Authentication

\square Verifying an identity

- People authentication
- Host authentication
(c)ICU Kwangjo Kim

Authentication vulnerabilities
 \square eavesdropping
 a password database
 \square replay
 - online/ offline guessing
 \square session maybe hijacked after authentication!

Authenticating people

Computer verifying who you are

- what you know : password
- what you have : physical keys
- what you are : fingerprint etc.

Best : at least two of the above

Authentication protocols

- one-way
- password
- challenge/response
- public-key
\square two-way (mutual authentication)
- trusted intermediary (Kerberos)
- public-key

Authentication Systems

-

Password-based authentication

- Off-line vs On-line Password guessing
- Storing user passwords
- Address-based authentication
- etc/hosts.equiv, .rhosts (UNIX)
\square Trusted Intermediaries
- KDC (Key Distribution Center)
- CA (Certification Authorities)
- Multiple Trusted Intermediaries

Password authentication

easy and popular
\square Assuming

- No eavesdropping
- No bad guys
\square Replacing clear password with cryptographic challenge/response

Shared secret(I)

K_{AB} : Shared secret key between A and B.

Risks

- Not mutual authentication
- Off-line password guessing attack
- Some who reads B's database can later impersonate A.

Shared secret(II)

K_{AB} : Shared secret key between A and B.

Risks

If R is recognizable quantity, password guessing attack is possible

Shared secret(III)

B authenticates A based on synchronized clocks and a shared secret

B authenticates A based on high resolution time and a shared secret
(c)ICU Kwangjo Kim

Public Key

B authenticates A based on her public key signature.
B authenticates A if she can decrypt a message encrypted with her public key $[R]_{A}$: A signs R with private key.

Risk : man-in-the middle attack

Lamport's hash(I)

- A remembers passwd
- B has DB for eash user
- username
- n, an integer which decrements each time B authenticates the user. (Ex.) n=1000
- hash $^{n}(p w d)$ i.e., hash(hash..hash(pwd)...))
- Risks
- password access in system DB
- eavesdropping communication line
- revelation of password by careless user
* L. Lamport, "Password Authentication with Insecure Channel",Comm. of the ACM, pp. 770-772, No.11, Vol.24, Nov., 1981

Lamport's hash(II)

$\xrightarrow{\text { After registration stage : send <ID, pwd> }}$

- Solving Encryption and integrity together :
use password||salt instead of password only -> advance to S/KEY -No mutual authentication

Mutual authentication(I)

-Mutual authentication based on shared secret, K_{AB} -Risk of simplified 3-pass version (Protocol 9-9)
-Man-in-the-middle attack (reflection attack)
-password guessing
(c)ICU Kwangjo Kim

Mutual authentication(II)

Mutual authentication with public keys
assuming that A and B know each other's public keys.

Mediated Authentication(I)

KDC operation (in principle)

* anyone can impersonate A
(c)ICU Kwangjo Kim

Mediated Authentication(II)

KDC operation (in practice)

Others

- Extension of Needham-Schroeder
\square Otway-Rees
- Bellovin-Meritt
- Kerberos

Performance of protocol

\square No. of cryptographic operations using a private key
\square No. of cryptographic operations using a public key
\square No. of bytes encrypted or decrypted using a secret key
\square No. of bytes to be cryptographically hashed

- No. of message transmitted

Bio Identification

(Def) B y Anil Jain (Michigan Univ) "Biometrics deals with identification of individuals based on their biological or behavioral characteristics"
By Biometric Consortium "Automatically recognizing a person using distinguishing"

Basic Characteristics
(1) Universality : every person should have the characteristics
(2) Uniqueness : no two person should be the same in terms of characteristics
(3) Permanence : the characteristics should be invariant with time
(4) Collectability : the characteristics can be measured quantitatively

Basic Configuration

Amount
of similarity
(c)ICU Kwangjo Kim

23

Biometric Information

-Fingerprint
-Face

- Iris
-Eye
-Retinal
-Hand geometry
-Ear
-DNA
- Voice pattern
-Dynamic signature
- Key stroke
-Walking pattern

Comparison

Method	Information (Byte)	Processing time(sec.)	Prob. (\%)*	Research grou[p
Finger print	200	2.5	$\begin{aligned} & \text { p1 }=99.63 \\ & \text { p2 }=99.97 \end{aligned}$	FBI
Hand	4	2~3	$\mathrm{p} 1=99.72$	US Air force
Signature	50	2~3	$\begin{aligned} & \mathrm{p} 1=99 \\ & \mathrm{p} 2=98.5 \end{aligned}$	U. of Nagoya NTT
Voice	600	12	$\begin{aligned} & \text { p1 }=97 \\ & \text { p2 }=98 \end{aligned}$	IBM,NTT, Bell Lab
Face	100	2~3	$\begin{aligned} & \mathrm{p} 1=86 \\ & \mathrm{p} 2=100 \end{aligned}$	NTT, Bell Lab
Iris	70	3	$\begin{aligned} & \text { p1 }=87.6 \\ & \text { p2 }=100 \end{aligned}$	Identify

(c)ICU Kwangjo Kim

25

