Progress Report 1 of Termproject

· Brief description of my progress

PGP is used for keeping the security of e-mailed massage. It is free for non-commercial use. Phil Zimmermann, the creater of PGP, thought it is very important to keep our message in secure from others, even the government. So, There's no backdoor to crack the PGP easily. And, now I'll decribe how it works.

· Encryption

With using hash fucntion, we reduce the size of original message. And we encrypt the hashed message using private key, and then append it to original message. And compress it. We encrypt the appended message using conventional encrypt method. And encrypt the session key used in encrypting message by using public key. And append it to encrypted message. Then we just created the cipher message.

[image: image1.png]KRa

Ks

EUb

Figure 1 PGP Cryptographic Function (Encryption)

· Decryption

C consists of encrypted message and encrypted session key used for encryption by using public key. Both is sent in encryption, and receiver decrypt encrypted session key by his private key. With gained session key, he decrypt the message and get original message and hashed message. Now he put the original message in hash function, then he can compare the received hashed message and the message he just made.

[image: image2.png]Comparel |

' °

In PGP's encrypting operation, at first we use hash algorithm, like MD5, SHA-1, RIPEMD-160. Because MD5 has natual vulnerability of weakness of Brithday attack, we usually SHA-1 and RIPEMD-160 in PGP. When we use DSS for authentication, we use SHA-1, and in other cases, we can choose one of two. Here, I describe SHA-1 Logic and function.

SHA-1 Logic

The algorithm takes as input a message with a mazimum length of less than 264 bits and produces as output a160-bit message digest. The input is processed in 512-bit blocks. Here is the step of SHA-1 operation.

1. Append padding bits

 The message is padded so that its length is congruent to 448 modulo 512.

 Padding is always added, even if the message is already of the desired length. Thus, the number of padding bits is in the range of 1 to 512. The padding consists of a single 1-bit followed by the necessary number of 0-bits.

2. Append length

 A block of 64 bits is appended to the message. This block is treated as an unsigned 64-bit integer(most significant byte first) and contains the length of the original message(before the padding).

3. Initialize MD buffer

 A 160-bit buffer is used to hold intermediate and final results of the hash function. The buffer can be represented as five 32-bit registers (A,B,C,D,E). These registers are initialized to the following 32-bit integers(hexadecimal values). A = 67452301, B = EFCDAB89, C = 98BADCFE, D = 10325476, E = C3D2E1F0. These values are stored in big-endian format, which is the most significant byte of a word in the low-address byte position. As 32-bit strings, the initialization values(in hexadecimal) appear as follows. Word A is 68 45 23 01, B is EF CD AB 89, C is 98 BA DC FE, D is 10 32 54 76, E is C3 D2 E1 F0.

4. Process message in 512-bit(16-word) blocks

 The operation consists of 4 rounds of 20 steps each. The four rounds have a similar structure, but each uses a different primitive logical function. Each round takes as input the current 512-bit block being processed (Yq) and the 160-bit buffer value ABCDE and updates the contents of the buffer. Each round also makes use of an additive constant Kt, where

indicates one of the 80 steps across four rounds.

 The output of the fourth round (80th step) is added to the input to the first round to produce next CV. The addition is done independently for each of the five words in the buffer with each of the corresponding words in CV, using addition module 232.

5. Output

After all L 512-bit blocks have been processed, the output from the Lth stage is the 160-bit message digest.

IV is initial value of the ABCDE buffer, ABCDEq is the output of the last round of processing of the qth message block, L is the number of blocks in the message (including padding and length fields), SUM32 is Addition modulo 232 performed separately on each word of the pair of inputs, and MD is final message of digest value.(CV0 = IV, Cvq+1 = SUM32(CVq, ABCDEq), MD = CVL)

SHA-1 Compression Function

A,B,C,D,E

 (E+f(t,B,C,D) + S5(A) + Wt + Kt), A, S30(B), C, D

A,B,C,D,E are the five words of the buffer, t is step number(0~79), f(t, B,C,D) is primitive logical function for step t, SK is circular left shift(rotation) of the 32-bit argument by k bits, Wt is a 32-bit word derived from the current 512-bit input block, Kt is an additive constant, and + is addition module 232. Each primitive function takes three 32-bit words as input and produces a 32-bit word outpu. Each function performs a set of bitwise logical operation;the n-th bit of the output is a function of the n-th bit of the three inputs. Only three different functions are used. For 0<=t<=19, the function is the conditional function: If B then C else D. For 20 <=t<=39 and 60 <=t<=79, the function produces a parity bit. For 40<=t<=59, the function is true if two or three of the argument are true.

It remains to indicate how the 32-bit word values Wt are derived from the 512 bit message. The first 16 values of Wt are taken directly from the 16 words of the current block. The remaining values are defined as Wt = S1(Wt-16 + Wt-14 + Wt-8 + Wt-3).

In the first 16 steps of processing, the value of Wt is equal to the corresponding word in the message block. For the remaining 64 steps, the value of Wt consists of the circular left shift by one bit of the XOR of four of the preceding value of Wt. This is anotable difference from MD5 and RIPEMD-160, both of which use one of the 16 words of amessage block directly as input to each step function; only the order of the words is permuted from round to round. SHA-1 expands the 16 block words to 80 words for use in the compression function. This introduces a great deal of redundancy and interdependence to the message blocks that are compressed, which complicates the task of finding a different message block that maps to the same compression function output.

And then, we make Digital Signature for Authentication. In PGP, we use DH/DSS key over SHA-1, RSA key over SHA-1 or RIPEMD-160. Here, I decribe DSA. Entity creates a public key and corresponding private key. Each entity A should do the following.

1. Select a prime number q such that 2150<q<2160.

2. Choose t so that

, and select a prime number p where 2511+64t<p<2512+64t, with the property that q divdes (p-1).

3. Select a generator a of the nuique cyclic group of order q in

1. Select an element

and compute a = g(p-1)/q mod p.

2. If a = 1 then goto step 3.1

4. Select a random integer b such

5. Compute y = ab mod p

6. A's public key is (p,q,a,y); A's private key is a

We encrypt only hashed message, since we can reduce time for encrypt. After that, we append it to original text, and compress it. This has benefit of saving space both for e-mail transmission and for file storage. The compression algorithm used is ZIP. Not yet I decided which algorithm I use, now I'm looking for.

And, for the confidentiality, we encrypt the original message with encrypted hashed message. Here, we use conventional encryption algorithm to encrypt them, that's because it's more faster(cost and time effectiveness). In PGP 7.X, there are additional algorithms, twofish and AES are included. At first I thought to adjust 3DES, but now I'm thinking twofish or AES. (Now, Rijndael is choice of AES.)

After encrypting the message, we also encrypt session key with public key. It's most difficult to keep the information of 'key' in sequre, so we do it. Generally use RSA, or use Diffie-Hellman, ElGamal as options. After that operation, we append it to encrypted message we want to send to others.

To send it via e-mail, we adjust based on Radix 64-conversion algorithm. But, not yet finished.

Accomplishment

I almost finished understanding working of PGP. I knew that association of PGP is always improving their security, better one than which introduced in text book. I got many additional information of each algorithms for PGP.

Future work

I'll begin to implement PGP using the algorithms I found from many sources.

_139391448.unknown

_139441816.unknown

_140073480.unknown

_140194576.unknown

_141066008.unknown

_141153088.unknown

_139776000.unknown

