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Introduction

� Problems of Pairing-Based Cryptosystems

• Expensive bilinear pairing computations (e.g. Weil or Tate pairing)

� Goals

• To make entirely practical systems

• Theoretical guarantees

• Several efficient algorithms for the arithmetic operations

� Contributions of this paper

• Definition of point tripling  � Faster scalar multiplication in characteristic 3

• Improved square root computation over           � Important for the point compression

• A variant of Miller’s algorithm  � Efficient computation of Tate pairing

(In characteristics 2 and 3, complexity reduction of Tate pairing is from                to                )
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Mathematical Preliminaries  (1)

� Finite Field,          :  the field with pm elements

• p (prime number) :  characteristic of 

• m (positive integer) :  extension degree

• (simply write        with q=pm )

� Elliptic Curve

• The set of solutions (x, y) over         to an equation of form

with additional point at infinity, O
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• There exists an abelian group law on E,  

� The number of points of           ,                     , called order of the curve over the field

� The order of point P :  the least nonzero integer r such that rP=O

� : the set of all points of order r in E

• :  the set of all points of order r to the particular subgroup E(K)
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Mathematical Preliminaries  (2)

� Security multiplier k

• If  r | qk-1 and r does not divide qs-1 for any 0 < s < k

� Some cryptographically interesting supersingular elliptic curves

� Divisor :  a formal sum of points on the curve

� The degree of a divisor is the sum 
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Mathematical Preliminaries  (3)

� Tate Pairing

• Let l be a natural number coprime to q

• The Tate pairing of order l is the map

as 

� Tate pairing satisfies the following properties
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Scalar Multiplication in Characteristic 3  (1)

� Arithmetic on the curve E3,b

• Let P1 = (x1, y1),  P2 = (x2, y2), P3 = (x3, y3)

• By definition, -O = O,    -P1 = (x1, -y1),    O + P1 = P1 + O = P1

• Furthermore,

� Double-and-add method :                             ,   k = (kt … k1 k0)2 where  ZkkPV ∈= , }1,0{∈ik
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Scalar Multiplication in Characteristic 3  (2)

� Point Tripling for E3,b

• P = (x, y)

• 3P = (x3, y3) with the folumas,

� Triple-and-add method :                               ,   k = (kt … k1 k0)3 where ZkkPV ∈= , }1,0,1{−∈ik
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Square Root Extraction

� Elliptic curve equation                           over  

� In a finite field          where                          and odd m, 

the best algorithm to compute a square root  �

� A solution of              ,  is given by 

• If  m = 2k+1   for some k ,
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• If  m = 2k+1   for some k ,

� can be verified by induction

� operations
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Computing the Tate Pairing

� Tate Pairing,

• Let                           ,   

•

� To find the function fP and  then evaluate its value at AQ

� Miller’s Formula  [1, Theorem 2]
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Miller’s Algorithm

�

� Example Computation of the Tate Pairing [2, Appendix B]

• p = 43,  k = 2,  l = 11

• Supersingular elliptic curve                              ,  order = 44

• Distortion map 

• P = (23,8),  Q=(20,8t)

• Using the Miller’s algorithm, 

t([2]P, Q)(p^2+1)/l = (40t+28)168 = 23t + 26 ,   t(P, Q)(p^2+1)/l = (13t+38)168 = 3t + 11

• We know that   t([2]P, Q) = t(P, Q)2

xxyE += 32:

),(),( iyxyx −=φ

11



Improvement of Miller’s Algorithm  (1)

� Irrelevant denominators

• When computing                         and       is a distortion map,

the  g2V and gV+P denominators in Miller’s algorithm can be discarded

• Distorsion maps

))(,( QPen φ φ

� Evaluation of fn with more efficient triple-and-add method in characteristic 3

•

• With discarding the irrelevant denominators
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Improvement of Miller’s Algorithm  (2)

� Speeding up the Final Powering

• Evaluation of the Tate pairing                    includes a final raising to the power of 

• Exponent part � similar way to the square root algorithm

� Fixed-base Pairing Precomputation

• When computing                  ,  P is either fixed (e.g. base point on the curve) or used 

repeatedly (e.g. public key)

• Precompute
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Experimental Results

� Timings for Boneh-Lynn-Shacham (BLS) verification and Boneh-Franklin identity-

based encryption (IBE)  (ms)

� Future works

• Apply to more general algebraic curves, e.g., a fast n-th root algorithm
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