Network Security (ICE 615) – Fall 2001

Term Project Progress

Security Issues in Distributed Document Sharing System

Seunghyun Han and Dukyun Nam

{dennis, paichu}@icu.ac.kr

School of Engineering, ICU

1. Introduction

As the Internet goes widespread, information-sharing technology becomes various. Until now, documents are shared by means of the Web and FTP in wide area networks, and Windows file sharing in local area network. Not only does document sharing through the centralized server such as HTTP and FTP servers bring out scalability problem but also users have to explicitly know ‘where the document is located’ in either WAN or LAN, so called transparency problem. Even though some search engines on the Web provide searching facilities, they could not provide expected results, but just list similar results. Possibly, documents can be shared by building huge central databases and document-sharing services. However, as the data becomes larger in volume, the servers cannot hold the large amount of data. To overcome these problems, peer-to-peer sharing (P2P) approaches have been introduced. P2P systems are usually based on server included, for instance Napster [1], or pure peer-to-peer architecture such as Gnutella [2]. The pure P2P system has a weak point at its searching facility because of lack of knowledge about where the other peers are. This makes lots of delay in searching documents. Thus, P2P system inevitably requires a server to make fast searching response. Another problem in P2P paradigm is that there’s no standard mechanism for document sharing. Each peer-to-peer model shares documents in each peer machine atop the proprietary protocol. This limits availability of information resident in each peer computer.

We proposed a web-enabled P2P document sharing system, called Ddocss (Distributed Documents Sharing System) [9], which is mainly focused on availability. The Ddocss exploits not only the proprietary protocol for publishing document information into the central database, but also the HTTP protocol for file transfer between peers, that is, clients in terms of client-server model. It consists of one server, client applications, and web browsers. When any users hope to search the expected document information and retrieve documents, they can do through the web browser even though a client application also supports document searching and downloading via HTTP protocol between peers. The proposed system also allowed publishers to restrict access levels of documents and other users. If the publisher decides each document level and user level, other users cannot retrieve the higher level of document then own user level. However, the Ddocss does not consider the security issues such as accountability and secure communication. During this term, we intend to add the security features of P2P systems to our previous work, and then complete a secure P2P document sharing system in web environments.

2. Related Work
Distributed file sharing systems with peer-to-peer communication have constantly increased. Napster [1] is data, especially MP3, sharing tools among distributed users. If someone hopes to share data, he has to register the file and its description to the Napster server. Server holds user IP address and its links. If someone hopes to get data, it submits a query to the Napster server and a list of matching data is returned. Using the link information, user could connect to any of the computers storing the data and initiate a file transfer. Simple admission control is done by server but it does not give any constraints to exchange data. Data is not compressed or encrypted during transferring data. Anonymizing is hard because it uses a protocol that is not recognized by any of current anonymizing tools.

Gnutella [2] is the large-scale, fully decentralized system running on the Internet. Actually it is not branded software, but a language of communication, a protocol. Traditional application-level networks are circuit-based, while Gnutella is message-based and uses application-level routing. Gnutella provides some degree of anonymity by enabling an essentially anonymous searching mechanism. When a search is performed, Gnutella compatible softwares respond with an external IP address or URL where the user can download the document. It is not concerned about anonymity or rights protection of documents but supports sharing documents among registered users. The drawback of Gnutella is the response time, in terms of interactive performance, because it traces IP addresses to get results. And Gnutella does not provide true anonymity through encryption.

Publius [3] is a web-based publishing system that resists censorship and tampering. Unlike other systems, it is based on Web contents and mainly focuses on protecting author's rights of documents rather than sharing free documents. If an author publishes documents, it is encrypted with URL and sent to server to protect the rights of the author. This system does not only provides accountability, which implies that there is no way to prevent publishers from entirely filling the system with garbage data, but also requires client program or proxy if a user hope to get documents. It uses MD5 and SHA-1 algorithm for publishing, updating, retrieving operations. A key is created from MD5 and SHA-1 hash of the contents of the file. The key is used to encrypt the file, producing a new file split into 30 shares. To support fault-tolerance, any 3 of these shares can be used to reconstruct the key. But, it gives heavy overheads to servers to support publish or retrieve data.

Freenet [4, 5] is implemented as an adaptive peer-to-peer network of nodes. This system permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers with location-independent keys. Files in Freenet are identified by binary file keys obtained by applying a hash function, the 160-bit SHA-1. Freenet defines a general Uniform Resource Indicator (URI) in the form: “freenet:keytype@data”. Key types are various such as content hash keys (CHKs), keyword signed keys (KSKs), and signature verification keys (SVKs). A CHK is formed from a hash of the data. A KSK is derived from a short descriptive text string chosen by the user when storing a file in the network. However Freenet has potentially the performance degradation because all documents are encrypted by CHKs.

Mojo Nation [6] is a peer-to-peer content distribution or distributed storage system which focuses on swarm distribution, secret sharing, and market-based load balancing. It uses the Secret Sharing Scheme (Shamir, 1979) where a data can be broken up into blocks and distributed among different devices. The Secret Sharing scheme is when redundant blocks are introduced as part of the breakup, only a subset of these blocks is needed to reconstruct the data. It uses, M = 16, N = 32 where the expansion in data due to redundancy is given as D*(N/M), with the property M (N. it names each file by creating a sharedmap composed of the SHA Ids for the blocks generated from the Secret Sharing Scheme. To support secure communications among peers, data is compressed and encrypted before the data is inserted into the network. In addition, all peer communication is done by PKI.

Free Haven [7] is a system for distributed, anonymous, persistent data storage and also peer-to-peer model. The design is based on a community of servers where each server hosts data from the other servers in exchange for the opportunity to store data of its own in the server community, called as “servnet”. To publish a file into the servnet, the publishing server splits it into shares and inserts these shares into its local server space with a key pair (PKdoc, SKdoc). Attributes in each share include a timestamp, expiration information, hash(Pkdoc), information about share numbering, and the signature itself. On the other hand, readers must locate a server that performs the document request. The reader generates a key pair (PKclient, SKclient) for a one-time reply block. The servnet server broadcasts a request containing a message digest or hash of the document’s public key along with the client’s public key and the reply block. Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc. If it does, it encrypts each share using the public key PKclient enclosed in the request and then sends the encrypted share through the remailer to the enclosed address. Once enough shares arrive, the client recreates the file and is done.

3. Design

3.1. Distributed Document Sharing System

Ddocss (Distributed Document Sharing System) [9] is P2P based document sharing system, which has membership enabled functions, document searching (from web or from peer program), and simple interface.

The architecture is composed of three parts; peer program, web server, and database server. Instead of holding whole actual documents, database server only manages meta-information that peer publishes (or registers). The meta-information contains not only document information, such as publisher, author, keywords, level of restriction, and published date, etc., but also peer information, such as user ID, IP address and port number. Peer program provides mainly three services; documents management, access rights management, and document push and download. User can restrict document accesses by giving access level to each document when he or she publishes documents. One of key features of Ddocss is that users can access documents anywhere if they have web browser, even though they do not have a peer program. To do so, peer program uses HTTP protocol to transfer the document in order to enable web browsers to access the shared documents. The requests for download between the peer programs are also made of HTTP protocol. This makes the client program simpler networking interface.

Figure 1 shows the Ddocss architecture and document-flow procedures. To publish a document, the document owner has to register document information such as document’s title, authors, keywords, file name, etc. into the Ddocss Server. After that, search and file downloading is available both in peer client and web browser. Web browser sends search requests to web server using document information, such as keyword, author, and title. Web server forwards these requests to search engine and retrieves information for file downloading. Then, web browser can choose and download files from the result. Searching and downloading with client program is done with similar process.

3.2. Ddocss with Security Features

Current Ddocss does not provide security features. The prototype had simple access control mechanism but not full features. To give authors freedom to give access levels of his or her documents, we adopt authorization and access control mechanisms to the current Ddocss. Figure 2 shows the overall architecture, which provides access control mechanisms such as ‘encrypt location of documents with key’ and ‘authorization’. Authors encrypt link where documents are located with their private key, and publish it to the server. It prevents abnormal access from unauthorized users, when the link information is revealed. Ddocss also uses disposable certificate between publisher and subscriber. The disposable certificate is usable only if the two parties are connected on Ddocss Server. It could prevent abnormal access from unauthorized users even though publisher address and encrypted link is revealed.

3.3. Procedure of file transfer with access control mechanisms

We assume that Ddocss Server is secure from any attack. Publisher can not only publish his or her encrypted link information, i.e., host name and file path information, not whole data, to Ddocss server, but also give access levels or rights to his or her documents to other Ddocss users. Only authorized user can retrieve documents with disposable certificate authorized by the publisher. The process is as follows; When a user request to search documents, server processes the query and generate key pairs, and give the results which contains the generated key {KU} back to the user. The user can request certificate appropriate to a link to the publisher by choosing the link. The publisher, who received the request, requests the key pair of {KU}. After the server returns the key pair {KP}, the publisher verifies the key pairs and give the requested disposable certificate back to the user (requestor), if the user is legal one. The user can decrpt the link with key in certificate. Finally the user can request the documents with the decrypted link and the disposable certificate, and receive the requested documents. Figure 3 describes the overall processes of file transfer between publisher and subsriber with access control mechanisms.

4. Schedule
	
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Proposal
	
	
	
	
	Midterm
	
	
	
	
	
	
	
	Final-term

	Progress Presentation
	
	
	
	
	
	
	
	
	
	
	
	
	

	Final Presentation
	
	
	
	
	
	
	
	
	
	
	
	
	

	Survey
	
	
	
	
	
	
	
	
	
	
	
	
	

	Issue Finding
	
	
	
	
	
	
	
	
	
	
	
	
	

	Implementation
	
	
	
	
	
	
	
	
	
	
	
	
	

	Debugging
	
	
	
	
	
	
	
	
	
	
	
	
	

	Documentation
	
	
	
	
	
	
	
	
	
	
	
	
	

5. References
[1] NapSter Web Site: http://www.napster.com/
[2] Gnutella Web Site: http://www.gnutelliums.com/
[3] M. Waldman, A.D. Rubin, and L.F. Cranor, "Publius: A robust, tamper-evident, censorship-resistant web", Proceedings of the 9th USENIX Security Symposium, August 2000.
[4] Freenet Web site: http://freenet.sourceforge.net/
[5] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A Distributed Anonymous Information Storage and Retrieval System in Designing Privacy Enhancing Technologies”, International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, July 2000.
[6] Mojo nation Web Site: http://www.mojonation.net/
[7] R. Dingledine, M.J. Freedman, and D. Molnar, "Chapter 12: Free Haven", In Peer-To-Peer: harnessing the Power of Disruptive Technologies, Ed. Andy Oram. Cambridge: O'Reilly and Associates, 2001.

[8] R. Dingledine, M.J. Freedman, and D. Molnar, “The Free Haven Project: Distributed Anonymous Storage Service”, International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, July 2000.

[9] D. Nam, M. Lee, J. Lee, and S. Han, “Distributed Document Sharing System”, Term Project Report, June 2001.

Ddocss Client

Ddocss Client

Ddocss Server

Web Browser

2. Search query

1.Register Docs

4.Query Results

2. Search query

4.Query Results

3.Process query

6.Request File transfer

7.Actual file transfer

5. Choose a link

6.Request

file transfer

7.Actual

 file transfer

Figure 1. Current Ddocss Architecture

Ddocss Client

Ddocss Client

Ddocss Server

Authorization

File transfer

Search Query

Encrypt location of docs with key

Verification with certificate

Figure 2. Ddocss with Security Features

Ddocss Client

Ddocss Client

Ddocss Server

3. Process Query and generate key pair {KU, KP}

1. Publish docs: Encrypt location of docs with key

2. Search Query

13. Verify the Certificate

12. Request file transfer with the Certificate

Figure 3. Overall Process of Ddocss

4. Get results including the public key

5. Choose a link

6. Request Certificate appropriate to the link

10. Give the requested Certificate

11.Decrypt the link with key in Certificate

14. Actual requested

 file transfer

9. Verify key pairs

7. Request the key pair of {KU}

{KU}

8. Return the key pair {KP}

PAGE
7

