Speeding up Elliptic Curve Arithmetic over Finite Field

01027 Kim Joni_Scon |

abstract

there has 1 inc i i t in the use of elli

arithmetic in software. An important question is how fast this

is practical. The best method for exponentiation depends on the group being
used, the hardware the is 1 nented on. In this paper we survey

the known methods for fast exponentiation

in the group of points on an elliptic curve over a finite field, were first

on fast algorithms and implementation

demand on efficient algorithms for fast exponentiation of elliptic curve

and focused on implementations using elliptic curve over GEE.

This paper deals with efficient algorithms and implementation techniques for fast

arithmathmatic in the underlying field and elliptic curve group. For fast

group operations, we present efficient formulas for point addition and doubling

for elliptic curves over GE(pl To speed up field arithmatic, we provide

efficient algorithms for field multiplication and inversion.
This paper is organized as follows. we briefly introduce the elliptic curve over
finite field and explain the OEF method, method and Windows method

2. Elliptic curves over finite fields

We recall well known properties of elliptic curves.

The general equation of an elliptic curve

All these can be found

1S given as:
0N, 14 7)) — G751 %197 (0N = 2AE O = B —
here he 1S are in A an-the iscriminant 2
B, — 2 R VR, Ty — Wy 22 T, T — By SROVE, Wy — 0T 2L 2T R T

o — Ty, ™ — R Ul T

is invertible in |K.

The j-invariant of the curve is [(F)ka Eﬂﬂﬂ.

[t is possible to define on the set of points !

B2 — [(. D= IS, 1. 0 — 0h) (@

an Abelian law using the so-called tangent-and-chord method, OF being the

neutral element (0, 1, 0).

3.1 Approach

3. Optimal Extension Field Arithmetic

The OEF approach i1s based on the observation that several well-known

optimizations exist for software implementation of finite field arithmetic and that

hen they are used in conjunction they vyield significant performance gains for

implementation of elliptic and hyper-—elliptic curve cryptosystems. To optimize

rithmetic in GF(p@) They stipulate the following properties on the choice of :.

a7]
. choose p to be less than but close to the word size of the processor so

that all subfield operations take advantage of the processor’'s fast integer

arithmetic.

. Choose |p to be a pseudo-Mersenne prime, that is, of the form 2T

o}g = 75' to allow for efficient subfield modular reduction.
so that we have an irreducible binomial v for efficient

extension field modular reduction. The extension degree pm can be small if the

processor word size allows for large values of :.
.2 Previous Work

Previous work on optimization of software implementations of finite field

arithmetic has often focused on a single cryptographic application, such as
designing a fast implementation for one particular finite field. One popular

ptimization involves the use of subfields of characteristic two. A paper due

to DeWin etal. [l analyzes the use of GEY i'ﬂ with a focus on Wi HH.

2 — i, This construction yields an extension field with 2%@ elements. The
subfield GFPR)| has a Cayley table of sufficiently small size to fit in the

memory of a workstation. Optimizations for multiplication and inversion in

such composite fields of characteristic two are described in
Schroeppel et al. [[[Bl] report an implementation of an elliptic curve analogue
the field polynomial. The arithmetic is based on a polynomial basis

representation of the field elements. Elements of the field are each stored in

three 64-bit registers.

fuch optimization work has been done in selection of Optimal Normal

ases(ONB) to speed computations in GF(Draft standards such as

(LSO and [O] suggest use of ONB for elliptic curve systems.

Others have investigated use of pseudo-Mersenne primes to construct

ralois fields |GF{|p) in connection with elliptic curve cryptography as found in
(] i!!ﬂ and some patents have been issued on their use.

Unlike the methods in [[U/MBll which use Cayley tables to implement

subfield arithmetic, our approach requires no additional memory and is therefore

attractive in memory-constrained applications. In addition, our system is faster

in real-world tests as described in Section 8.
3.3 Optimal Extension Field Arithmetic

This section describes the basic construction for arithmetic in fields EH(

which an OEF is a special case. The subfield is GF(#)| and the extension
degree is denoted by W4, so that the field can be denoted by GF(

,.ﬂ
field is isomorphic to GFUAIbIRIPEIN where PLolldgs "E AN s |

monic irreducible polynomial of degree ED In the following, a

esidue class will be identified with the polynomial of least degree in this class.

We consider a standard (or polynomial or canonical) basis representation of a

field element A5 mml
mim -2y 8" " u o u 0 e

here JARGEp) Since we choose | to be less than the processor’'s word

size, we can represent |A[x) with m registers.

11 arithmetic operations are performed modulo the field polynomial. The

“hoice of field polynomial determines the complexity of the operations required
to perform the modular reduction. In this paper, we will only be concerned

1th the operations of addition, multiplication, and squaring.
3.1 Addition and Subtraction
ddition and subtraction of two field elements 1is implemented in a

straightforward manner by adding or subtracting the coefficients of their

polynomial representation and if necessary, performing a modular reduction by

subtracting p once from the intermediate result. Previous implementations in

offer a slight computational advantage since addition or subtraction is

simply an XOR that does not require modular reduction. When compared to
the addition operation in GE we observe that an OEF does not
require carry between computer words in computing a sum while OEEE]

This property results in a modest performance gain over GE.
3.2 Multiplication

fultiplication is performed in two stages. First, we perform an ordinary
bolynomial multiplication of two field elements A and B(x)} resulting in an

intermediate product CYx) of degree less than or equal to P E.

CUORNACORTCCORE- T o I L N P R P)) |

The schoolbook method to calculate the coefficients PR/ EalON ISRl B8
m multiplications and (Dl additions in the subfield GF(

Since field multiplication is the time critical task in many public-key

algorithms this paper will deal extensively with fast multiplication methods, and

later sections are devoted to aspects of this operation. In Section 3.3 we present

an efficient method to calculate the residue CLBEICIOEOWPCIRCOE Eﬁml

section 3.4 gives a method to quickly perform the coefficient multiplication in

GE(pY |
3.3 Squaring

Squaring may be implemented using the method for general multiplication
outlined above. However, we observe that squaring a field element affords

some additional computational efficiencies. For example, consider the field

b EEMACEICH (M We compute the square of EB)].

2,0 a2 e) — T mm |, um e e

Aultiplication by two may be implemented in a computer as a left shift

operation by one bit. On many computer architectures, a left shift is faster

than an explicit integer multiplication. Thus instead of requiring E.

multiplications, we need only wdbBRNE explicit multiplications.

emainder may be performed as shifts.

4 Extension Field Modular Reduction

After performing a multiplication of field elements in a polynomial

representation, we obtain the intermediate result CKl@} In general the degree of

CKx)| will be greater than or equal to i In this case, we need to perform a

modular reduction. The canonical method to carry out this calculation is long
polynomial division with remainder by the field polynomial. We observe that we

ust perform subfield multiplications to implement the reduction, proportional to
the number of terms in the field polynomial. However, if we construct a field

polynomial with low coefficient weight, the modular reduction will require fewer

subfield multiplications.
Since monomials u bDRll are obviously always reducible, we turn our

attention to irreducible binomials. An OEF has by definition a field polynomial

of the form:

Ploll il) (4)

The use of irreducible binomials as field polynomials yields major computational
advantages as will be shown below. Observe that irreducible binomials do not
it over (20 |

n section 3.5, we will demonstrate that such irreducible binomials can be
onstructed. Once such a binomial has been determined, modular reduction can

be performed with the following complexity:

heorem 1. Given a polynomial CKlx| over GE({p)] of degree less than or

equal to 2mPMMCK)] can be reduced modulo [Pl ik @ il.

multiplications by and /lll additions, where both of these operations are

criormed in 7T |

Proof. By assumption,

(1) has the form:

G — By BT "5 mE Ty BT " mEEEE, (5)

Only the terms MEMH /Bl must be reduced modulo Plx We observe

Bo 2 0 e b vtz 5- 1.0, G

Since the degree of CloER = H*il multiplicat
1| additions to combine the reduced terms.

general expression for the reduced polynomial is given by:

COOEL PR il TR | i | P E Y PRS00 (7) |

s an optimization, when possible we choose those fields with an irreducible

binomial *?j allowing us implement the multiplications as shifts.

5. Fast Subfield Multiplication

As shown above, fast subfield multiplication is essential for fast multiplication

m&m Subfield arithmetic in GE({p) is implemented with standard

modular integer techniques, which are previously reported in the literature, see

for example [[IYI For actual implementation of OEF arithmetic, optimization
f subfield arithmetic is critical to performance, so we include these remarks in

this paper for completeness.
We recall that multiplication of two elements <RBIEIGF(p) is performed by

L IELAOAN Modern workstation CPUs are optimized to perform integer
rithmetic on operands of size up to the width of their registers. An OEF

takes advantage of this fact by constructing subfields whose elements may be

represented by integers in a single register. For example, on a workstation
ith 64-bit registers, the largest prime we may represent is 2k EE'-]
“hoose a prime may be performed with 2 shifts and 2 adds if the intermediate

esult 1s contained in a single word, a substantial improvement over
~ase. An OEF that offers this optimization is known as Type L In our

implementation as reported in Section 8, we have included PEDK iI
Our implementation takes advantage of its special form, making

BN K| the best performing choice of p we consider.

.6. Irreducible Binomials

n Section 3.4 we showed that irreducible binomials allow modular reduction
with low complexity. The following theorem from [QUlj describes the cases

when an irreducible binomial exists:

but not (p —1)/e;

EEH odlAE i E=IINSd !!.

An important corollary is given in Eﬂ.

orollary 1. Let w be a primitive element for GF{p)| and let m be a divisor

of p - 1. Then %M, is an irreducible polynomial of order(p 1) -

GE(pY |

We present the following new corollary which follows directly from the

bove, since pjMll is always an even number:

Sorollary 2. Let be a primitive element for GEE — @
irreducible over GE(p)

3.7. Optimal Extension Fields

n the following, we define a new class of finite field, which we call an

Optimal Extension Field (OEF). To simplify matters, we introduce a new

name for a class of prime numbers:
Definition 1. A pseudo-Mersenne prime is a prime number of the form

Dt A0S 75' .4& Vel O as the field characteristic on this computer.

To this end, we recommend the use of Galois fields with subfields as large as

possible while still within single—precision limits of our host CPU.

t is well known that fast modular reduction is possible with modulo of the

form EE where c¢ is a "small” integer. Integers of this form allow modular

eduction without division. We present a form of such a modular reduction
algorithm, adapted from [[IY] In this paper we consider only primes of the
* o, although a trivial change to the following algorithm allows the use
IIE The operators << and >> are taken to mean "left shift”

and "right shift” respectively.

Algorithm 1 Fast subfield Modular Reduction

roquire: /TR PR RS i (hc inicgor (o reduce |
Eﬂmmﬁ]ﬂ
M=H0 0
%Eﬂmm
b
=
O/
Ploszn = 758 B %
Bz =18 o 0 0 DI
= o8
B=0u 5

OIS = - 7

h=4 R

end while

Definition 2. An Optimal Extension Field is a finite field GF(p% such that:
1s a pseudo-Mersenne prime,

An irreducible binomial [P(y) il @E.

'We observe that there are two special cases of OEF which yield additional

arithmetic advantages, which we call Type I and Type II.

Definition 3. | A Type I OEF has ple LN

Type I OEF allows for subfield modular reduction with very Ilow

~omplexity, as described in Section b.

Definition 4. | A Type II OEF has an irreducible binomial FZ .

Type II OEF allows for speedups in extension field modular reduction

since the multiplications by in Theorem 1 can be implemented using shifts

instead of explicit multiplications.

depends on the factorization of il due to Theorem 2

and Corollary 1. In the following we describe an efficient construction method
for OEFs. From a very high level, this method consists of three main steps:
We choose a pseudo-Mersenne prime |p first, then factor p il
select an extension degree E DR due to current common processor
word lengths, it is sufficient to use trial division to quickly factor [y

procedure does not exhaustively list all OEFs, rather it is designed to quickly

locate a Type II OEF for a desired field order and machine word size.

urther, this procedure considers only those primes c, although a prime
PR is a valid choice for OEFs.

4. Normal Bases

some groups have added structure that allow much faster exponentiation. In

GE(pE)l normal bases allow pth powers to be calculated with just a cyclic shift,

sreatly speeding the p
he most common use of this is in GFER) where the use of a normal
basis allows squarings to be done with just a shift. The B ary method then

takes only [Wd//ABCLKESEE multiplications, since only odd powers up to 2k il.
need to be computed.

2=
O R | (0 1 by

. o
or each 7 such that (ill/ENN

B = Bz

eturn @

5. Window method

5.1. Binary Method

his method is also known as the "square and multiply” method. It is over

2000 years old; Knuth[13] discusses its history and gives references. The basic

idea is to compute |gg using the binary expansion of 7

- 3 2l

Then the following algorithm will compute gj

B=il

O/l to 0 by -1
P=0=zR
i 8 — N 222 2= 2=A

Em
ary method

The above meyhod has an obvious generalization : use a base lager than two.

-
N/ 0 0 by -1

P = gT
7= Bk

5.3. Window Method

*ary method may be thought of as taking 'm
binary representation of P calculating the powers in the windows one by one,

squaring them |k times to shift them over, and then multiplying by the power in

the next window.

his leads to several different generalizations. One obvious one is that there

is no reason to force the windows to be next to each other. Strings of zeros do

not need to be calculated, and may be skipped. Moreover, only odd powers of .

need to be computed in the first step.

References

1. Daniel V. Bailey. Optimal extension fields. Major Qualifying Project(Senior thesis), 1998.

omputer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA.

. Richard E. Crandall. = Method and apparatus for public key exchange in cryptographic system.

US Patent 5463690, 1995.

3. Jorge Guajardo and Christof paar. Efficient algorithms for elliptic curve cryptosystems. In
Advances in Cryptology - Ctypto '97, pages 342-356. Springer Lecture Notes in Computer

Science, August 1997.

G. harper, A. Menezes, and S. Vanstone. Public-key cryptosystems with very small key
lengths. In Advances in Cryptology - EUROCRYPT '92, pages 163-173, May 1992.

5. D. Jungnickel. Finite Fields. B.I.-Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zurich,

. D.E. Knuth. The Art of computer Programming. Volume 2: Seminumerical Algorithms.

Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.
. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203-209, 1987.
. N. Koblitz. Hyperelliptic crytosystems. Journal of Cryptology, 1(3):129-150, 1989.
0. J. Koeller, A. Menezes, M. Qu,,and S. Vanstone. Elliptic Curve Systems. Draft 8, IEEE P
Cryptography, May 1996.
'stems by using a signed
binary window method. In Crypto '92. Springer Lecture Notes in Computer Science, 1992.

. R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics and its

Applications. Addison-Wesley, Reading, Massachusetts, 1983.

2. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
RC Press, 1997.

3. V. Miller. Uses of elliptic curves in cryptography. In Lecture Notes in Computer Science
218: Advances in Cryptology - CRYPTO ’'85, pages 417-426. Springer-Verlag, Berlin, 1986.

Atsuko Miyaji and Makoto Tatebayashi. Method for generating and verifying electronic

signatures and privacy communication using elliptic curves. US Patent 5442707, 1995.

. S. Paulus. Ein Algorithmus zur Berechnung der Klassengruppe quadratischer Ordnungen uber

[Hauptidealringen. PhD thesis, Institute for Experimental Mathematics, University of Essen,

[Essen, Germany, June 1996.

. R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key exchange with elliptic

curve systems. Advances in Cryptology - CRYPTO 95, pages 43-56, 1995.

. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and]J. Vandewalle. A fast

software implementation for arithmetic operations in GFY(In Asiacrypt '96. Springer

Lecture Notes in Computer Science, 1996.

3. ANSI X9.62-199x. The Elliptic Curve Digital Signature Algorithm. Draft, January 1998.

working document.

. ANSI X9.63-199x. Elliptic Curve Key Agreement and Key Transport Protocols. Draft,

January 1998. working document.

