Overview of Kerberos(I)

- Network Authentication Protocol for C/S application based on symmetric cryptosystem
- □ TTP authentication service
- □ Based on secret key, single login
- □ Part of MIT's project Athena (public domain), '85; I'v been there Aug. 2000 during CHES2k
- Components: library, data base, authentication daemon, ticket-granting service, applications
- Uses authenticators (for users and servers) and tickets

Kerberos: 지옥문을 지키는 머리3개 달린 개

Overview of Kerberos(II)

- □ Provides:
 - 1. authenticated messages
 - 2. safe messages (encrypted checksum)
 - 3. fully encrypted messages (encrypted telnet)
- □ Needs network time
- □ Uses one-way encryption (DES) (keys)
- Applications must be "kerbetized"
- Does not trust hosts
- □ V4 and V5 available
- □ Network Security Solution

S1. Obtaining TGT

S2 Getting ticket to B for A

S3 Logging into B from A's W/S

Interrealm Authentication

Kerberos credentials(I)

authenticator

- 1. name/instance/realm of the client
- 2. timestamp
- □ used only once
- generated each time client wants to use a service
- □ encrypted with server's session key
- □ inhibits replay

Kerberos credentials(II)

ticket

- 1. server
- 2. client
- 3. client workstation address
- 4. timestamp
- 5. lifetime
- 6. session key
- encrypted with server's key
- generated by TGS
- good for a single client and server

Setting up Kerberos

- □ get source from MIT (cygnus)
- designate secure authentication server machine
- maybe slave authentication servers
- build applications (r-utilities, login, ftp, pop, klogin, kinit, klist, kadmin)
- register principals (user, servers)
- data base is encrypted with master key
- □ install each server's key (/etc/servtab)

client-only easy, (PC/MAC versions)

Kerbetizing

- you can add Kerberos calls to your own client/servers
- need Kerberos data base, authenticator, ticketgranting server, and administrative programs
- can use klogin, but better if you have kerberized BSD utilities
- □ Kerberos calls added to login, r-utilities, NFS
- rlogin -x sets up encrypted session, every packet is encrypted

V4 implementation

- typical client/server application
- □ library requests, just UDP packets
- Kerberos servers listening on well-known ports (88)
- □ encryption: modified DES CBC
- □ MAC: Juneman checksum on (key,msg)

Kerberos services

/etc/services			
kerberos	88/udp	kdc	# Kerberos authenticationudp
kerberos	88/tcp	kdc	# Kerberos authenticationtcp
klogin	543/tcp		# Kerberos authenticated rlogin
kshell	544/tcp	cmd	# and remote shell
kerberos-adm	749/tcp		# Kerberos 5 admin/changepw
kerberos-adm	749/udp		# Kerberos 5 admin/changepw
kerberos-sec	750/udp		# Kerberos authenticationudp
kerberos-sec	750/tcp		# Kerberos authenticationtcp
kerberos_master	751/udp		# Kerberos authentication
kerberos_master	751/tcp		# Kerberos authentication
krb5_prop	754/tcp		# Kerberos slave propagation
kpop	1109/tcp		# Pop with Kerberos
eklogin	2105/tcp		# Kerberos encrypted rlogin
krb524	4444/tcp		# Kerberos 5 to 4 ticket xlator
	-		

Encryption for Privacy and Integrity

PCBC (Plaintext Cipher Block Chaining)

V5

- More functionality
- □ Principle names multicomponent
 - v4 was NAME/INSTANCE/REALM(40 max)
 - v5 : NAME/REALM
- □ New encodings (ASN 1.0)
- New ticket flags (delegation) and longer lifetimes
- □ Encryption/MAC replacement
- □ V5 will handle v4 requests

V5 encodings

- □ ASN.1 data representation (v4 : byteorder bit)
- □ address encoding (v4 : IPv4 only)
- **□** selectable encryption/MAC

V5 tickets

- proxiable TGT can be used to request tickets for a different net address (Alice can let Bob use her printer)
- forwardable TGT can be presented to a remote TGS
- □ lifetimes
 - longer lifetimes (v4 : 21 hrs) (v5:start/end)
 - renewable (by KDC)
 - postdated (good a week from now for 2 hrs, KDC clears INVALID flag)

V5 extensions

- MAC: DES of md5/md4/DES- CBC
- □ Encryption+MAC: DES + md4/md5/CRC
- □ Hierarchy of realms
 - v4: principals in A to be authenticated in B, B's KDC must be registered in A's KDC

Why not?

- every network service must be modified
- □ Kerberos server must be physically secure
- □ export restrictions
- doesn't protect against Trojan horses
- off-line password attack on message from KDC to client
- if password is disclosed, eavesdropper can decrypt other tickets and spoof servers and users

Still, better than anything else.

new Kerberos features

- public key for initial authentication
- □ one-time password support
- □ Kerberos V5 RFC1510
- using Kerberos for authorization

Yaksha

- □ Problems of Kerberos
 - AS keeps C's secret key
 - On issuing ticket, user authentication only, no digital signature
 - Possible dictionary attack of password
- □ Ravi Ganesan, "The Yaksha Security System", Communication of the ACM, Vol. 39, No.3, pp.55 -60, 1996