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Cryptographic Protocols(I)
� 1976 : Birth of concepts of PKC
� 1978 : Birth of RSA 

– New applications compared to 
traditional concepts 
� Digital Signature 
� Coin Flipping
� Mental Poker
� Contract Signing
� Electronic Voting
� Comparison of Richness 
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Cryptographic Protocols(II)
� 1978 - 1984 

– A variety of PKCs 
– Research on various cryptographic protocols

� 1985 
– ZKIP (Zero Knowledge Interactive Proof)
– Authentication 
– Multiparty Protocol
– Proof of NP-complete problem
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Cryptographic Protocols(III)

I understand that 
a theorem is correct !!

I discovered theorem X.
But it’s proof is secret !!

Zero Knowledge Proof 
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Application of PKC

Seed Generator Pseudo Random

True Random

Indistinguishability !!!
2n

n

Hash ft that deriving collision pair is 
impossible. 

2n
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Complexity Class(I) 

NP
complete

co-NP
complete

NP co-NP

PSPACE=IP

P

Language L={0,1}*:  infinite set of  elements with various input size
Uniform Model : Turing Machine (computer algorithm)
Non-uniform Model : Circuit model (VLSI)
P : Deterministic poly, NP : Non deterministic Poly
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Complexity Class(II)

RP co-RP

BPP

PSPACE=IP

P

ZPP

AM

Allows random coin -> error
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Computation & Proof(I)

A BSuper Poly

For B
no help        : P, BPP
1-way proof : NP

interactive proof : IP
+

zero knowledge = ZKIP

x

x ∈ L 
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Computation & Proof(II)
L ∈ P 

x TM
x ∈ L 

x ∉ L Prob. of error =0

L ∈ BPP 

x TM

Random tape

Poly-time

1, x ∈ L 

0, x ∉ L 

Completeness  x ∈ L       Prob(TM(x)=1) ≥ 2/3
Soundness       x ∉ L      Prob(TM(x)=0) ≥ 2/3 
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BPP(I)

Input  x M

r Random tape

n

0, 1

r
M(x,r) 

r1 ...     rk r k+1 ...  r 2n
1    … 1      0       … 0 

Prob(M(x) = 1) =  k/2n > 1 - ε if  x  ∈ L
< ε if  x  ∉ L

Prob(M(x)=0)  =  (2n -k) / 2 n 

M(x) : random variable
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BPP(II)
� Example of BPP 
L = { p | p = prime }
Probabilistic prime test by  Solovay-Strassen

� gcd (a,p) =1                         (1)
� (a/p)  = a(p-1/2) mod p (2)

If p ∈∈∈∈ L, eqs (1) and (2) are always true.
If p ∉∉∉∉ L, eq.(1) or eq.(2) is false with over pr. 1/2
Check on a1, …, ak :
If eqs (1) and (2) are true for all ai, 
then p is prime greater than with pr. (1 - 1/2k) 
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BPP (III)
Pr[M(x) =1] ≥≥≥≥ 2/3     if x∈∈∈∈ L 
Pr[M(x) =0] ≥≥≥≥ 2/3     if x∉∉∉∉ L 

Pr[M(x) =1] ≥≥≥≥ 1/2 + |x|-c if x∈∈∈∈ L 
Pr[M(x) =0] ≥≥≥≥ 1/2 + |x|-c if x∉∉∉∉ L 

Pr[M(x) =1] ≥≥≥≥ 1- 2-|x| if x∈∈∈∈ L 
Pr[M(x) =0] ≥≥≥≥ 1- 2-|x| if x∉∉∉∉ L 
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Computation & Proof (III)
L ∈ NP 

A BSuperman Poly-time

x

w
(witness) f(x,w) = accept or reject

Completeness : if  x ∈ L,   f(x, ∃ w) = accept
Soundness      : if  x ∉ L, f(x, ∀ w) = reject 

(�) L = { n | n = composite},  n= n1 n2

A B
n1

n
n1 is a factor of n ?
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Computation & Proof (IV)
L  ∈ IP 

A B

x

random tape random tape

...

Completeness  if   x ∈ L, prob[ B accepts x ]         ≥ 1 - ε
Soundness       if   x  ∉ L, prob[ B rejects x for ∀ A]  ≥ 1- ε
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Meaning of Probability (IP)

random tape, rA A B random tape, rB

x

rB r1 r2 … r2 n
rA

r1
r2

r2n

B accepts

Prob(B accepts)  ≡ Area that B accept / Total area 
1 - ε if   x  ∈ L
< ε if  x ∉ L  for  ∀ A 
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IPS
� Protocol : a pair of algorithm (A,B)

� Interactive Proof System : Protocol 
(A,B) satisfying completeness and 
soundness

� If L ∈∈∈∈ IP (Interactive Poly-time), L has 
an IPS (Interactive Proof System).
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ZKIP
� GMR(Goldwasser, Micali, Rackoff)   

; Proposed at first in 1985

� ZKIP (Zero Knowledge Interactive 
Proof) : Between P and V,  
- Completeness : Only true P can prove V.
- Soundness : False P’ can’t prove V. 
- 0-Knowledge : No knowledge transfer to V.
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Turing Machine Model
Random Tape

A B

Input Tape

Work Tape
Comm. Tape

Comm. Tape

Random Tape

Work Tape

r
r r r

r

r

w

w

: r/w head
r

: read-only head
w

: write-only head
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Concepts of ZKIP
By Quisquater and Guillou
P knows the secret, but he doesn’t want to reveal his secret. 
1. V stands at point A.
2. P walks all the way into the cave, either C or D.
3. After P disappeared into the cave, V walks to point B.
4. V shouts to P asking him either to:

(a) come out of the left passage or (b) come out of the right passage
5. P complies, using the magic words to open secret door if he has to.
6. P and V repeat step (1) -(5) t times

* P knows the magic words (secret)  
to open the secret door between C 
and D.

0-knowledge cave 

A

B

C D
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Classification of ZKPS

1P/1V

Interactive

Non-interactive

ZK

GMR Model *
P:infinite, V: poly

BCC Model
Model 1( P:poly V: infinite)

(minimum disclosure)

Model 2 (P:poly, V: poly)
(0-K)

0-K
Minimum Know.
Oracle ZKIP

WH

•Perfect 
•Statistical
•Computational

•Language Membership
•Knowledge
•Computational power

Property

Object

Model

MP

MV

*AM-game : GMR model and P can see V’s random coin
with limited round, (Auther Mellin)

How much knowledge is leaked
• Information Theoretical.
• Almost time
• Within computation time

• x ∈∈∈∈ L 
• Knowledge(secret)

serial

parallel
; not ZK
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Indistinguishability (I)
� Family of r.v., U ={U(x)} where x is from L, 

a particular set of {0,1}*, all r.v. are taken 
from {0,1}* , U and V are r.v.

� Verdict who can tell a bit from U or V is 
limited to 
– infinite time and space : perfect 
– infinite time and polysize space : statistical 
– polysize time and space : computational
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Indistinguishability (II)
• L : Language
• {U(x)}, {V(x)} :  family of random variable 
� (Perfect) If for all x ∈∈∈∈ L,  U(x) = V(x) ( where “= “

means “equal as random variables”) , {U(x)} and  
{V(x)} are perfectly indistinguishable for  L. 

� (Statistical)  If  ΣΣΣΣαααα ∈∈∈∈ {0,1}* |Pr[U(x)=αααα] - Pr[V(x)= αααα]| < 
εεεε (|x|),  {U(x)} and {V(x)} are  statistically 
indistinguishable for L.

� (Computational) For all circuit C (distinguisher) 
with polynomial size of |x| ,  if |Pr[C(U(x))=1] -
Pr[C(V(x))= 1]| < εεεε , {U(x)} and  {V(x)} are  
computational indistinguishable for L.
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Way of proofing
There are many ways to prove the truth of a 

proposition like “I know the modular square root 
of V” (or any other PSPACE problem):

1. To give the proof (i.e., to tell the square root to the
verifier)

2. Zero-knowledge proof : to convince the verifier that the 
claim holds without giving him any information on the 
proof (and thus he cannot compute the square root).

ZKIPs are used in identification scheme, in which a user 
(called the prover) proves to the verifier that he knows a 
certain secret, without revealing the secret, or any 
information on the secret. 
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F-S Identification(I)
� (Preparation)

(1) Unlike in RSA, a trusted center can generate a 
universal n, used by everyone as long as none 
knows the factorization. 

(2) P has an RSA modulo n=pq whose factorization 
is secret.

(3) secret key : P chooses random value S, s.t.
gcd(S,n)=1.(1 < S < n)

public key : P computes I=S2 mod n, and publishes 
(I,n) as public
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F-S Identification(II)
(Goal)

P has to convince V that he knows secret 
key S corresponding public key (I,n) (i.e., 
to prove that he knows a modular square 
root of I mod n), without revealing S.
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F-S Identification(III)
1. P chooses random value r (1<r<n) and computes x=r2mod n.

then sends x to V.
2. V requests from P one of the following request at random 

(a) r or (b) rS mod n
3. P sends the requested information to V.
4. V verifies that he received the right answer by checking whether

(a) r2 = x mod n or (b) (rS)2 = xI mod n
5. If verification fails, V concludes that P does not know S, and thus 

he is not the claimed party.
6. This protocol is repeated t (usually 20 or 30) times, and if in all of 

them the verification succeeds, V concludes that P is the claimed 
party.
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F-S Identification(IV)
V Ppublic : I,n secret, I=S2 mod n

n=pq
1. generate unique 

random,r
x=r2 mod n 2.ei={0,1}

x

ei

Repeat 
t times

3. If ei=0, send y=r 
If ei=1, send y=rS

y

4.If ei=0, check y2=x mod n? 
If ei=1, check y2=xI mod n?

* commitment-witness-challenge-response-verification and repeat
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Security of F-S scheme 
(1) It is assumed that computing S is difficult, actually the 

difficulty is equivalent to that of factoring n.

(2) Since P doesn’t know in advance (when he chooses r or rS
mod n) which question V will ask, he can’t choose the 
required choice. He can succeed in guessing V’s question 
with prob. 1/2 for each question, and thus V can catch him 
in half of the times, and fails to catch him in half of the 
times. The protocol is repeated t times,and thus the prob. 
that V fails to catch P in all the times is only 2-t, which is 
exponentially reducing with t. (t=20 or 30)
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F-S scheme is ZKIP

� The F-S protocol convinces V that P 
knows the square root of I, without 
revealing any information on S. 
However, V gets one bit of 
information : he learns that I is a 
quadratic residue
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Bit Commitment(I)
� Basic component of many cryptographic protocols

– Commit stage : A commits B to a bit b, that B has no idea what 
b is.

– Revealing stage : B can verify that committed bit is from A.

A B

b
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Bit Commitment(II)
Def) S,V : probabilistic poly time TM
- Commit Phase : S selects b ∈∈∈∈ U {0, 1} and sends it to V.
- Reveal Phase : S reveals b to  V and V finally accept or 

rejects.
(1) At commit phase, an adversary A tries to compute b like V,  

probability to derive b is negligible small.
(2)  After A did commit phase like S, then  revealing  b=0  or 

b=1 at the reveal phase is negligible small even if he has an 
unlimited power.

(Theorem) We can construct BC for a given 1 –way ft.
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Coin flipping by BC
A B

b ∈ u {0,1}
X=BC(b,r)
where r is 
random number

c ∈ u {0,1}

(b,r)α = b  ⊕ c 

X

Verify that  X = BC(b,r)
If OK, compute α = b ⊕ c 

α: coin flipping result 
Each side can’t change the value of αααα at favour. 

c
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GI(Graph Isomorphism)
� (Def)  G={V,E}=((1,…,n),({(i,j)})),  n vertex
� ∃∃∃∃ a 1-1 and onto mapping φφφφ keeping the incidence 

relation of Graph G1 and G2. 

5

G1 G2

φφφφ =(1, 2, 3, 4, 5, 
4, 2, 1, 5, 3 )            G2 = φφφφ (G1)

GI belongs to  NP (Non deterministic Polynomial). 

1

2

3

4

1

5

43

2
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ZKIP using GI (I)
Knows G1=π(G0), 
but keep π secret. 

1. Generate random permutation, φ
and commit H = φ(G1) 

PV

2. Generate 
random b= {0,1}

H

b
3. If b=1,   σ = φ

If b=0,   σ = φ πσ
4. Check 
H = σ(Gb) ?

repeat, k 

Random Self-reducibility :
average = worst complexity 
(e.g) GI,DL,QRA

Checks that  
P really knows π

G0, G1
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ZKIP using GI(II)
� (Completeness) : If G0 and G1 are isomorphism,  there exists ππππand 

V accepts P with prob. 1. 
� (Soundness) : If G0 and G1 are not isomorphism, H is not 

isomorphic to   G0 nor G1 at step 1. Thus, V selects b at random,  
the prob. of passing validation step 4 is 1/2. If repeats  k times. 
Prob. of acceptance is  1/2k (<εεεε |x|).

� (0-Kness) : Done by Simulator
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