Network Security Term Paper (Draft)

Dang Nguyen Duc

Denial of Service and Countermeasures,

Comparison and Analysis
1. Introduction
From very first moment of computer’s birth, one special form of computer program, named viral program or virus, was introduced. It was “core wars”, a computer game. Time after time, computer industry and now information technology industry have been developing dramatically fast. But, at the same time, computer hacking techniques also have been developing fast as well.
In recent years, Denial of Service attacks (DoS) have been becoming attackers' favorite. This type of attack seems to be much more serious since attackers take advantage of distributed network environment to perform so-called Distributed Denial of Service (DDoS). With this attack, hacker can degrade network availability globally with surprising small computing power. Moreover, many attack tools are open for free on Internet so even unskilled hackers are able to prevent network connection by DoS attacks, and so prevent value-added network services from serving. In response to this threat, many solutions are available. So far, the network designers have mainly focused on network performance, they do not much concern network security issues in mind. This fact leads to many holes in network protocols as well as network softwares. As a result, mostly, countermeasures are based on software patches, monitoring tools, firewall and so on. This paper is aimed to analyze each type of DoS attacks and make a comparison. We also note that, by the nature of cryptography and cryptographic protocols, they provide very useful services such as authentication, identification to fight against DoS attacks. It is now considered as long-term and promising countermeasures. Thus, it is worth to concentrate on this kind of approach.

2. Background Knowledge
2.1. What is DoS Attack?

A “denial-of-service” attack is characterized by an explicit attempt by attackers to legitimate users of a service from using that service. Examples include

· attempts to flood a network, thereby preventing legitimate network traffic

· attempts to disrupt connections between two machines, thereby preventing access to a service

· attempts to prevent a particular individual from accessing a service

· attempts to disrupt to a specific system or person.

Not all service outages, even those that result from malicious activity, are necessarily denial-of-service attacks. Other types of attack may include a denial of service as a component, but the denial of service may be part of a larger attack.

Illegitimate use of resources may also result in denial of service. For example, an intruder may use your anonymous ftp area as a place to store illegal copies of commercial software, consuming disk space and generating network traffic.

Recently, there has come more serious form of DoS attack, known as distributed denial of service attack (DDoS attack). A distributed DoS attack amplifies the basic DoS attack. In a DDoS attack, attacker uses one computer to instruct many other computers to mount a powerful, coordinated attack (thus it is more difficult to fight against this type of attack). A typical DDoS attack consists of four components (Fig. 1): the real attacker, a control master, slaves (or attack daemon or zombies) and the victim. First, it involves a victim, i.e., the target host that has been chosen to receive the bunch of attacks. Second, it involves the presence of the attack daemon agents. These are agent programs that actually conduct the attack on the victim. Attack daemons are usually deployed in host computers. These daemons affect both the victim and the host computers. The task of deploying these attack daemons requires attacker to gain access and infiltrate the host computers. The third component of a distributed denial of service attack is the control master program. Its duty is to coordinate the attack. Finally, there is the real attacker, the hidden attacker behind the attack. By using one or many control master programs, the real attacker can stay behind the scenes of the attack. The following steps take place during a distributed DoS attack:

· The real attacker sends an “execute” message to the control master program.

· The control master program receives the “execute” order and then propagates the command to the attack daemons under its control.

· Upon receiving the attack command, the attack daemons begin the attack on the victim.

[image: image1.wmf]Real attacker

Network

Master

Slave

Slave

Slave

Slave

Victim

Although it seems that the real attacker has little to do but sends out the “execute” command, he actually has to plan the execution of a successful distributed denial of service attack. The attacker must infiltrate all the host computers and networks where the daemon attackers are to be deployed. The attacker must study the target’s network topology and look for bottlenecks and vulnerabilities that can be exploited during the attack. Because the use of masters and slaves, the real attacker is not directly involved during the attack, which makes it difficult to trace who launched the attack.

2.2. DoS Impact

Denial of service attacks can essentially disable our computers or our networks. In early February, year 2000, hackers used distributed denial of service attacks that shut down some of the world’s most high-profile websites, including Yahoo, Amazon.com, eBay, CNN.com, ZDNet, E*Trade and Excite.

	Overall Internet Traffic slowed during three days of DoS attacks

in Feb, 2000

	Date
	Internet Performance

(seconds)
	Internet Performance a week earlier (seconds)
	Change

	7th February
	5.98
	5.66
	5.7% slower

	8th February
	5.96
	5.53
	7.8% slower

	9th February
	6.67
	5.26
	26.8% slower

	10th February
	4.86
	4.97
	2.2% slower

	Source: Keynote Systems

Moreover, some denial-of-service attacks can be performed with limited resources against a complex site. This type of attack is sometimes called an “asymmetric attack”.

3. DoS Attacks
3.1. Mode of attacks

Denial-of-service attacks come in a variety of forms and aim at a variety of services. There are three basic types of attack:

· consumption of scarce, limited, or non-renewable resources

· destruction or alteration of configuration information

· physical destruction or alteration of network components

. Consumption of Scarce Resources

Computers and networks need certain things to operate: network bandwidth, memory and disk space, CPU time, data structures, access to other computers and networks, and certain environmental resources such as power, cool air, or even water.
. Network Connectivity

Denial-of-service attacks are most frequently executed against network connectivity. The goal is to prevent hosts or networks from communicating on the network.

In this type of attack, the attacker begins the process of establishing a connection to the victim machine, but does it in such a way as to prevent the ultimate completion of the connection. In the meantime, the victim machine has reserved one of a limited number of data structures required to complete the impending connection. The result is that legitimate connections are denied while the victim machine is waiting to complete bogus "half-open" connections.

You should note that this type of attack does not depend on the attacker being able to consume your network bandwidth. In this case, the intruder is consuming kernel data structures involved in establishing a network connection. The implication is that an intruder can execute this attack from a dial-up connection against a machine on a very fast network. (This is a good example of an asymmetric attack.)
. Using Your Own Resources Against You

An intruder can also use your own resources against you in unexpected ways.

In this attack, the intruder uses forged UDP packets to connect the echo service on one machine to the chargen service on another machine. The result is that the two services consume all available network bandwidth between them. Thus, the network connectivity for all machines on the same networks as either of the targeted machines may be affected.
. Bandwidth Consumption

An intruder may also be able to consume all the available bandwidth on your network by generating a large number of packets directed to your network. Typically, these packets are ICMP ECHO packets, but in principle they may be anything. Further, the intruder need not be operating from a single machine; he may be able to coordinate or co-opt several machines on different networks to achieve the same effect.
. Consumption of Other Resources

In addition to network bandwidth, intruders may be able to consume other resources that your systems need in order to operate. For example, in many systems, a limited number of data structures are available to hold process information (process identifiers, process table entries, process slots, etc.). An intruder may be able to consume these data structures by writing a simple program or script that does nothing but repeatedly create copies of itself. Many modern operating systems have quota facilities to protect against this problem, but not all do. Further, even if the process table is not filled, the CPU may be consumed by a large number of processes and the associated time spent switching between processes. Consult your operating system vendor or operating system manuals for details on available quota facilities for your system.

An intruder may also attempt to consume disk space in other ways, including

. generating excessive numbers of mail messages.

. intentionally generating errors that must be logged

. placing files in anonymous ftp areas or network shares.

In general, anything that allows data to be written to disk can be used to execute a denial-of-service attack if there are no bounds on the amount of data that can be written.

Also, many sites have schemes in place to "lockout" an account after a certain number of failed login attempts. A typical set up locks out an account after 3 or 5 failed login attempts. An intruder may be able to use this scheme to prevent legitimate users from logging in. In some cases, even the privileged accounts, such as root or administrator, may be subject to this type of attack. Be sure you have a method to gain access to the systems under emergency circumstances. Consult your operating system vendor or your operating systems manual for details on lockout facilities and emergency entry procedures.

An intruder may be able to cause your systems to crash or become unstable by sending unexpected data over the network.
If your systems are experiencing frequent crashes with no apparent cause, it could be the result of this type of attack.

There are other things that may be vulnerable to denial of service that you may wish to monitor. These include

. printers

. tape devices

. network connections

. other limited resources important to the operation of your organization
A. Destruction or Alteration of Configuration Information

An improperly configured computer may not perform well or may not operate at all. An intruder may be able to alter or destroy configuration information that prevents you from using your computer or network.

For example, if an intruder can change the routing information in your routers, your network may be disabled. If an intruder is able to modify the registry on a Windows NT machine, certain functions may be unavailable.

B. Physical Destruction or Alteration of Network Components

The primary concern with this type of attack is physical security. You should guard against unauthorized access to computers, routers, network wiring closets, network backbone segments, power and cooling stations, and any other critical components of your network.

Physical security is a prime component in guarding against many types of attacks in addition to denial of service. For information on securing the physical components of your network, we encourage you to consult local or national law enforcement agencies or private security companies.
3.2. Method of Denial of Service Attacks

Because of pro-performance design of network and inexperienced IT workers, hackers can mount attacks by taking advantage of network software bugs and network protocol problems. Many types of networking software cannot cope with malformed Internet Protocol packets. When being hit by such packets, the networking software crashes.

We will describe well-known DoS attacks in following subsection.

A. Methods of BasicDenial of Service Attacks

Smurf. Attack involves a attacker sending a large amount of Internet Control Message Protocol (ICMP) echo traffic to a set of Internet Protocol (IP) broadcast addresses. The ICMP echo packets are specified with a source address of target victim (spoofed address). Most hosts on an IP network will accept ICMP echo requests and reply to them with an echo reply to the source address, in this case, the victim. This multiplies the traffic by the number of responding hosts. On a broadcast network, there could potentially be hundreds of machines to reply to each ICMP packet. The process of using a network to elicit many responses to a single packet has been labeled as an “amplifier”. There are two parties who are hurt by this type of attack: the intermediate broadcast devices (amplifiers) and the spoofed source address target (the victim). The victim is the target of a large amount of traffic that the amplifiers generate. This attack has the potential to overload an entire network.

SYN Flood. Attack is also known as the Transmission Control Protocol (TCP) SYN attack, and it is based on exploiting the standard TCP three-way handshake. The TCP three-way handshake requires a three-packet exchange to be performed before a client can officially use the service. A server, upon receiving an initial SYN (synchronize/start) request from a client, sends back a SYN/ACK (synchronize/acknowledge) packet and waits for the client to send the final ACK (acknowledge). However, it is possible to send a barrage of initial SYN’s without sending the corresponding ACK’s, essentially leaving the server waiting for non-existent ACK’s. Considering that the server only has a limited buffer queue for new connections, SYN flood results in the server being unable to process other incoming connections as the queue gets overflowed.

UDP Flood. attack is based on UDP echo and character generator services provided by most computers on a network. The attacker uses forged UDP packets to connect the echo service on one machine to the character generator (chargen) service on another machine. The result is that the two services consume all available network bandwidth between the machines as they exchange characters between themselves. A variation of this attack called ICMP Flood, floods a machine with ICMP packets instead of UDP packets.
B. Methods of Distributed Denial of Servive Attacks

Trinoo uses TCP to communicate between the attacker and the control master program. The master program communicates with the attack daemons using UDP packets. Trinoo’s attack daemons implement UDP Flood attacks against the target victim.

Tribe Flood Network (TFN) uses a command line interface to communicate between the attacker and the control master program. Communication between the control master and attack daemons is done via ICMP echo reply packets. TFN’s attack daemons implement Smurf, SYN Flood, UDP Flood, and ICMP Flood attacks.

Stacheldraht (German term for “barbed wire”) is based on the TFN attack. However, unlike TFN, Stacheldraht uses an encrypted TCP connection for communication between the attacker and master control program. Communication between the master control program and attack daemons is conducted using TCP and ICMP, and involves an automatic update technique for the attack daemons. The attack daemons for Stacheldraht implement Smurf, SYN Flood, UDP Flood, and ICMP Flood attacks.
Shaft is modeled after Trinoo. Communication between the control master program and attack daemons is achieved using UDP packets. The control master program and the

attacker communicate via a simple TCP telnet connection. A distinctive feature of Shaft is the ability to switch control master servers and ports in real time, hence making detection by intrusion detection tools difficult.

TFN2K uses TCP, UDP, ICMP, or all three to communicate between the control master program and the attack daemons. Communication between the real attacker and control master is encrypted using a key-based CAST-256 algorithm. In addition, TFN2K conducts covert exercises to hide itself from intrusion detection systems. TFN2K attack daemons implement Smurf, SYN, UDP, and ICMP

Flood attacks.

4. Countermeasures
First of all, the very natural methods to find against DoS attacks is software patch, which is used to clear known networking software bugs. But this is just short-term countermeasure. It is also noted that implemntation of new network protocols is economically infeasible. Thus, we want some more theoretical and practical ones. We will introduce thereafter some common countermeasures to prevent DoS attacks.
4.1 Detecting attacks

Even detecting that a service is under a denial of service attack can sometimes be difficult. Clients which are denied of service naturally detect it, but the condition isn't always easily noticeable at the server (e.g. TCP SYN attack).

Even when it has been determined that the service is indeed under attack, detecting which part of the incoming traffic belongs to the attack, and which is legitimate traffic, can be difficult. This problem is made more difficult by spoofed IP addresses.

Intrusion detection and reaction systems aim to cut off denial of service attacks by identifying the part of traffic which belongs to the attack, and denying service only to that part while continuing to serve legitimate clients. Most such mechanisms are very ad-hoc in nature; a determined attacker can fool them, and they can also produce false positives. For instance, a web proxy for a very large organization naturally produces a large number of traffic, which all looks like it's coming from a single or few IP addresses. To an intrusion detection system this might look like a flooding attack.

4.2 Tracing attacks

Cutting off an attack often requires tracing it to its source. The possibility of tracing probably also discourages attacks, since attackers know they are more likely to get caught. Thus, it can be thought as both preventive and reactive countermeasure.

Forging, or spoofing as it is usually called, of source IP address on the Internet is quite easy. Some techniques (such as cookies, described in the next section) can be used to get some level of assurance about the source IP address. In analysis of mechanisms for protecting confidentiality and integrity of messages, it is usually assumed that the attacker can modify, replay, and block any packets sent. This naturally allows trivial denial of service, so somewhat weaker assumptions are used when analyzing availability.

There have been several proposals for mitigating the problem of IP spoofing. Ingress filtering means filtering incoming IP addresses which should not occur on the correct link. For example, a central router at an university should filter out outgoing packets whose source address is not within the university's network. This makes the network less likely to be used as a launching pad for attacks, and if deployed widely, should reduce the problem of IP spoofing.

Another proposal, ICMP traceback messages, attempts to trace back flooding attacks, even if they have forged source addresses. Other authors have proposed mechanisms for recording the route traveled in the packets themselves. Unfortunately, all of these require modifications to router software, so it remains to be seen if any of them will ever be widely deployed.

4.3 Cookies

Cookie is a piece of data which is generated by the server and given to the client in the beginning of a protocol run. The client has to include this piece of data in the subsequent messages. The goal of cookies is to prevent attacks which employ IP spoofing. If the client doesn't receive the message containing the cookie, the server will reject further messages because they don't include a valid cookie. More precisely, if the server receives a valid cookie from the client, it knows that:

· The attacker is using his real IP address. This address may, of course, belong to a third party computer that the cracker has broken into.

· Or, the attacker has access to physical link on the route from the server to the spoofed IP. In reality, the attacker is probably quite close to either the server or the spoofed IP, making tracing easier.

· Or, the attacker is able to manipulate the IP routing infrastructure. This is beyond the capabilities of "script kids", and more sophisticated and motivated attackers probably focus on attacks on integrity and confidentiality.

In other words, the idea is to start the protocol with weak authentication (of IP addresses), and possibly later perform stronger authentication. This allows tracing of attacks, and probably discourages attacks on computational resources.

An early example of cookies are actually the TCP initial sequence numbers, though their original purpose was to prevent packets from old connections interfering with new connections. After the TCP SYN attacks, some TCP/IP stacks were modified to use the initial sequence numbers as SYN cookies to protect against the attack. The cookie approach was much refined during the design of the Photuris protocol. The Photuris specification gives the following requirements for cookies (or anti-clogging tokens):

· The cookie must depend on the addresses of the communicating parties.

· Nobody else must be able to forge a cookie that will be accepted by the server.

· The cookie generation and verification must be fast enough so that they don’t become subjects to DoS attacks.

· The server must not keep per-client state until the IP address has been verified (i.e. it has received a cookie it generated).

The last requirement is especially important in protecting against memory consumption attacks. The recommended method for generating the cookies in Photuris is to use a keyed one way hash of both IP addresses, both UDP ports, some locally generated secret value (which must be same for all clients, and must be periodically changed), and some other context-dependent information.

4.4 Storing state in client

The cookie approach can be extended to include some state in the cookie. Any state that would be normally stored in the server is passed to the client. The client passes the state back to the server when sending the next message. The client doesn’t have to interpret the state in any way, and can treat it simply as an arbitrary bit string. Encryption and message authentication codes can be used to prevent the client from tampering with the state. This naturally doesn’t work for protocols where the server might be required to take some action before the reception of next message, but is otherwise a quite general approach. Stateless protocols have others advantages in addition to preventing memory consumption attacks. For example, in NFS recovering from server reboots is easy because no state is kept on the server (except for file locking, which complicates things). Stateless protocols also allows easier load balancing between servers.

4.5. Re-ordering computations

In typical authenticated versions of the Diffie-Hellmann key agreement protocol, the server has to verify the client's signature in the first message. Since this requires expensive computation, the server can be potentially flooded with requests. In some cases, however, it is possible to modify the protocol so that client has to do some expensive computation first, and the server verifies the signature only after it has verified that the client has done so. Thus, mounting an attack requires the client to invest the same amount of CPU resources as the server, and this hopefully will make DoS attacks at least somewhat harder.

4.6 Pricing

Although cookies, stateless connections and re-ordering computations can give some protection against DoS attacks, in some cases more aggressive measures are required to allow service to legitimate users and deny it to attackers. One such technique is “pricing”. This means imposing some deliberate cost to the client, which is small for legitimate users making a small number of requests, but large for an attacker trying to flood the server. Earliest use of this approach was a proposal by Dwork and Naor to combat junk e-mail. Before accepting an e-mail message, the recipient asks the sender to perform a small computation. The verification of the computation has to be quick, so this doesn't open possibilities for new DoS attacks. Another early use of this technique was against SYN flooding. Usually this cost is in terms of processing time, since it is easy to implement, but other forms (such as paying with actual micropayment systems) are also possible. The computation can be just “junk computation” to prevent denial of service, or it can be “useful” computation for some other purpose. This mechanism is generalized and analyzed by Aura, Leiwo, and Nikander and formally described by Jakobsson. Interestingly, the idea of moderately hard computational problems has received other uses as well: e.g. uncheatable benchmarks, timed release of secrets, partial key escrow, and auditable metering of web site use.

We now introduce some technical methods based on cryptographic works.

4.7 ISAKMP/IKE

ISAKMP/IKE is actually a combination of two protocols, ISAKMP (Internet Security Association and Key Management Protocol) and IKE (Internet Key Exchange). ISAKMP provides a framework for authentication and key exchange. IKE, based on the Oakley protocol (an authenticated Diffie-Hellman key agreement protocol), specifies a key agreement protocol based on this framework. The IKE negotiation has two phases. In the first phase, the parties negotiate an ISAKMP security association, which provides a secure communication channel between the ISAKMP daemons. In phase 2, this ISAKMP security association is used to negotiate an IPSEC (IP Security provides security at the IP layer in both IPv4 and Ipv6) security association for AH (Authentication Header) or ESP (Encapsulating Security Payload). ISAKMP and IKE provide a large number of different modes and options, which can be considered to be different subprotocols. Meadows has identified a total of thirteen different subprotocols. This makes understanding, implementation, and analysis of ISAKMP/IKE very challenging.

ISAKMP uses cookies as a countermeasure against IP spoofing. The header of each packet contains two fields of 64 bits, the initiator and responder cookies. The initiator cookie is sent in the first message by the client, and the responder cookie is returned in the reply. All further messages contain both cookies. The cookies are also used to identify a particular ISAKMP SA (Security Association) during phase 1 of the protocol. Since the cookie is also used to distinguish between different ISAKMP SAs, the protocol requires that the responder cookie is different for each initiator, and each protocol run. The method recommended by the ISAKMP specification is to use a one-way hash of IP addresses, UDP port numbers, locally generated secret value, and date and time. Unfortunately, this requires a small amount of per client state be stored on the server after the first message (at least the date and time).

ISAKMP contains two different modes, which may be used in the phase 1 negotiation. These are called the main mode and “aggressive mode”. The aggressive mode requires fewer messages than the main mode, but it doesn't usually provide protection of identities, and also has some other limitations. The aggressive mode also has a known DoS vulnerability when using public key signatures for authentication. The responder has to sign its response to the first message from the client. This expensive operation is done before the cookie has been verified, so it allows the possibility for DoS attack using spoofed IP addresses.

4.8 Photuris

The Photuris protocol is much simpler than ISAKMP/IKE, since it is not a combination of many layers of different subprotocols. The protocol has three phases: cookie exchange, value exchange, and identification exchange. After these phases, additional messages may be used to refresh the keys or modify other security parameters. Like the ISAKMP header, the Photuris header also contains fields for initiator and responder cookies, each of 128 bits. In additional to the cookies, a “counter” field is included to distinguish between multiple parallel protocol runs. This removes the need to store any state on the responder after the first pair of messages. Also, in Photuris the server never performs any expensive computations before receiving the second message (which must contain a valid cookie).

4.9. Client Puzzle.

Using the principle that the client always commits its resources to the authentication protocol first and the server should be able to verify the client commitment before allocating its own resources. The rule of thumb is that, at any point before reliable authentication, the cost of the protocol run to the client should be greater than to the server. The client's costs can be increased by asking it to compute solutions to puzzles that are easy to generate and verify but whose difficulty for the solver can be adjusted to any level. The server should remain stateless and refuse to perform expensive cryptographic operations until it has verified the client's solution to a puzzle. A good puzzle should have the following properties: easily creating and verifying for server, the level of hardness ranging from zero to impossible and easy to adjust, many kind of client's hardware can solved puzzles, impossible to precompute solutions, the server not need to store the solution or other client-specific data while client solving puzzles, the same puzzle may be given to several clients and knowing the solution of one or more clients does not help a new client in solving the puzzle, a client can reuse a puzzle by creating several instances of it.

5. Progress

So far, I have been studying on DoS attacks concepts and survey the most well-known DoS attacks as well as corresponding countermeasures. I want to emphasize on countermeasures based on cryptographic works, which may be promising methods.
6. Conclusion and future work
Conclusion. In this paper, I gave an overview of all denial of service attacks and corresponding countermeasures. I described how each type of DoS attack works and how each type of countermeasure fight against DoS attacks.

Especially, I focused on distributed form of DoS attack (DDoS) and countermeasures based on cryptography.

Future work. To finalize this paper, the following tasks should be done:

· Further study on DoS attacks and corresponding countermeasures.

· Intensively study on countermeasures based on cryptographic works, including performance, requirements, designing principles.

7. References

[1] http://www.cert.org
[2] Jussipekka Leiwo, Towards Network Denial of Service Resistant Protocols.

[3] Kanta Matsuura and Hideki Imai, Resolution of ISAKMP/Oakley Key-Agreement Protocol Resistant against Denial-of-Service Attack.

[4] Christoph L. Schuba, Ivan V.Krusl, Markus G. Kuhn, et al., Analysis of a Denial of Service Attack on TCP.

[5] Felix Lau, Stuart H. Rubin, Michael H. Smith, Ljiljana Trajkovic, Distributed Denial of Service.

[6] Tuomas Aura, Pekka Nikander, Jussipekka Leiwo, DoS-Resistant Authentication with Client Puzzles.

[7] Pasi Eronen, Denial of Service In Public Key Protocols.

[8] Douglas E. Comer, Internetworking with TCP/IP, Principles, Protocols, and Architectures – Volume 1, Fourth Edition
[9] RFC(s)

Page 4/9

_1064258972.vsd

