Overview of Kerberos(I)

- Network Authentication Protocol for C/S application based on symmetric cryptosystem
- TTP authentication service
- Based on secret key, single login
- Part of MIT's project Athena (public domain), '85; I’ve been there Aug. 2000 during CHES2k
- Components: library, data base, authentication daemon, ticket-granting service, applications
- Uses authenticators (for users and servers) and tickets

Kerberos: 지복문을 지키는 머리3개 달린 개

(c)ICU Kwangjo Kim
Overview of Kerberos(II)

- Provides:
 1. authenticated messages
 2. safe messages (encrypted checksum)
 3. fully encrypted messages (encrypted telnet)
- Needs network time
- Uses one-way encryption (DES) (keys)
- Applications must be "kerbetized"
- Does not trust hosts
- V4 and V5 available

- Network Security Solution
S1. Obtaining TGT

A, password → W/S

[AS_REQ] A needs TGT

W/S → KDC

[AS_REP] $K_A\{S_A, \text{TGT}\}$

KDC

invents key S_A

finds A’s master key K_A

$TGT = K_{KDC}\{"A", S_A\}$
S2 Getting ticket to B for A

[TGS_REQ]
A wants to talk to B
TGT=\text{K}_{\text{KDC}}\{\text{A}, S_A\}
authenticator = \text{S}_A\{\text{timestamp}\}

[TGS_REP]
\text{S}_A\{\text{B}, K_{AB}, \text{ticket to B}\}

\text{KDC}
\begin{align*}
\text{invents key} \ K_{AB} \\
\text{decrypts TGT to get} \ S_A \\
\text{decrypts authenticator} \\
\text{verifies timestamp} \\
\text{finds B’s master key} \ K_B \\
\text{ticket to B} = \text{K}_B\{\text{A}, K_{AB}\}
\end{align*}

(c)ICU Kwangjo Kim
S3 Logging into B from A’s W/S

[AP_REQ]
ticket to B = $K_B\{\text{“A”, } K_{AB}\}$
authenticator = $K_{AB}\{\text{timestamp}\}$

[AP_REP]
$K_{AB}\{\text{timestamp +1}\}$
B decrypts ticket to get K_{AB}
decrypts authenticator
verifies timestamp
Interrealm Authentication

TGS_REG("A@Wonderland", "Oz@Wonderland")

Credential to OZ

TGS_REG("A"@wonderland", "D@Oz")

Credential to D

AP_REQ

(c)ICU Kwangjo Kim
Kerberos credentials(I)

authenticator

1. name/instance/realm of the client
2. timestamp

- used only once
- generated each time client wants to use a service
- encrypted with server’s session key
- inhibits replay
Kerberos credentials (II)

ticket

1. server
2. client
3. client workstation address
4. timestamp
5. lifetime
6. session key

- encrypted with server's key
- generated by TGS
- good for a single client and server
Setting up Kerberos

- get source from MIT (cygnus)
- designate secure authentication server machine
- maybe slave authentication servers
- build applications (r-utilities, login, ftp, pop, klogin, kinit, klist, kadmin)
- register principals (user, servers)
- data base is encrypted with master key
- install each server's key (/etc/servtab)

client-only easy, (PC/MAC versions)
Kerbetizing

- you can add Kerberos calls to your own client/servers
- need Kerberos data base, authenticator, ticket-granting server, and administrative programs
- can use klogin, but better if you have kerberized BSD utilities
- Kerberos calls added to login, r-utilities, NFS
- rlogin -x sets up encrypted session, every packet is encrypted
V4 implementation

- typical client/server application
- library requests, just UDP packets
- Kerberos servers listening on well-known ports (88)
- encryption: modified DES CBC
- MAC: Juneman checksum on (key, msg)
Kerberos services

<table>
<thead>
<tr>
<th>Service</th>
<th>Port Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos</td>
<td>88/udp</td>
<td>Kerberos authentication--udp</td>
</tr>
<tr>
<td>Kerberos</td>
<td>88/tcp</td>
<td>Kerberos authentication--tcp</td>
</tr>
<tr>
<td>Klogin</td>
<td>543/tcp</td>
<td>Kerberos authenticated rlogin</td>
</tr>
<tr>
<td>Kshell</td>
<td>544/tcp</td>
<td>and remote shell</td>
</tr>
<tr>
<td>Kerberos-adm</td>
<td>749/tcp</td>
<td>Kerberos 5 admin/changepw</td>
</tr>
<tr>
<td>Kerberos-adm</td>
<td>749/udp</td>
<td>Kerberos 5 admin/changepw</td>
</tr>
<tr>
<td>Kerberos-sec</td>
<td>750/udp</td>
<td>Kerberos authentication--udp</td>
</tr>
<tr>
<td>Kerberos-sec</td>
<td>750/tcp</td>
<td>Kerberos authentication--tcp</td>
</tr>
<tr>
<td>Kerberos_master</td>
<td>751/udp</td>
<td>Kerberos authentication</td>
</tr>
<tr>
<td>Kerberos_master</td>
<td>751/tcp</td>
<td>Kerberos authentication</td>
</tr>
<tr>
<td>krb5_prop</td>
<td>754/tcp</td>
<td>Kerberos slave propagation</td>
</tr>
<tr>
<td>Kpop</td>
<td>1109/tcp</td>
<td>Pop with Kerberos</td>
</tr>
<tr>
<td>Eklogin</td>
<td>2105/tcp</td>
<td>Kerberos encrypted rlogin</td>
</tr>
<tr>
<td>krb524</td>
<td>4444/tcp</td>
<td>Kerberos 5 to 4 ticket xlator</td>
</tr>
</tbody>
</table>
Encryption for Privacy and Integrity

\[m_1 \xrightarrow{E} c_1 \]
\[m_2 \xrightarrow{E} c_2 \]
\[m_i \xrightarrow{E} c_i \]
\[m_{i+1} \xrightarrow{E} c_{i+1} \]

IV \quad \oplus \quad \oplus \quad \oplus \quad \oplus

PCBC (Plaintext Cipher Block Chaining)
V5

- More functionality
- Principle names multicomponent
 - v4 was NAME/INSTANCE/REALM(40 max)
 - v5 : NAME/REALM
- New encodings (ASN 1.0)
- New ticket flags (delegation) and longer lifetimes
- Encryption/MAC replacement
- V5 will handle v4 requests
V5 encodings

- ASN.1 data representation (v4 : byteorder bit)
- address encoding (v4 : IPv4 only)
- selectable encryption/MAC
V5 tickets

- proxiable TGT - can be used to request tickets for a different net address (Alice can let Bob use her printer)
- forwardable TGT - can be presented to a remote TGS
- lifetimes
 - longer lifetimes (v4: 21 hrs) (v5:start/end)
 - renewable (by KDC)
 - postdated (good a week from now for 2 hrs, KDC clears INVALID flag)
V5 extensions

- MAC: DES of md5/md4/DES- CBC
- Encryption+MAC: DES + md4/md5/CRC

Hierarchy of realms
 - v4: principals in A to be authenticated in B, B's KDC must be registered in A's KDC
Why not?

- every network service must be modified
- Kerberos server must be physically secure
- export restrictions
- doesn't protect against Trojan horses
- off-line password attack on message from KDC to client
- if password is disclosed, eavesdropper can decrypt other tickets and spoof servers and users

Still, better than anything else.
new Kerberos features

- public key for initial authentication
- one-time password support
- Kerberos V5 RFC1510
- using Kerberos for authorization
Yaksha

- Problems of Kerberos
 - AS keeps C’s secret key
 - On issuing ticket, user authentication only, no digital signature
 - Possible dictionary attack of password