \equiv \frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{3}=\lambda^{2}-\left(x_{1}+x_{2}\right), y_{3}=y_{1}+y_{2}-\lambda^{3} .
\end{aligned}
$$

\checkmark Double-and-add method: $V=k P, k \in Z, \mathrm{k}=\left(\mathrm{k}_{\mathrm{t}} \ldots \mathrm{k}_{1} \mathrm{k}_{0}\right)_{2}$ where $k_{i} \in\{0,1\}$
Double-and-add scalar multiplication:

```
set }V\leftarrow
for }i\leftarrowt-1,t-2,\ldots,1,0 do 
    set V}\leftarrow2
    if }\mp@subsup{k}{i}{}=1\mathrm{ then set }V\leftarrowV+
}
return V
```


Scalar Multiplication in Characteristic 3 (2)

\checkmark Point Tripling for $E_{3, b}$

- $P=(x, y)$
- $3 P=\left(x_{3}, y_{3}\right)$ with the folumas,

$$
\begin{aligned}
& x_{3}=\left(x^{3}\right)^{3}-b \\
& y_{3}=-\left(y^{3}\right)^{3}
\end{aligned}
$$

\checkmark Triple-and-add method: $V=k P, k \in Z, k=\left(\mathrm{k}_{\mathrm{t}} \ldots \mathrm{k}_{1} \mathrm{k}_{0}\right)_{3}$ where $k_{i} \in\{-1,0,1\}$
Triple-and-add scalar multiplication:

```
set }V\leftarrowP\mathrm{ if }\mp@subsup{k}{t}{}=1\mathrm{ , or }V\leftarrow-P\mathrm{ if }\mp@subsup{k}{t}{}=-
for }i\leftarrowt-1,t-2,\ldots,1,0 do 
        set }V\leftarrow3
        if ki}=1\mathrm{ then set }V\leftarrowV+
        if }\mp@subsup{k}{i}{}=-1\mathrm{ then set }V\leftarrowV-
}
return V
```


Square Root Extraction

\checkmark Elliptic curve equation $E: y^{2}=f(x)$ over F_{q}
$\checkmark \quad$ In a finite field $F_{p^{m}}$ where $p \equiv 3(\bmod 4)$ and odd m, the best algorithm to compute a square root $\rightarrow O\left(m^{3}\right)$
\checkmark A solution of $x^{2}=a$, is given by $x=a^{\left(p^{m}+1\right) / 4}$

- If $m=2 k+1$ for some k,

$$
\frac{p^{m}+1}{4}=\frac{p+1}{4}\left[p(p-1) \sum_{i=0}^{k-1}\left(p^{2}\right)^{i}+1\right],
$$

so that

$$
a^{\left(p^{m}+1\right) / 4}=\left[\left(a^{\sum_{i=0}^{k-1}\left(p^{2}\right)^{i}}\right)^{p(p-1)} \cdot a\right]^{(p+1) / 4} .
$$

$\checkmark \quad a^{\sum_{i=0^{i}}^{k-1} i^{i}}$ where $u=p^{2} \quad$ can be verified by induction
$a^{1+u+\cdots+u^{k-1}}=\left\{\begin{array}{cc}\left(a^{1+u+\cdots+u^{\lfloor k / 2\rfloor-1}}\right) \cdot\left(a^{1+u+\cdots+u^{\lfloor k / 2\rfloor-1}}\right)^{u^{\lfloor k / 2\rfloor}}, \quad k \text { even }, \\ \left(\left(a^{1+u+\cdots+u^{\lfloor k / 2\rfloor-1}}\right) \cdot\left(a^{1+u+\cdots+u^{\lfloor k / 2\rfloor-1}}\right)^{u^{\lfloor k / 2\rfloor}}\right)^{u} \cdot a, k \text { odd. }\end{array}\right.$
$\checkmark \quad O\left(m^{2} \log m\right) \quad F_{p}$ operations

Computing the Tate Pairing

\checkmark Tate Pairing, $\quad e_{l}: E\left(F_{q}\right)[l] \times E\left(F_{q^{k}}\right)[l] \rightarrow F_{q^{k}}^{*}$

- Let $P \in E\left(F_{q}\right)[l], Q \in E\left(F_{q^{k}}\right)[l]$
- $e_{l}(P, Q)=f_{P}\left(A_{Q}\right)^{\left(q^{k}-1\right) / l}$
\checkmark To find the function f_{p} and then evaluate its value at A_{Q}
\checkmark Miller's Formula [1, Theorem 2]
Theorem 2 (Miller's formula). Let P be a point on $E\left(\mathbb{F}_{q}\right)$ and f_{c} be a function with divisor $\left(f_{c}\right)=c(P)-(c P)-(c-1)(O), c \in \mathbb{Z}$. For all $a, b \in \mathbb{Z}$, $f_{a+b}(Q)=f_{a}(Q) \cdot f_{b}(Q) \cdot g_{a P, b P}(Q) / g_{(a+b) P}(Q)$.
where

$$
\begin{aligned}
\left(g_{a P, b P}\right) & =(a P)+(b P)-(-(a+b) P)-3(O) \\
\left(g_{(a+b) P}\right) & =((a+b) P)+(-(a+b) P)-2(O)
\end{aligned}
$$

Miller's Algorithm

\checkmark Miller's algorithm:

```
set }f\leftarrow1\mathrm{ and }V\leftarrow
for }i\leftarrowt-1,t-2,\ldots,1,0 do 
        set f}\leftarrow\mp@subsup{f}{}{2}\cdot\mp@subsup{g}{V,V}{}(Q)/\mp@subsup{g}{2V}{}(Q)\mathrm{ and }V\leftarrow2
        if }\mp@subsup{\ell}{i}{}=1\mathrm{ then set }f\leftarrowf\cdot\mp@subsup{g}{V,P}{}(Q)/\mp@subsup{g}{V+P}{}(Q)\mathrm{ and }V\leftarrowV+
}
return f
```

\checkmark Example Computation of the Tate Pairing [2, Appendix B]

- $p=43, k=2, I=11$
- Supersingular elliptic curve $E: y^{2}=x^{3}+x$, order $=44$
- Distortion map $\phi(x, y)=(-x, i y)$
- $P=(23,8), Q=(20,8 t)$
- Using the Miller's algorithm,

$$
t([2] P, Q)^{\left(p^{\wedge} 2+1\right) / l}=(40 t+28)^{168}=23 t+26, \quad t(P, Q)^{\left(p^{\wedge} 2+1\right) / l}=(13 t+38)^{168}=3 t+11
$$

- We know that $t([2] P, Q)=t(P, Q)^{2}$

Improvement of Miller's Algorithm (1)

\checkmark Irrelevant denominators

- When computing $e_{n}(P, \phi(Q))$ and ϕ is a distortion map, the $g_{2 v}$ and g_{V+p} denominators in Miller's algorithm can be discarded
- Distorsion maps

curve (see table 1)	underlying field	distortion map	conditions
$E_{1,0}$	$\mathbb{F}_{p}, p>3$	$\phi_{1}(x, y)=(-x, i y)$	$i \in \mathbb{F}_{p^{2},}$,
			$i^{2}=-1$
$E_{2, b}, b \in\{0,1\}$	$\mathbb{F}_{2^{m}}$	$\phi_{2}(x, y)=\left(x+s^{2}, y+s x+t\right)$	$s, t \in \mathbb{F}_{2^{4 m}}$,
			$s^{4}+s=0$,
		$t^{2}+t+s^{6}+s^{2}=0$	
$E_{3, b}, b \in\{-1,1\}$	$\mathbb{F}_{3^{m}}$	$\phi_{3}(x, y)=\left(-x+r_{b}, i y\right)$	$r_{b}, i \in \mathbb{F}_{3^{6 m}}$
			$r_{b}^{3}-r_{b}-b=0$,
		$i^{2}=-1$	

\checkmark Evaluation of f_{n} with more efficient triple-and-add method in characteristic 3

- $\left(f_{3 a}\right)=\left(f_{a}\right)+\left(g_{a P, a P}\right)+\left(g_{2 a P, a P}\right)-\left(g_{2 a P}\right)-\left(g_{3 a P}\right)$
- With discarding the irrelevant denominators

$$
f_{3 b}(Q)=f_{b}^{3}(Q) \cdot g_{a P, a P}(Q) \cdot g_{2 a P, a P}(Q)
$$

Improvement of Miller's Algorithm (2)

$\checkmark \quad$ Speeding up the Final Powering

- Evaluation of the Tate pairing $e_{n}(P, Q)$ includes a final raising to the power of $\left(p^{k m}-1\right) / n$
- Exponent part \rightarrow similar way to the square root algorithm
\checkmark Fixed-base Pairing Precomputation
- When computing $e_{n}(P, Q), \mathrm{P}$ is either fixed (e.g. base point on the curve) or used repeatedly (e.g. public key)
- Precompute $e_{n}(P, Q)$

Experimental Results

\checkmark Timings for Boneh-Lynn-Shacham (BLS) verification and Boneh-Franklin identitybased encryption (IBE) (ms)

operation	original $[3,14]$	ours
BLS verification	2900	53
IBE encryption	170	48 (preprocessed: 36)
IBE decryption	140	30 (preprocessed: 19)

\checkmark Future works

- Apply to more general algebraic curves, e.g., a fast n-th root algorithm

References

[1] Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott, Efficient Algorithms for Pairing-Based Cryptosystems, Proceedings of Crypto, 2002
[2] Marcus Stogbauer, Efficient Algorithms for Pairing-Based Cryptosystems, Diploma Thesis, Darmastay University of Technology, 2004

