Network Security (ICE 615) – Fall 2001

Term Project Final
Secure Distributed Document Sharing System

Seunghyun Han and Dukyun Nam

{dennis, paichu}@icu.ac.kr

School of Engineering, 

Information and Communications University

1. Introduction

As the Internet goes widespread, information-sharing technology becomes various. Until now, documents are shared by means of the Web and FTP in wide area networks, and Windows file sharing in local area network. Not only does document sharing through the centralized server such as HTTP and FTP servers bring out scalability problem but also users have to explicitly know ‘where the document is located’ in either WAN or LAN, so called transparency problem. Even though some search engines on the Web provide searching facilities, they could not provide expected results, but just list similar results. Possibly, documents can be shared by building huge central databases and document-sharing services. However, as the data becomes larger in volume, the servers cannot hold the large amount of data. To overcome these problems, peer-to-peer sharing (P2P) approaches have been introduced. P2P systems are usually based on server included, for instance Napster [1], or pure peer-to-peer architecture such as Gnutella [2]. The pure P2P system has a weak point at its searching facility because of lack of knowledge about where the other peers are. This makes lots of delay in searching documents. Thus, P2P system inevitably requires a server to make fast searching response. Another problem in P2P paradigm is that there’s no standard mechanism for document sharing. Each peer-to-peer model shares documents in each peer machine adopt the proprietary protocol. This limits availability of information resident in each peer machine

We proposed a web-enabled P2P document sharing system, called Ddocss (Distributed Documents Sharing System) [9], which is mainly focused on availability. The Ddocss exploits not only the proprietary protocol for publishing document information into the central database, but also the HTTP protocol for file transfer between peers, that is, clients in terms of client-server model. It consists of one server, client applications, and web browsers. When any users hope to search the expected document information and retrieve documents, they can do through the web browser even though a client application also supports document searching and downloading via HTTP protocol between peers.

However, the Ddocss hardly provides the security aspects, such as accountability and secure communications, at all, but just supports simple access control mechanism which users give access level not only to each document but also to each user or group so as to give restrictions to his or her published documents to prevent from spreading out to unauthorized users. The fundamental requirement of Ddocss was document sharing among members who can trust each other. Some documents are not allowed to be exposed to outside of the proper group or community. Moreover, some documents must not be modified to protect copyright of author. However, security risks, such as eavesdropping, tampering, Trojan horse attack, etc., exist on entire communications between server and peers. The risks are not limited to the Ddocss, but most of peer-to-peer file sharing systems also hold the risks. It is because the systems run on insecure communication channels, namely Internet.

Secure Ddocss is designed to provide integrity, confidentiality, and privacy with general cryptography algorithms such as RSA, DES, and SHA-1 with DSA to protect users’ documents or resources from those attacks.

This paper is organized as follows. The following section discusses the various approaches of P2P systems. In session 3, we then describe our secure document sharing system design. Session 4 describes implementation of secure Ddocs system. Finally, the conclusion follows in session 5.

2. Related Work
Distributed file sharing systems with peer-to-peer communication have constantly increased. Napster [1] is data, especially MP3, sharing tools among distributed users. If someone hopes to share data, he has to register the file and its description to the Napster server. Server holds user IP address and its links. If someone hopes to get data, it submits a query to the Napster server and a list of matching data is returned. Using the link information, user could connect to any of the computers storing the data and initiate a file transfer. Server does simple admission control but it does not give any constraints to exchange data. Data is not compressed or encrypted during transferring data. Anonymizing is hard because it uses a protocol that is not recognized by any of current anonymizing tools.

Gnutella [2] is the large-scale, fully decentralized system running on the Internet. Actually it is not branded software, but a language of communication, a protocol. Traditional application-level networks are circuit-based, while Gnutella is message-based and uses application-level routing. Gnutella provides some degree of anonymity by enabling an essentially anonymous searching mechanism. When a search is performed, Gnutella compatible softwares respond with an external IP address or URL where the user can download the document. It is not concerned about anonymity or rights protection of documents but supports sharing documents among registered users. The drawback of Gnutella is the response time, in terms of interactive performance, because it traces IP addresses to get results. And Gnutella does not provide true anonymity through encryption.

Publius [3] is a web-based publishing system that resists censorship and tampering. Unlike other systems, it is based on Web contents and mainly focuses on protecting author's rights of documents rather than sharing free documents. If an author publishes documents, it is encrypted with URL and sent to server to protect the rights of the author. This system does not only provides accountability, which implies that there is no way to prevent publishers from entirely filling the system with garbage data, but also requires client program or proxy if a user hope to get documents. It uses MD5 and SHA-1 algorithm for publishing, updating, retrieving operations. A key is created from MD5 and SHA-1 hash of the contents of the file. The key is used to encrypt the file, producing a new file split into 30 shares. To support fault-tolerance, any 3 of these shares can be used to reconstruct the key. But, it gives heavy overheads to servers to support publish or retrieve data.

Freenet [4, 5] is implemented as an adaptive peer-to-peer network of nodes. This system permits the publication, replication, and retrieval of data while protecting the anonymity of both authors and readers with location-independent keys. Files in Freenet are identified by binary file keys obtained by applying a hash function, the 160-bit SHA-1. Freenet defines a general Uniform Resource Indicator (URI) in the form: “freenet:keytype@data”. Key types are various such as content hash keys (CHKs), keyword signed keys (KSKs), and signature verification keys (SVKs). A CHK is formed from a hash of the data. A KSK is derived from a short descriptive text string chosen by the user when storing a file in the network. However Freenet has potentially the performance degradation because all documents are encrypted by CHKs.

Mojo Nation [6] is a peer-to-peer content distribution or distributed storage system which focuses on swarm distribution, secret sharing, and market-based load balancing. It uses the Secret Sharing Scheme (Shamir, 1979) where a data can be broken up into blocks and distributed among different devices. The Secret Sharing scheme is when redundant blocks are introduced as part of the breakup, only a subset of these blocks is needed to reconstruct the data. It uses, M = 16, N = 32 where the expansion in data due to redundancy is given as D*(N/M), with the property M ( N. it names each file by creating a sharedmap composed of the SHA Ids for the blocks generated from the Secret Sharing Scheme. To support secure communications among peers, data is compressed and encrypted before the data is inserted into the network. In addition, all peer communication is done by PKI.

Free Haven [7] is a system for distributed, anonymous, persistent data storage and also peer-to-peer model. The design is based on a community of servers where each server hosts data from the other servers in exchange for the opportunity to store data of its own in the server community, called as “servnet”. To publish a file into the servnet, the publishing server splits it into shares and inserts these shares into its local server space with a key pair (PKdoc, SKdoc). Attributes in each share include a timestamp, expiration information, hash(PKdoc), information about share numbering, and the signature itself. On the other hand, readers must locate a server that performs the document request. The reader generates a key pair (PKclient, SKclient) for a one-time reply block. The servnet server broadcasts a request containing a message digest or hash of the document’s public key along with the client’s public key and the reply block. Each server that receives the query checks to see if it has any shares with the requested hash of PKdoc. If it does, it encrypts each share using the public key PKclient enclosed in the request and then sends the encrypted share through the remailer to the enclosed address. Once enough shares arrive, the client recreates the file and is done.

3. Design

In this section, we propose a secure distributed document sharing system, which is aimed to provide integrity, confidentiality, and privacy, extending current Ddocs system. To adopt security features to the existing system, we identify possible attacks occurred during communications between server and peers. Using the analysis, we adopt security features to the secure Ddocs system.

3.1. Distributed Document Sharing System

Ddocss (Distributed Document Sharing System) [9] is P2P-based document sharing system, which has membership-enabled functions, document searching using web or peer application.

The architecture is composed of three parts; peer program, web server, and database server. Instead of holding whole actual documents, database server only manages meta-information that peer publishes (or registers). The meta-information contains not only document information, such as publisher, author, keywords, level of restriction, and published date, etc., but also peer information, such as user ID, IP address and port number. Peer program provides mainly three services; documents management, access rights management, and document push and downloads. User can restrict document accesses by giving access level to each document when he or she publishes documents. One of key features of Ddocss is that users can access documents anywhere if they have web browser, even though they do not have a peer program. To do so, peer program uses HTTP protocol to transfer the document in order to enable web browsers to access the shared documents. The requests for download between peers also use HTTP protocol. This makes the client program simpler networking interface.

[image: image1.png]Ddocss Sexver

E

Ddocss Peer Ddocss Peer B
3 9 2
& f——————————h

P T
9a) 98)
1

10
1) » Docs_with
9 ¢ 13) stem

I)Publishdocs: Enenpt eationof docs and piblickey ofsig
2) Aflr g, seach Query

3) Verdy D/passond and searchtle ot based on guery
4)Get enmypted el nching e pblic oy of sig

8) Choose a ik, gt Xuand T

§)Send V0B

7) Gonerse Yo and Vs

8)Send Y and &' pblichey o &

9.2) Gererasthe sessonay based on X ad Vs

9.5) Ganentethesession ey basedon ¥a and o

10)Exerypt and compess the document taled dighal signatue
1) Send thenotification mssage 2 & signof the pepration end
12) Raquet fle rnspent

13) Tranit e emaypted and compressed documert

1) Decaypt the rceived il and iy e sined




Figure 1 shows the Ddocss architecture and document-flow procedures. To publish a document, the document owner has to register document information such as document’s title, authors, keywords, file name, etc. into the Ddocss Server. After that, search and file downloading is available both in peer client and web browser. Web browser sends search requests to web server using document information, such as keyword, author, and title. Web server forwards these requests to search engine and retrieves information for file downloading. Then, web browser can choose and download files from the result. Searching and downloading with client program is done with similar process.

3.2. Security Risks of Current Ddocss

Basically, the main purpose of Ddocs system is document sharing among members who can trust each other. Not only are some documents not allowed to be exposed to outside of the proper group or community, but also some documents must not be modified to protect copyright. Unfortunately, current Ddocs system does not provide any security features, even though there is a lot of security risks, such as tampering shared documents, eavesdropping and replay attacks etc. We identify that security risks exist on entire communications between server and Ddocss users because of fundamental architecture of Ddocs system (actually, the risks are not limited to Ddocs system but most of peer-to-peer file sharing systems hold the risks). The following figure shows that the flaws of Ddocs system when users share documents.

[image: image2.png]Ddoc Server

3. Veriy the user
4. Change User Status in DB

2. Send Bucpppted

o Faaost o| Reply Public key

of Server

1. Fll up user inormation

Peer




When a user tries to login to the Ddocss server, user ID and password may be eavesdropped. The abuser (unregistered or unauthorized user) may pretend as if he is authorized user or user ID and password may be exposed to public. Other risk is exposure of resource locations of documents. It may occur during registering or searching documents. URL exposure of a document may result in exposure of all documents, which the user holds, if the documents are published or not. The third one may occur during actual document transfer. Not only may unauthorized user download protected documents, but also content of the document may be modified. The last one is cracking or hacking Ddocss server. Ddocss server holds all the URL of published documents as well as user ID and password.

In this paper, we try to protect system from possible attacks occurred during login, registration, and file transfer but in the case of server hacking or cracking, we assume that the Ddocss server is secure from any possible attacks.

3.3. Secure Ddocs System Design Considerations
Secure Ddocs system is designed to provide authentication, privacy, and confidentiality. To do it, all the messages are encrypted with symmetric or asymmetric cryptography. 

[image: image3.png]Ddoc Server

3 Decrppt the vaceived resource
location with private kep of server
4 Fisert itto DB

2. Publishthe endyypted
yesource imjormation acl

1. EncyFpT vesouree Torason
(host agavess, file path keywords,
sitle, qutlor) with public kep of server

Peer




Figure 2 shows the overall secure Ddocss architecture. To provide authentication, all the transferred documents are signed by publisher’s private key. To provide privacy, all the transferred documents are encrypted with nonce.

To build the architecture, Ddocss server has to have an asymmetric key pair which is used to decrypt incoming requests from peers. Ddocss clients (peers) have to have 2 asymmetric key pairs where a key pair is used to decrypt incoming messages from server and the other is used for digital signature which is used to file transfer. The key pairs are generated whenever Ddocss client is launched. It may make system more secure because other abusers could not use an expired key pairs even though the key pair is exposed to public.

To protect from eavesdropping by attackers, the login and registration messages are encrypted by public key of the Ddocss server. The search results are encrypted by peer’s public key which is registered when the user login. Ddocss also uses disposable certificate between publisher and subscriber. The disposable certificate is usable only if the two parties are connected on Ddocss Server. It could prevent abnormal access from unauthorized users even though publisher address and encrypted link is revealed. All documents are encrypted with symmetric key exchanged during authorization process between Ddocss users (peers) after being signed by publisher’s private key to provide confidentiality of the documents. 

4. Implementation

Ddocss client and servers are implemented using JDK 1.4.0. We used MySQL for database, which holds meta-information of documents, Apache web server, and Tomcat for JSP. This section describes which cryptographic algorithm is exploited in Ddocs system to satisfy security requirements, and presents how the documents are retrieved in following subsections.

4.1 Cryptographic Algorithms

We adopt not only symmetric and asymmetric encryption algorithms for encrypt messages but also asymmetric cryptographic algorithm for digital signature to provide integrity of transferred documents.

Messages are divided into two types. One type is control messages which are mainly exchanged between server and peer. The other is document transfer messages. Asymmetric algorithm has lower performance than symmetric algorithms, such as RSA but performance is better than them. We use RSA algorithm to encrypt the control messages. It is feasible because the most of control messages is short. But, in the case of document transfer messages, symmetric algorithm should be used for performance. We adopt DES algorithm with Diffie-Hellman key agreement protocol where a secret value could be used as a DES encryption key between peers.

To check integrity of transferred document between peers, we use DSA with SHA-1 digital signature algorithm.

4.2 System Architecture

Ddocs System is composed of login, publish, search, and document exchange components which require secure communications. 

A user who hopes to find a document connects to a Ddocss server and login. The user can use search facilities which Ddocss server provide. The server gives search results that contains link and summarized information of documents which the user needs. From the results, the user can get appropriate documents after clicking a link.

[image: image4.png]2. Sendsearch

Ddoc Server

. Evorppt the search vesult
with public kep of peer
3. Search DE

equest

Peer





Figure 4 shows the overall procedures to receive a document which a user needs.

4.2.1 Login Component

User ID and password could be revealed to the public if raw user information is transmitted to server. It causes unauthorized users could access shared documents as much as the privileges which the original user has. To protect the risk, we encrypt login messages using the RSA public key of Ddocs Server to provide privacy. The encrypted message do not give any information to attackers. Ddocs server decrypts the messages and verifies he or she is validate user. After the validation, the server give acknowledgement with public key of server for assurance. Figure 5 shows the login procedure between server and a peer.

[image: image5.png]Peer (requestos) Peer (File Holdes)

1. Generate Nonce

2. Request File Transger with nonce (x)

5 Transger nonce ()

“Digfe-Hellran
- ey Agreqent Pratocal.

12. Decrypt the received 11 Transfer the encrppted file

e with session key
13. Dhcompress
the decrppted file

14 Chsk the signature]
with public kep of she e Compression Uing Zip and Aufhenticaion Process

old Using DSA with SHAI Algorithn

*| 3. Generate nonce (7)

4. Generate session key (2

private ey
& Appendthe signature
to the document

9. Compress the document|
and signature Using Zip |

10 Bnerpps the compressed
Alewithsessionkey |




4.2.2 Publish Component

[image: image6.png]ug or cracking.
Iment ocation
laatabase

Bavesdropping of

rasouree locations
gister Docs

Ddocss Clent

Roguest Pils ranser

Bavesdropping or
tampering documents
Actual ile ransfor





A user who hopes to publish documents encrypts document location information with server’s RSA public key to protect the URL. The exposure of URL results in attacks or illegal access from unauthorized users. Moreover, secret document location may be guessed by the exposed document locations. Ddocs server decrypts the messages with its private key and stores them to database. Then, sends acknowledgement back to the publisher. Figure 6 shows the overall procedure of publishing document.

4.2.3 Search Component

A user who hopes to search document send search event to Ddocs server after filling up search information. Before sending search results to the user, server search database with his or her privileges and encrypts the search results with RSA public key of requestor. It provides privacy between the server and the user. Even though the messages are intercepted, the attacker cannot get document location information if he does not have private key of the user. The user decrypts the search result with his private key to recover the document locations’ information. Figure 7 shows the search procedure between Ddocs server and a peer.

[image: image7.png]Ddocss Sexver

Enerypted Login Encrypted register
‘procedures andsearch guery
ey Bxch

Daocss Client o Bchnge Diocss Clent
[€ar erchanes
and verip Encrypied Pis transhr
batween peers po—p—
verip

I I





4.2.4 Document Exchange Component

After receiving search results from Ddocs server, user choose proper link in peer program. It enables secure file transfer. Before sending requested document, key agreement occur between requestor and file holder using Diffie-Hellman key agreement protocol. The secret value became session key and encryption key of DES algorithm. File holder signs the requested document and compresses them using Zip. The compressed file is encrypted by DES algorithm before sending it to the requestor. The receiver decompresses the received file with session key and decompresses it. Client program verifies integrity of transferred document using DSA public key of file holder, which is already received from server in search phase. If the file is not modified, user can read the document. Figure 8 shows the overall document exchange procedure.

[image: image8.png]Ddocss Sexver

E

Ddocss Peer Ddocss Peer B
3 9 2
& f——————————h

P T
9a) 98)
1

10
1) » Docs_with
9 ¢ 13) stem

I)Publishdocs: Enenpt eationof docs and piblickey ofsig
2) Aflr g, seach Query

3) Verdy D/passond and searchtle ot based on guery
4)Get enmypted el nching e pblic oy of sig

8) Choose a ik, gt Xuand T

§)Send V0B

7) Gonerse Yo and Vs

8)Send Y and &' pblichey o &

9.2) Gererasthe sessonay based on X ad Vs

9.5) Ganentethesession ey basedon ¥a and o

10)Exerypt and compess the document taled dighal signatue
1) Send thenotification mssage 2 & signof the pepration end
12) Raquet fle rnspent

13) Tranit e emaypted and compressed documert

1) Decaypt the rceived il and iy e sined




5. Conclusion

In P2P systems, security risks exist on entire communications. The risks are not limited to the Ddocss, but most of peer-to-peer file sharing systems also hold the risks. It is because the systems run on insecure communication channels, namely Internet. The proposed secure Ddocs system is aimed to provide integrity, confidentiality, and privacy to protect users’ documents or resources from attacks. The proposed system provides confidentiality for sharing documents using encryption with symmetric key (DES) after key agreement between requestor and document holder. It provides private communications, such as login, publishing, and search, between server and peer by adopting asymmetric cryptograph (RSA). It also provides integrity of transferred documents using digital signature with appendix (SHA-1 with DSA). To provide secure document sharing, we assume that secure Ddocss server is secure from any kinds of attacks. 

However, to enable security features to the system, performance degradation occurs. It is mainly caused by asymmetric encryption with RSA, even though the message size is small. We currently optimize the performance of system.

References
[1] NapSter Web Site: http://www.napster.com/
[2] Gnutella Web Site:
http://www.gnutelliums.com/
[3] M. Waldman, A.D. Rubin, and L.F. Cranor, "Publius: A robust, tamper-evident, censorship-resistant web", Proceedings of the 9th USENIX Security Symposium, August 2000.
[4] Freenet Web site: 
http://freenet.sourceforge.net/
[5] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A Distributed Anonymous Information Storage and Retrieval System in Designing Privacy Enhancing Technologies”, International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, July 2000.
[6] Mojo nation Web Site: 
http://www.mojonation.net/
[7] R. Dingledine, M.J. Freedman, and D. Molnar, "Chapter 12: Free Haven", In Peer-To-Peer: harnessing the Power of Disruptive Technologies, Ed. Andy Oram. Cambridge: O'Reilly and Associates, 2001.

[8] R. Dingledine, M.J. Freedman, and D. Molnar, “The Free Haven Project: Distributed Anonymous Storage Service”, International Workshop on Design Issues in Anonymity and Unobservability, LNCS 2009, July 2000.

[9] D. Nam, M. Lee, J. Lee, and S. Han, “Distributed Document Sharing System”, Term Project Report, June 2001.

Peer





Peer





Ddocss Server





Web Browser





2. Search query





1.Register Docs





4.Query Results





2. Search query





4.Query Results





3.Process query





6.Request File transfer





7.Actual file transfer





5. Choose a link





6.Request 


file transfer





7.Actual file transfer





Figure 1. Current Ddocss Architecture














Figure 7. Search Procedure





Figure 8. Document Exchange Procedure





Figure 6. Publish Procedure





Figure 4. Overall Procedure





� EMBED PBrush  ���





Figure 3. Ddocss with Security Features



























































































































































Figure 2. Possible Security flaws of Ddocs System


















































Figure 5. Login Procedure








PAGE  
1

_1070426327

