Multi-party Protocol

- (Def.) While keeping each participant's information, x_{i} secret, everyone can learn the result of \boldsymbol{f} (). (If \boldsymbol{t} malicious players exist, we say \boldsymbol{t}-secure protocol) -(Privacy) Even if arbitrary subset, A less than the half of an input set behave maliciously, any honest player except A can't know secret x_{i} of P_{i}.
-(Correctness) Even if A does any malicious acts, any P_{j} can know the value of $f($).

(c)ICU Kwangjo Kim

(n, k) Secret Sharing(I) ($\mathrm{n}>\mathrm{k}$)

(Step 1) A dealer selects a secret, s(<p:prime) as a constant term and \boldsymbol{k}-1 degree random polynomial with arbitrary coefficients as :
$h(x)=s+a_{1} x+a_{2} x^{2}+\ldots+a_{k-1} x^{k-1} \bmod p$
(Step 2) Distributes $n h\left(x_{i}\right){ }^{〔} s(i=1, \ldots, n)$ to a share holder.
(Step 3) When k shadows $K_{1}, K_{2}, \ldots, K_{k}$ among n are given, recover a_{0} by using the Lagrange Interpolation
$h(x)=\sum_{s=1}{ }^{k} K_{i} \prod_{j=1, j \neq s}{ }^{k}\left(x-x_{j}\right) /\left(x_{j}-x_{s}\right) \bmod p$
(Step 4) Recover secret by $h(0)=s$

(n, k) Secret Sharing(II)

(Parameter) $n=5, k=3, p=17, s=13$ (secret)
(Polynomial) $h(x)=\left(2 x^{2}+10 x+13\right) \bmod 17$
(Secret sharing) 5 shadows, $K_{1}=h(1)=25 \bmod 17=8, K_{2}=h(2)=7$, $\mathrm{K}_{3}=\mathrm{h}(3)=10, \mathrm{~K}_{4}=\mathrm{h}(4)=0, \mathrm{~K}_{5}=\mathrm{h}(5)=11$
(Recover secret) By using $K_{1}=8, K_{3}=10$, and $K_{5}=11$,
$h(x)=\{8(x-3)(x-5) /(1-3)(1-5)+10(x-1)(x-5) /(3-1)(3-5)+$ 11(x-1)(x-3)/(5-1)(5-3)\} mod 17
$=\left\{8^{*} \operatorname{inv}(8,17)^{*}(x-3)(x-5)+10\right.$ *inv($\left.-4,17\right)(x-1)(x-5)+11$
inv(8,17)(x-1)(x-3)\} mod 17
$=8 * 15(x-3)(x-5)+10^{*} 4^{*}(x-1)(x-5)+11^{*} 15^{*}(x-1)(x-3) \bmod 17$
$=19 x^{2}-92 x+81 \bmod 17=2 x^{2}+10 x+13 \bmod 17$
(Original secret) $h(0)=13$

(n, k) Secret Sharing(III)

(Parameter) $\mathrm{n}=3, \mathrm{k}=2, \mathrm{~s}=011$
(Polynomial) irreducible poly over $\mathrm{GF}\left(\mathbf{2}^{3}\right): p(x)=x^{3}+x+1=(1011)$ $->f(\alpha)=0, \alpha^{3}=\alpha+1$
(Secret Sharing) $h(x)=(101 x+011) \bmod 1011$
$K_{1}=\mathrm{h}(001)=(101 * 001+011) \bmod 1011=101+011=110$
$K_{2}=\mathbf{h}(010)=(101 * 010+011) \bmod 1011=001+011=010$
$K_{3}=\mathrm{h}(011)=(101 * 011+011) \bmod 1011=100+011=111$
(Secret Recovering) From given K_{1} and K_{2},
$h(x)=[110(x-010) /(001-010)+010(x-001) /(010-001)] \bmod 1011$

$$
=[110(x-010) / 011+010(x-001) / 011] \bmod 1011
$$

Since $011^{-1}=110$, subtraction =addition $->$ bit-by-bit xor
$h(x)=\left[110^{*} 110 *(x+010)+010 * 110 *(x+001)\right] \bmod 1011$
$=[010$ * $(x+010)+111 *(x+001)] \bmod 1011$
$=010 x+100+111 x+111=101 x+011->$ Original secret $: h(0)=011$

Mental Poker

Non face-to-face digital poker over communication channel.
\square No trust each other.
During setting up protocol, information must be transferred unbiased and fairly. After transfer, validation must be possible.
Expandability from 2 players to n players.

History of Mental Poker

- SRA('79) : Using RSA
- Liption/Coppersmith('81) : Using Jacobian value
- GM(‘82) : Using probabilistic encryption
- Barany \& Furedi ('83) : Over 3 players
- Yung('84)
- Fortune \& Merrit('84) : Solve player’s compromise
- Crepeau ('85) : Game without trusted dealer
- Crepaeu('86) : ZKIP without revealing strategy
- Kurosawa('90) : Using r-th residue cryptosystems
- Park('95) : Using fault-tolerant scheme

Basic Method

\square A (Dealer) shuffles the card.

- B selects 5 cards from A.
\square (Problem)
- A can know B's selection.
$-A$ is in advantage position than B.
\square (Solution)

Use cryptographic protocols.

Mental Poker by SRA(I)

(Preparation) A and B (dealer) prepare public and private key pairs $\left(P_{A}, S_{A}\right)$ and $\left(P_{B}, S_{B}\right)$ of RSA cryptosystem respectively.
(Step 1) Using B's public key, he posts all 52 encrypted cards $E\left(P_{B}\right.$, m_{j}) in the deck.
(Step 2) A selects 5 cards in the deck and sends them to B.
(Step 3) B decrypts $D_{B}\left(S_{B}, E\left(P_{B}, m_{j}\right)\right)=m_{i}$ using his secret key and keep them as his own cards.
(step 4) A selects 5 cards from the remaining 47 cards and encrypts using his public key $E\left(P_{A}, E\left(P_{B}, m_{j}\right)\right)$ and sends them to B.
(step 5) B decrypt 5 cards using B 's secret key $D\left(S_{B}, E\left(P_{A}, E\left(P_{B}, m_{j}\right)\right)\right.$) and send $E\left(P_{A}, m_{j}\right)$ to A
(step 6) Using A's secret key, A decrypts $E\left(P_{A}, m_{j}\right)$ and keeps them as his cards.
Winner Decision : Reveal his own (opened) cards to counterpart
Validation : Reveal his secret cards to counterpart

Mental Poker by SRA(II)

(c)ICU Kwangjo Kim

References

A. Shamir, R.L.Rivest,L.M.Adleman, "Mental Poker", MIT Technical Report, 1978

 M.Blum, "Mental Poker", 1982S.Goldwasser, S.Micali, "Probabilistic Encryption \& How to play mental poker keeping secret all partial information", Proc. of 14th ACM STOC Meeting, pp.365-377,1982,
I.Barany, Z.Furedi, "Mental Poker with three or more players", 1983

- O.Goldreich, S.Micali, A. Widgeson, "How to play any mental game or a completeness theorem for protocols for honest majority", Proc. of STOC, 1987
A.Wigderson, "How to play any mental game or a completeness theorem for fault-tolerant distributed protocols", Former(?) version of GMW paper, 1987
- K.Kurosawa, Y.Katayama, W.Ogata, S.Tsujii, "General public key residue cryptosystems and mental poker protocols", Proc. of Eurocrypt'90, pp.374-368, 1990

Electronic Vote

\square Yes-No (Binary) Vote

- While keeping each voter's vote secret (x_{i}), compute only total sum ($T=x_{1}+x_{2}+\ldots+x_{n}$)
- Malicious players among n exist (interruption etc.)
- t-secure multiparty protocol
- Basic tool
- VSS (Verifiable Secret Sharing) - OT (Oblivious Transfer)

Requirement of E-vote

- Privacy : keeping each vote secret
- Unreusability : prevent double voting
- Fairness : if interruption occurs during voting process, it doesn't affect remaining voting
- Eligibility : only eligible voter can vote
\square Verifiability : can't modify voting result
- Soundness : preventing malicious acts
\square Completeness : exact computation

Cryptographic tool for e-vote

Implementation Methods

- Using RSA
- Koyama (NTT), Meritt(America), Assuming trustful center
- Using r-th residue cryptosystem
- Small-scale vote by Kurosawa(TIT)
- Using Blind Signature
- Large scale voting,
- Administrator, Tally,
- Application of multiparty protocol
- Benaloh(America), Iverson(Norway) etc
- Keeping voter's vote secret, small-scale yes-no vote
- Using Anonymous Channel
- Chaum(Netherland), Ohta/Fujioka(NTT), Sako(NEC), Park(Korea) etc
- Unlinking vote and voting, suitable for large scale voting
- Others
- multi-recastable ticket
- receipt-freeness: prevent buying vote, coercion

E-vote by RSA

voter i
$v_{i}=$ contents of voting

(Voting Procedure)
(Step 1) voter i casts his vote by computing $C_{i}=E_{A}\left(D_{i}\left(E_{T}\left(v_{j}\right)\right)\right)$
(Step 2) After checking voter's identification, Admin A sends $Z_{i}=E_{T}\left(D_{A}\left(E_{i}\left(D_{A}\left(C_{j}\right)\right)\right)=E_{T}\left(D_{A}\left(E_{T}\left(v_{j}\right)\right)\right)\right.$ to T.
(Step 3) T make $D_{T}\left(E_{A}\left(D_{T}\left(Z_{j}\right)\right)\right)=v_{i}$ to be public.
${ }^{*} v_{i}=D_{T}\left(E_{A}\left(E_{T}\left(D_{A}\left(E_{i}\left(D_{A}\left(E_{A}\left(D_{T}\left(D_{i}\left(E_{T}\left(v_{i}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$-> reblocking problem

E-vote by PKC

\square A voter sends his vote by encrypting center's public key.

- Center decrypts each votes by its secret key and accumulate each vote.
\square (Problem)
- Revealing of voter's privacy
- Malicious act of centers : post it in the bulletin board

r-th residue

(Def.) Given integer n, an integer z is called as r-th residue mod. n iff \exists some integers x s.t. $z=x^{r} \bmod n$.
(Notation) $Z_{n}{ }^{r}$: set of r-th residues mod n which are relatively prime to $n, \quad Z_{n}{ }^{r}$: set of \boldsymbol{z} in $Z_{n}{ }^{*}$ which are not r-th residues $\bmod n$
(Lemma)

1. $Z_{n}{ }^{r}$ is a subgroup of $Z_{n}{ }^{*}$
2. Given a fixed r and n, every integer z in $Z_{n}{ }^{r}$ has the same number of r-th roots.
3. If r and $\varphi(n)$ are relatively prime, every integer z in $Z_{n}{ }^{*}$ is an $r-$ th residue $\bmod n\left(i . e ., Z_{n}{ }^{r}=Z_{n}{ }^{*}\right.$) and r-th root of z is given by $z^{A} \bmod n$ where A satisfying $A r-B \varphi(n)=1$.

r-th residue cryptosystem(I)

\square secret key: primes p, q
\square public key : $N(=p q), y$
\square message : $m(0 \leq m<r), r\left({ }^{*}\right)$: random number
a encryption [KKOT90]

- $E(m)=y^{m} x^{r} \bmod N(x$: random number)
$-E(m) \cdot E(n)=y^{m} x_{1}{ }^{r} \bullet y^{n} x_{2}^{r} \bmod N$ $=y^{(m+n)}\left(x_{1} x_{2}\right)^{r} \bmod N=y^{(m+n)} z^{r} \bmod N$
Thus, $E(m+n)=E(m) E(n) z^{r} \bmod N$ for some z
(additive homomorphism)
(*) If $r=2[G M 82],(y / p)=(y / q)=-1$.
prime r [CF85][BY85], $r|p-1, r| / q-1, y$ is r-th non-residue.

r-th residue cryptosystem(II)

Decryption

$\square y^{j} \notin B_{N}(r), 1 \leq j<r, B_{N}(r)=\left\{w \mid w=x^{r} \bmod N, x \in Z_{N}{ }^{*}\right\}$
$-\operatorname{gcd}(p-1, r)=e_{1}, \operatorname{gcd}(q-1, r)=e_{2}$

- $r=e_{1} e_{2}$ if r is odd, $r=\left(e_{1} e_{2}\right) / 2$ if even
$-\operatorname{gcd}\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is 1 if r is odd, 2 if even
- $(y / N)=1$ if r is even.
- Under mod p $\{E(m)\}^{(p-1) / e_{1}}=\left(y^{m} x^{r}\right) y^{(p-1) / e_{1}}=\left(y^{(p-1) / e_{1}}\right)^{m}\left(x^{r / e 1}\right)^{(p-1)}$ $=\left(y^{(p-1) / e_{1}}\right)^{m}$
- Similarly under mod $q,\{E(m)\}^{(q-1) / e_{2}}=\left(y^{(q-1) / e_{2}}\right)^{m}$
- Thus, for $0 \leq i<r$, compare $\{E(m)\}^{(p-1) / e_{1}}$ and $\{E(m)\}^{(q-1) / e_{2}}$ with $\left(y^{(p-1) / e_{1}}\right)^{i}$ and $\left(y^{(q-1) / e_{2}}\right)^{i}$ respectively
(c)ICU Kwangjo Kim

E-voting(1) - 1 center -

Basic Protocols

(1) Center publishes r-th residue cryptosystem's public key (N, y). (\# of voters, h are less than r)
(2) Each voter i encrypts his vote depending on $m_{i}=0$ or 1 and sends $E\left(m_{i}\right)=y^{m_{i}} X_{i}^{r} \bmod N$ to a center (x_{i} is a large random number.)
(3)Center publish $M=m_{1}+m_{2}+\ldots+m_{h}$ to the public

E-voting(2) - 1 center -

(1) Center shows that " (N, y) is public key information of r-th residue cryptosystem in ZKIP"
(2) Each voters show that "The plaintext of $E\left(m_{j}\right)$ is $m_{i}=0$ or 1 in ZKIP" (cryptographic capsule)
(3) Center shows that "In order that $\mathrm{E}\left(\mathrm{m}_{1}\right)$ $E\left(m_{h}\right)=y^{M} x^{r} \bmod \mathbf{N}\left(\right.$ where $M=m_{1}+\ldots+$ $\left.m_{h}\right)$, prove that $z=y^{M} x^{r} \bmod N\left(x=x_{1} \ldots x_{h}\right)$ in ZKIP.

Multiple centers

- Voter i
$-m_{i}=m_{i 1}+\ldots+m_{i n} \bmod r$
- $E\left(m_{i 1}\right)$-> center $1, \ldots$
- $E\left(m_{i n}\right)$-> center n
- Center \boldsymbol{j}
- $E_{j}\left(M_{i j}\right)$
- $E_{j}\left(M_{2 j}\right)$

Publish $M_{j}=M_{1 j}+\ldots+M_{k j}$

- $E_{j}\left(M_{k j}\right)$
\square Voting result
$-M=M_{1}+\ldots+M_{n}$

Problems of multiple centers

- If a center fail, voting fails too.
\rightarrow Introducing Secret Sharing Scheme.
- If a voter can play as a center, we don't need a center.

E-voting using SSS

- Voter i
$-f_{i}(x)=m_{i}+a_{1} x+\ldots+a_{k-1} x^{k-1}$
- $E_{1}\left(f_{i}(1)\right)$: to center $1, E_{2}\left(f_{i}(2)\right)$: to center $2, \ldots, E n\left(f_{i}(n)\right)$: to center \mathbf{n}
- If only k centers cooperate, we can know m_{i}.
- Center j publishes $M_{j}=f_{1}(j)+\ldots+f_{n}(j)$
$-f(x)=f_{1}(x)+\ldots+f_{n}(x)$
$=\left(m_{1}+\ldots+m_{k}\right)+a_{1}^{\prime} x+\ldots a_{k-1}^{\prime} x^{k-1}$
,$f(j)=M_{j}$
- Even if ($n-k$) centers fail, if we know $\boldsymbol{k} \boldsymbol{M}_{\boldsymbol{j}}$, then recover $\left(m_{1}+\ldots+m_{k}\right)$.

Verification

- Voter i
$f_{i}(x)=m_{i}+a_{1} x+\ldots+a_{k-1} x^{k-1}$ $y_{1}=E_{1}\left(f_{i}(1)\right):$ to center 1
...
$y_{n}=E_{n}\left(f_{i}(n)\right):$ to center n
To show that $\left(y_{1}, \ldots, y_{n}\right)$ is computed by above equations in ZKIP -> VSS (Benaloh'86)

Reminding ZKIP

- If there is a secure probabilistic encryption, then every language in NP has ZKIP in which the prover is a probabilistic polynomial-time machine that gets an NP proof as an auxiliary input [GMW85] .
- An encryption system secure as in [GM84] is a probabilistic poly-time algorithm f that on input x and internal coin tosses r, outputs an encryption $f(x, r)$. Decryption is unique : that is $f(x, r)=f(y, s)$ implies $x=y$.

VSS(I)

SS+ZKP
(Purpose) To show a dealer behaves in a right way, (i.e. any number of more than \boldsymbol{k} shareholders can reveal same secret in ZKIP).
(1) A dealer encrypt a secret, m to $c(m)$ and send it to n shareholders.
(2) Using SSS, a dealer sends $f(j)(j=1, \ldots, n)$ to each shareholder j.
(3) A dealer show each shadows was constructed by the above procedure by using ZKIP
(Tools) Checking each shadow in a correct way is NP problem. If there is 1 -way function, there always exist ZKPS to prove this.

VSS(II)

- (Assumption) arbitrary 1-way permutation
$\square(k, n)$ secret $s \in Z_{p}$
- [Preparation] Sender \boldsymbol{k}-1 degree random polynomial over $Z_{p}{ }^{*}$ and computes n shares.
- Senders encrypt i-th piece with user i's PKC.
- Sender provide each receiver with ZKP that encrypted messages correspond to the evaluation of a single polynomial over $Z_{p}{ }^{*}$ and applying f to the constant term of this polynomial yield s.

VSS using r-th residue cryptosystem(I)

(step1) A dealer encrypts the i-th shareholder's secret, $s_{i}=f(i)$ by using r-th residue cryptosystem, $z_{i}=y_{i}{ }^{\mathbf{s i}_{i}} \mathbf{x}_{i}{ }^{r} \bmod N_{i}$ and makes it public. The i-th shareholder decrypts this and recover his secret information, \mathbf{s}_{i}.
The following is considered as ZKIP about
$L=\left\{z_{1}, \ldots, z_{n} \mid z_{i}=y_{i}{ }^{s i} x_{i}^{r} \bmod N_{i}, s_{i}=f(i)\right\}$. Repeat steps (2)~ (4) t times, $t=$ number of bits in N .
(step2) A dealer selects random polynomial f^{\prime} of degree ($k-1$) and computes the same as (step 1). i.e., a dealer
computes the i-th shareholder's secret, $s_{i}^{\prime}=f^{\prime}(i)$ by using r-th residue cryptosystem, $z_{i}^{\prime}=y_{i}{ }^{s^{\prime}} \mathbf{x}_{i}^{\prime}{ }^{r} \bmod N_{i}$. The i-th share holder decrypts this and recovers his secret information $\mathbf{s}^{\prime}{ }_{i}$

VSS using r-th residue cryptosystem(II)

(step 3) The shareholders send $e=1$ or 0 to a dealer. (All shareholders agree the value of e).
(step 4) If $e=0$, the dealer reveals all s_{i}^{\prime} and x_{i}^{\prime} and shows f^{\prime} has degree of $(k-1)$. If $e=1$, the dealer shows all t_{i} and w_{i} satisfying $z_{i} z_{i}^{\prime}=y_{i}^{t_{i}} w_{i}^{r} \bmod N_{i}$ and $f+f^{\prime}$ has degree of $(k-1)$.
(Example) A voter sends his vote to \boldsymbol{n} centers, it is hard to reveal his secret voting without collaborating more than k centers.

OT(Oblivious Transfer)(I)

(Purpose) While keeping secret, sending the corresponding information.
(Ex) OT : Alice has a secret bit, b. At the end of protocol, one of the following two events occurs, each with probability 1/2.
(1) Bob learns the value of b.
(2) Alice gains no further information about the value of b (other than what Bob knew before the protocol)
[Result] If there exists PKC, feasible to construct OT[EGL85]
[Application] electronic contract signing, multi-party protocol, etc.

OT(Oblivious Transfer)(II)

B can derive m_{b},but can't derive $m_{b \oplus 1}$ because it is equivalent to derive $D_{S A}\left(E_{P A}(x)+r_{b}-r_{b \oplus 1} \bmod N\right)$ which is hard to solve PKC itself.

OT (III)

[1-2 Oblivious String Transfer]
Alice has 2 strings, S_{0} and S_{1}. Bob has a selection bit, s. At the end of protocol, the following three conditions hold.
(1) Bob learns the value of S_{s}.
(2) Bob gains no further information about the value of $\mathrm{S}_{1-\mathrm{s}}$.
(3) Alice learns nothing about the value of s.

Alice has 2 secret strings. Bob select exactly one of them, and Alice doesn't know which secret Bob selected.
[Oblivious Circuit Evaluation] Alice has some secret, i, and Bob has some secret, j. Both agreed on some circuit f. At the end of protocol, the following three conditions holds.
(1) Bob learns the value of $f(i, j)$.
(2) Bob learns no further information about j (other than that revealed by knowing $i, f(i, j)$.
(3) Alice learn nothing about i or $f(i, j)$.

Anonymous Channel(I)

(Def 1) A channel is a set of probabilistic polynomial time Turing machines ($P_{1}, \ldots, P_{n}, S_{1}, \ldots, S_{n}$) together with a public board. P_{i} is called a sender, S_{i} is called a shuffle machine agent. P_{i} or S_{i} is called a player.
(Def 2) Let m_{i} be input of P_{i} and OUT $=\left\{o_{1}, \ldots, o_{n}\right\}$ be the final list of public board.A channel is called an anonymous channel if the following conditions hold.
[Completeness] If every player is honest, $\left\{\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{n}}\right\}=\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$.
[Privacy] For any i, the correspondence between P_{i} and m_{i} is kept secret.

An election scheme is an anonymous channel with the following condition.
[Verifiability] If $\left\{\mathrm{o}_{1}, \ldots, \mathrm{o}_{\mathrm{n}}\right\} \neq\left\{\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}\right\}$, every P_{i} can detect this fact with overwhelming probability.

Anonymous Channel(II)

Simple Mix Anonymous Channel

(Preparation)Sender : $A_{1}, \ldots A_{n}$, Receiver: B_{i}, B_{i} 's public key : $E_{B i}$, Role of shuffle agent S_{i} : decrypting each sender's encryption, removing its random part, and sorting alphabetical order then output S_{i} 's public key : E_{i}
(Purpose) Each sender doesn't know the corresponding information of message, m_{i}.
(step 1) Each A_{i} chooses a random number R and writes $C_{i}=E_{1}\left(R^{\circ} B_{i}{ }^{\circ} E\right.$ $\mathrm{Bi}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}}\right)$) on the public board.
(step 2) S_{1} decrypts and throws away R, and then writes $\left\{B_{i}{ }^{\circ} E_{B i}\left(m_{i}\right)\right\}$ on the public board in lexicographical order.
This gives that everyone except S_{1} can't tell the correspondence between $\left\{A_{i}\right\}$ and $\left\{B_{i}\right\}$.

If a Mix is dishonest, it will be big problem.!

E-vote by anonymous channel(I)

(To prevent malicious acts of Mix)
[Registration phase]
(step 1) Each P_{i} chooses $\left(K_{i}, K_{i}{ }^{-1}\right)$ where K_{i} is public key and $K_{i}{ }^{-1}$ is its secret key. P_{i} writes $E_{1}\left(R_{1}{ }^{\circ} E_{2}\left(R_{2} \ldots E_{k}\left(R_{k}{ }^{\circ} K_{i}\right) \ldots\right)\right)$ on the public board with his digital signature.
(step 2) The k MIXes anonymous channel shuffles $\left\{K_{i}\right\}$ in secret.
(step 3) S_{k} writes K_{i} on the public board in lexicographical order.
Let the list be ($\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots$).
[Claiming phase]
(step 4) Each P_{i} checks that his K_{i} exists in the list. If not, P_{i} objects and election stops. If no objects in some period of time, goto the next phase.

E-vote by anonymous channel(II)

[Voting phase]
(step 5) Each P_{i} writes $E_{1}\left(R_{1}{ }^{\circ} E_{2}\left(R_{2} \ldots E_{k}\left(R_{k}{ }^{\circ}\left(K_{i}{ }^{\circ} K_{i}{ }^{-1}\left(V_{i}{ }^{\circ} 0^{\prime}\right)\right)\right) \ldots\right)\right.$) on the public board with his digital signature.
(step 6) After the voting is over, the \mathbf{k} MIXes anonymous channel shuffles $K_{i}{ }^{\circ} K_{i}{ }^{-1}\left(V_{i}{ }^{\circ} 0^{\prime}\right)$ in secret.
(step 7) S_{k} writes $\mathrm{K}_{\mathrm{i}}{ }^{\circ} \mathrm{K}_{\mathrm{i}}{ }^{-1}\left(\mathbf{V}_{\mathrm{i}}{ }^{\circ} \mathbf{0}^{\prime}\right)$ on the public board in lexicographical order. Let the list be ($u_{1}{ }^{\circ} v_{1}$), $\left(u_{2}{ }^{\circ} v_{2}\right), \ldots$
(step 8) Everyone checks that $u_{i}=K_{i}^{\prime}$ and $u_{i}\left(v_{i}\right)={ }^{*} \ldots{ }^{*} 0^{\prime}$ for each i. If the checks fails, stop.
(step 9) It is easy for everyone to obtain $\left\{\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right\}$.

Other e-voting scheme

Receipt-free

\square Universal Verifiability
-Local verifiability
-Universal verifiability
\square Mix-net based e-voting

References(I)

- J.C.Benaloh, "Secret sharing homomorphisms : keeping shares of a secret", Crypto'86, pp.251260, 1986
- D.Chaum, "Untraceable electronic mail, return addresses and digital pseudonyms", Com. Of ACM, 24,2, pp.84-88, 1981
- D.Chaum, "Elections with unconditionally-secret ballots and disruption to breaking RSA", Proc. of Eurocrypt'88, pp.177-182,1988
- J.Cohen and M. Fischer, "A robust and verifiable cryptographically secure election scheme", Proc. of 26th IEEE symp. On FOCS, pp.372-382, 1985
- S.Even, O.Goldreich and A. Lempel, "A randomized protocol for signing contracts", Com. Of ACM, 28, 6, pp.637-647, 1985
- A.Fujioka, T.Okamoto and K. Ohta, "A practical secret voting scheme for large scale election", Proc. of Auscrypt'92, 1992
- K.Iverson, "A cryptographic scheme for comoputerized general elections", Advances in Cryptology, Proc. of Crypto'91, pp.405-419, 1992
- Koyama Kenji, "Secure Voting scheme using RSA", Trans. of IEICE, J68-D, 11, pp.1956-1966, 1985
- H.Nurmi, A.Salomaa and L. Santean, "Secret ballot elections in computer networks", Computer \& Security, 10,6, pp.553-560, 1991
- T.Okamoto, A.Fujjoka and K.Ohta, "A practical large scale secret voting scheme based on nonanonymous channels", SCIS93-1C, 1993

References(II)

. K.Sako, "Electronic voting system with objection to the center", SCIS92-13C, 1992

- K.Sako, "Electronic voting system allowing open objection to the tally", SCIS93-1B, 1993
- J.C.Benaloh and M.Yung, "Distributing the power of a government to enhance the privacy of voters". Proc. of 5th ACM Symp. on Principles in Distributed computing, pp.53-62,1986
- J.C.Benaloh and D.Tuinstra, "Receipt-free secret ballot elections", Proc. of 26th ACM STOC, pp.544553, 1994
- K.Sako and J.Killian, "Secure voting using partially compatible homomorphisms", Proc. of Crypto'94, pp.411-424, 1994
K.Sako and J.Killian, "Receipt-free Mix type voting scheme - a practical solution to the implementation of a voting booth", Proc. of Eurocrypt'95, pp.393-403, 1995
- C.Boyd, "A New Multiple Key Cipher and an Improved Voting Scheme", Proc. of Eurocrypt'89, pp.617-625, 1990
- C.S.Park, K.Itoh and K. Kurosawa, "Efficient anonymous channel and all/nothing election scheme", Proc. of Eurocrypt'93, pp.248-259, 1993
- K.Kurosawa, Y.Katayama, Y.Ogata and S.Tsujii, "General public key residue cryptosystems and mental poker protocols", Proc. of Eurocrypt'90, pp.374-388, 1990
- A.Pfitzmann and M.Waider, "Networks without user observability -design options", Proc. of Eurocrypt'85, pp.245-253, 1986
- D.L.Chaum, "The dining cryptographers problem : unconditional sender and receipt untraceability", J. of Cryptology, Vol.1, No.1, pp.65-75, 1988
- B.Phitzmann and A.Pfitzmann, "How to break the direct RSA implementation of MIXes", Proc. of Eurocrypt'89, pp.373-381, 1989
(c)ICU Kwangjo Kim

References(III)

- C.Rackoff and D.R.Simon, "Cryptographic defense against traffic analysis", Proc. of 25th ACM STOC, pp.672-681, 1993
- M.Waider and B.Pfitzmann, "The dining cryptographers in the disco : unconditional sender and recipient untraceability with computationally secure serviceability", Proc. of Eurocrypt'89, pp.690, 1990
- M. Waider, "Unconditional sender and receipt untraceability in spite of active attacks", Proc. of Eurocrypt'89, pp.302-319, 1990
- J.Bos and B. den Boer, "Detection of disrupters in the DC protocol', Proc. of Eurocrypt'89, pp.320327, 1990
- B.Beaver and D.Goldwasser, "Multiparty computations with faulty majority", Proc. of 30th annaul IEEE Symp. On FOCS, pp.468-473, 1989
- O.Goldreich, S.Micali and A.Wigderson, "How to play any mental game", Proc. of 19th ACM STOC, pp.218-229, 1987
- V.Niemi and A.Renvall, "How to prevent buying of voters in computer elections", Proc. of Asiacrypt94, pp.164-170, 1995
- Choonsik Park, "A Study on Security and Efficiency of Cryptographic Protocols", Ph.D Dissertation, Tokyo institute of Tech., 1995
- B. Chor, S.Goldwasser, S.Micali, B.Awerbach, "Verfifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults", Proc. of FOCS, pp.383-395, 1885

