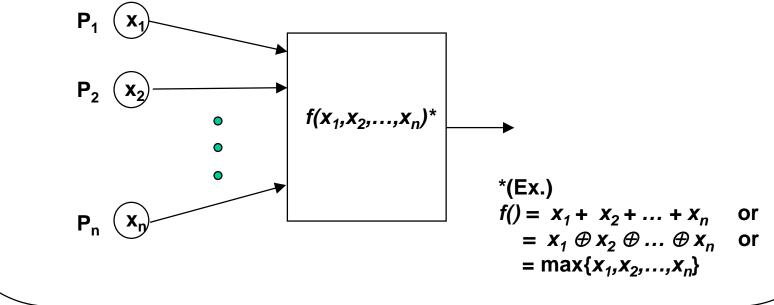
Multi-party Protocol

(Def.) While keeping each participant's information, *x_i* secret, everyone can learn the result of *f()*. (If *t* malicious players exist, we say *t-secure* protocol)
(Privacy) Even if arbitrary subset, *A* less than the half of an input set behave maliciously, any honest player except *A* can't know secret *x_i* of *P_j*.
(Correctness) Even if *A* does any malicious acts, any *P_j* can know the value of *f()*.



(w,t) Secret Sharing(I)

(Step 1) A dealer selects a secret, a₀ (a constant term and t-1 degree random polynomial with arbitrary coefficients as :

 $h(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{k-1} x^{t-1} \mod p$

(Step 2) Distributes $h(x_i)$ (*i*=1,...,*w*) to a share holder.

(Step 3) When t shadows K_1, K_2, \dots, K_t among w are given, recover a_0 by using the Lagrange Interpolation

 $h(x) = \sum_{s=1}^{t} K_i \prod_{j=1, j \neq s} t(x - x_j) / (x_j - x_s) \mod p$

(w,t) Secret Sharing(II)

(Parameter) t=3, w=5, p=17, a_0 =13 (Polynomial) $h(x) = (2x^2 + 10x + 13) \mod 17$ (Secret sharing) 5 shadows, $K_1 = h(1) = 25 \mod 17 = 8$, $K_2 = h(2) = 7$, $K_3 = h(3) = 10, K_4 = h(4) = 0, K_5 = h(5) = 11$ (Recover secret) By using $K_1=8$, $K_3=10$, and $K_5=11$, $h(x) = {8(x-3)(x-5)/(1-3)(1-5) + 10(x-1)(x-5)/(3-1)(3-5) + 10(x-1)(x-5)/(3-1)(3-5) + 10(x-1)(x-5)/(3-1)(x-5)$ 11(x-1)(x-3)/(5-1)(5-3)} mod 17 $= \{8^{inv}(8,17)^{i}(x-3)(x-5) + 10^{inv}(-4,17)(x-1)(x-5) + 11 \}$ *inv(8,17)*(x-1)(x-3)} mod 17 =8*15(x-3)(x-5) +10*4*(x-1)(x-5) 11*15*(x-1)(x-3)mod17 $= 19x^{2} - 92x + 81 \mod 17 = 2x^{2} + 10x + 13 \mod 17$ (Original secret) h(0)=13

(w,t) Secret Sharing(III)

```
(Parameter) t=2, w=3, a_0=011
(Polynomial) irreducible poly over GF(2^3) : p(x)=x^3+x+1=(1011)
   -> f(\alpha)=0, \alpha^{3}=\alpha+1
(Secret Sharing) h(x)=(101x + 011) \mod 1011
K_1 = h(001) = (101 * 001 + 011) \mod 1011 = 101 + 011 = 110
K_2 = h(010) = (101 * 010 + 011) \mod 1011 = 001 + 011 = 010
K_3 = h(011) = (101 * 011 + 011) \mod 1011 = 100 + 011 = 111
(Secret Recovering) From given K_1 and K_2,
h(x) = [110(x-010)/(001-010) + 010(x-001)/(010 - 001)] \mod 1011
   =[110(x-010)/011 + 010(x-001)/011] \mod 1011
Since 011<sup>-1</sup> = 110, subtraction =addition -> bit-by-bit xor
h(x) = [110*110*(x+010) + 010*110*(x+001)] \mod 1011
    =[010 *(x+010) +111*(x+001)] mod 1011
    = 010x +100 +111x +111 = 101x + 011 -> Original secret : h(0) = 011
```

Mental Poker

- Non face-to-face digital poker over communication channel.
- □ No trust each other.
- During setting up protocol, information must be transferred unbiased and fairly.
 After transfer, validation must be possible.
- □ Expandability from 2 players to *n* players.

History of Mental Poker

- SRA('79) : Using RSA
- Liption/Coppersmith('81) : Using Jacobian value
- **GM('82) : Using probabilistic encryption**
- Barany & Furedi ('83) : Over 3 players
- □ Yung('84)
- □ Fortune & Merrit('84) : Solve player's compromise
- □ Crepeau ('85) : Game without trusted dealer
- **Crepaeu('86) : ZKIP without revealing strategy**
- □ Kurosawa('90) : Using *r*-th residue cryptosystems
- Park('95) : Using fault-tolerant scheme

Basic Method

- A shuffles the card
- B selects 5 cards from A

□ (Problem)

- A can know B's selection
- A is in advantage position than B

□ (Solution)

Use cryptographic protocols

Mental Poker by RSA

- (Preparation) A and B prepare public keys (E_A , E_B) and secret keys (D_A , D_B) of RSA cryptosystem.
- (Step 1) Using his public key, B posts all 52 encrypted cards $(E_B(m_i))$ in the deck.
- (Step 2) A selects 5 cards in the deck and sends them to B. B decrypts $(D_A(E_A(m_i))=m_i)$ using his secret key and keep them as his own cards.
- (step 3) A selects 5 cards from the remaining 47 cards and encrypts using his public key $(E_A(E_B(m_j)))$ and sends them to B.
- (step 4) B decrypt 5 cards using his secret key and send $(E_A(m_j))$ to A (step 5) Using his secret key, A decrypts $E_A(m_j)$ and keeps them as his cards.

(Victory or defeat) Reveal his own cards to counterparts and decides (Validation) Reveal his secret card to counterpart

References

- **A. Shamir, R.L.Rivest, L.M.Adleman, "Mental Poker", MIT Technical Report, 1978**
- Description M.Blum, "Mental Poker", 1982
- S.Goldwasser, S.Micali, "Probabilistic Encryption & How to play mental poker keeping secret all partial information", Proc. of 14th ACM STOC Meeting, pp.365-377,1982,
- **I.Barany, Z.Furedi, "Mental Poker with three or more players", 1983**
- O.Goldreich, S.Micali, A. Widgeson, "How to play any mental game or a completeness theorem for protocols for honest majority", Proc. of STOC, 1987
- A.Wigderson, "How to play any mental game or a completeness theorem for fault-tolerant distributed protocols", Former(?) version of GMW paper, 1987
- K.Kurosawa, Y.Katayama, W.Ogata, S.Tsujii, "General public key residue cryptosystems and mental poker protocols", Proc. of Eurocrypt'90, pp.374-368, 1990

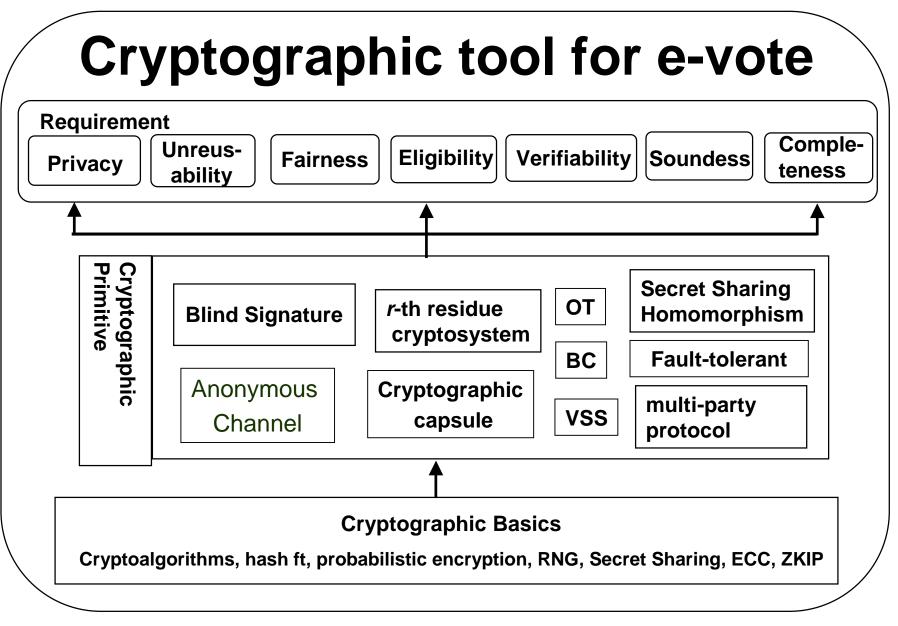
Electronic Vote

□ Yes-No Vote

- While keeping each voter's vote secret (x_i) , compute only total sum $(T=x_1+x_2+...+x_n)$
- Malicious players among n exist (interruption etc.)
- t-secure multiparty protocol
- Basic tool
 - VSS (Verifiable Secret Sharing)
 - OT (Oblivious Transfer)

Requirement of E-vote

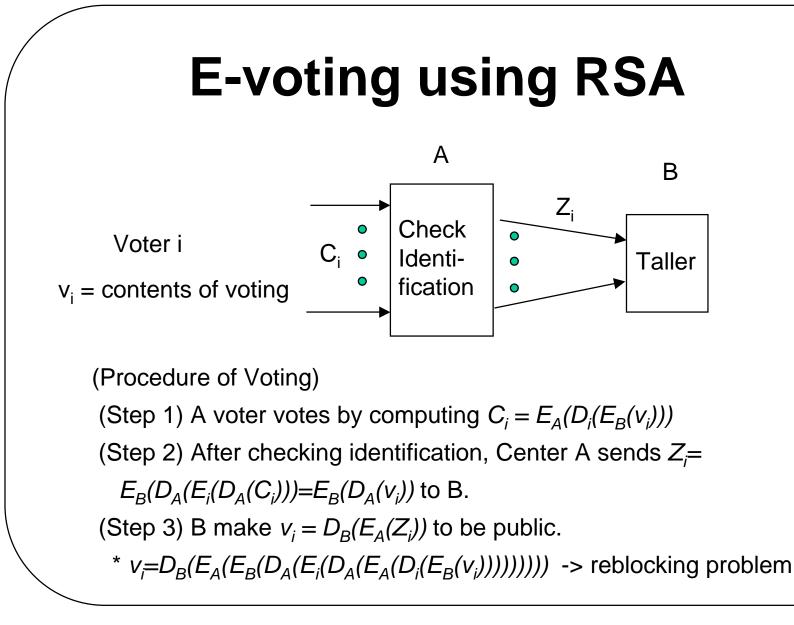
- □ Privacy : keeping each vote secret
- Unreusability : prevent double voting
- Fairness : if interruption occurs during voting process, it doesn't affect remaining voting
- □ Eligibility : only eligible voter can vote
- Verifiability : can't modify voting result
- □ Soundness : preventing malicious acts
- □ Completeness : exact computation



Implementation Methods

Using RSA

- Koyama (NTT), Meritt(America) etc
- Assuming trustful center
- Using r-th residue cryptosystem
 - Small-scale vote by Kurosawa(TIT)
- Application of multiparty protocol
 - Benaloh(America), Iverson(Norway) etc
 - Keeping voter's vote secret, small-scale yes-no vote
- Using Anonymous Channel
 - Chaum(Netherland), Ohta/Fujioka(NTT), Sako(NEC), Park(Korea) etc
 - Unlinking vote and voting, suitable for large scale voting
- Others
 - Using Non-anonymous channel (Okamoto)
 - multi-recastable ticket
 - receipt-freeness: prevent buying vote, coercion



E-voting by PKC

- A voter sends his vote by encrypting center's public key.
- Center decrypts each votes by its secret key and accumulate each vote.

□ (Problem)

- Reveal of privacy
- Center's malicious acts : post it in the bulletin board

r-th residue

- (Def.) Given integer *n*, an integer *z* is called as *r*-th residue mod. *n* iff \exists some integers *x* s.t. *z* = *x*^{*r*} mod n.
- (Notation) Z_n^r : set of *r*-th residues mod. *n* which are relatively prime to *n*, $_Z_n^r$: set of *z* in Z_n^* which are not *r*-th residues mod *n*.
- (Lemma)
- **1.** Z_n^r is a subgroup of Z_n^*
- 2. Given a fixed *r* and *n*, every integer *z* in Z_n^r has the same number of *r*-th roots.
- 3. If r and $\varphi(n)$ are relatively prime, every integer z in Z_n^* is an rth residue mod n (*i.e.*, $Z_n^r = Z_n^*$) and r-th root of z is given by $z^A \mod n$ where A satisfying $Ar - B\varphi(n) = 1$.

r-th residue cryptosystem(l)

- □ secret key : primes *p*,*q*
- □ public key : *N* (= *pq*), *y*
- □ message : $m (0 \le m < r), r(*)$: random number
- □ encryption [KKOT90]
 - $E(m) = y^m x^r \mod N(x : random number)$
 - $E(m) \bullet E(n) = y^m x_1^r \bullet y^n x_2^r \mod N$

 $= y^{(m+n)} (x_1 x_2)^r \mod N = y^{(m+n)} z^r \mod N$

Thus, $E(m+n)=E(m)E(n)z^r \mod N$ for some z

(additive homomorphism)

(*) If *r=2*[GM82], (*y/p)=(y/q)=-1*. prime *r* [CF85][BY85], *r | p-1, r | / q-1, y* is *r*-th non-residue.

r-th residue cryptosystem(II)

Decryption

 $\Box y^{j} \notin B_{N}(r), \ 1 \leq j < r, \ B_{N}(r) = \{w | w = x^{r} \ mod \ N, \ x \in Z_{N}^{*}\}$

- $gcd(p-1,r)=e_1, gcd(q-1,r)=e_2$
- $r=e_1e_2$ if r is odd, $r=(e_1e_2)/2$ if even
- $gcd(e_1,e_2)$ is 1 if r is odd, 2 if even
- (y/N)=1 if r is even.
- $\Box \text{ Under mod } p \{E(m)\}^{(p-1)/e_1} = (y^m x^r) y^{(p-1)/e_1} = (y^{(p-1)/e_1})^m (x^{r/e_1})^{(p-1)} = (y^{(p-1)/e_1})^m$
- □ Similarly under mod q, {E(m)}^{(q-1)/e}₂ =($y^{(q-1)/e_2}$)^m
- □ Thus, for $0 \le i < r$, compare $\{E(m)\}^{(p-1)/e_1}$ and $\{E(m)\}^{(q-1)/e_2}$ with $(y^{(p-1)/e_1})^i$ and $(y^{(q-1)/e_2})^i$ respectively

E-voting(1) – 1 center -

Basic Protocols

- (1) Center publishes *r*-th residue cyptosystem's public key (*N*,*y*). (# of voters, h are less than *r*)
- (2) Each voter i encrypts his vote depending on $m_i=0$ or 1 and sends $E(m_i)=y^{m_i} x_i^r \mod N$ to a center (x_i is a large random number.)
- (3)Center publish $M = m_1 + m_2 + ... + m_h$ to the public

E-voting(2) - 1 center -

- (1) Center shows that "(*N*,*y*) is public key information of r-th residue cryptostem in ZKIP"
- (2) Each voters show that "The plaintext of $E(m_i)$ is $m_i=0$ or 1 in ZKIP" (cryptographic capsule)
- (3) Center shows that "In order that $E(m_1)$... $E(m_h) = y^M x^r \mod N$ (where $M=m_1 + ... + m_h$), prove that $z=y^M x^r \mod N$ ($x=x_1...x_h$) in ZKIP.

Problems

Center can know each voter's vote
Multiple centers
– center 1 : N₁, y₁

- center n : N_n , y_n

Multiple centers

□ Voter *i*

$$-m_i = m_{i1} + ... + m_{in} \mod r$$

- *E*(*m*_{*i*1}) -> center 1 , ...
- *E(m_{in})* -> center n
- □ Center j

$$- E_{j}(M_{1j})
- E_{j}(M_{2j})
- ...
- E_{j}(M_{kj})$$
Publish $M_{j} = M_{1j} + ... + M_{kj}$

Voting result

$$- M = M_1 + \ldots + M_n$$

Problems of multiple centers

□ If a center fail, voting fails too. → Introducing Secret Sharing Scheme.

If a voter can play as a center, we don't need a center.

E-voting using SSS

□ Voter *i*

- $f_i(x) = m_i + a_1 x + \dots + a_{k-1} x^{k-1}$
- $E_1(f_i(1))$: to center 1, $E_2(f_i(2))$: to center 2, ..., $En(f_i(n))$: to center n
- If only k centers cooperate, we can know m_i.
- □ Center j publishes $M_j = f_1(j) + ... + f_n(j)$

$$f(x) = f_1(x) + \dots + f_n(x)$$

$$= (m_1 + \dots + m_k) + a'_1 x + \dots a'_{k-1} x^{k-1}$$

$$, f(j) = M_j$$

- Even if (n-k) centers fail, if we know $k M_{j'}$, then recover $(m_1 + ... + m_k)$.

Verification

□ Voter i

$$f_i(x) = m_i + a_1 x + ... + a_{k-1} x^{k-1}$$

$$\begin{cases}
y_1 = E_1(f_i(1)) : \text{ to center } 1 \\
... \\
y_n = E_n(f_i(n)) : \text{ to center } n
\end{cases}$$
□ To show that $(y_1, ..., y_n)$ is computed by above equations in ZKIP -> VSS (Benaloh'86)

Theorem from ZKIP

- If there is a secure probabilistic encryption, then every language in NP has ZKIP in which the prover is a probabilistic polynomial-time machine that gets an NP proof as an auxiliary input [GMW85].
- □ An encryption system secure as in [GM84] is a probabilistic poly-time algorithm *f* that on input *x* and internal coin tosses *r*, outputs an encryption f(x,r). Decryption is unique : that is f(x,r) = f(y,s) implies x=y.

VSS(I)

SS+ZKP

- (Purpose) To show a dealer behaves in a right way, (i.e. any number of more than *k* shareholders can reveal same secret in ZKIP).
- (1) A dealer encrypt a secret, *m* to *c(m*) and send it to n shareholders.
- (2) Using SSS, a dealer sends *f(j) (j=1,...,n)* to each shareholder *j*.
- (3) A dealer show each shadows was constructed by the above procedure by using ZKIP

(Tools) Checking each shadow in a correct way is NP problem. If there is 1-way function, there always exist ZKPS to prove this.

VSS(II)

- □ (Assumption) arbitrary 1-way permutation
- $\Box (k,n) \text{ secret } s \in Z_p$
- □ [Preparation] Sender *k*-1 degree random polynomial over Z_p^* and computes n shares.
- □ Senders encrypt *i*-th piece with user *i*'s PKC.
- Sender provide each receiver with ZKP that encrypted messages correspond to the evaluation of a single polynomial over Z_p^{*} and applying *f* to the constant term of this polynomial yield *s*.

VSS using *r*-th residue cryptosystem(I)

(step1) A dealer encrypts the i-th shareholder's secret, $s_i=f(i)$ by using r-th residue cryptosystem, $z_i = y_i^{s_i} x_i^r \mod N_i$ and makes it public. The i-th shareholder decrypts this and recover his secret information, s_i .

The following is considered as ZKIP about

- L={ z_1 , ..., $z_n | z_i = y_i^{s_i} x_i^r \mod N_i$, $s_i = f(i)$ }. Repeat steps (2)~ (4) t times, t= number of bits in N.
- (step2) A dealer selects random polynomial f' of degree (k-1) and computes the same as (step 1). i.e., a dealer
- computes the i-th shareholder's secret, s'_i=f'(i) by using r-th residue cryptosystem, z'_i = y_i^{s'_i} x'_i^r mod N_i. The i-th share holder decrypts this and recovers his secret information s'_i.

VSS using *r*-th residue cryptosystem(II)

(step 3) The shareholders send *e*=1 or 0 to a dealer. (All shareholders agree the value of *e*).

(step 4) If e=0, the dealer reveals all s'_i and x'_i and shows f' has degree of (k-1). If e=1, the dealer shows all t_i and w_i satisfying $z_i z'_i = y_i^{t_i} w_i^r \mod N_i$ and f+f' has degree of (k-1).

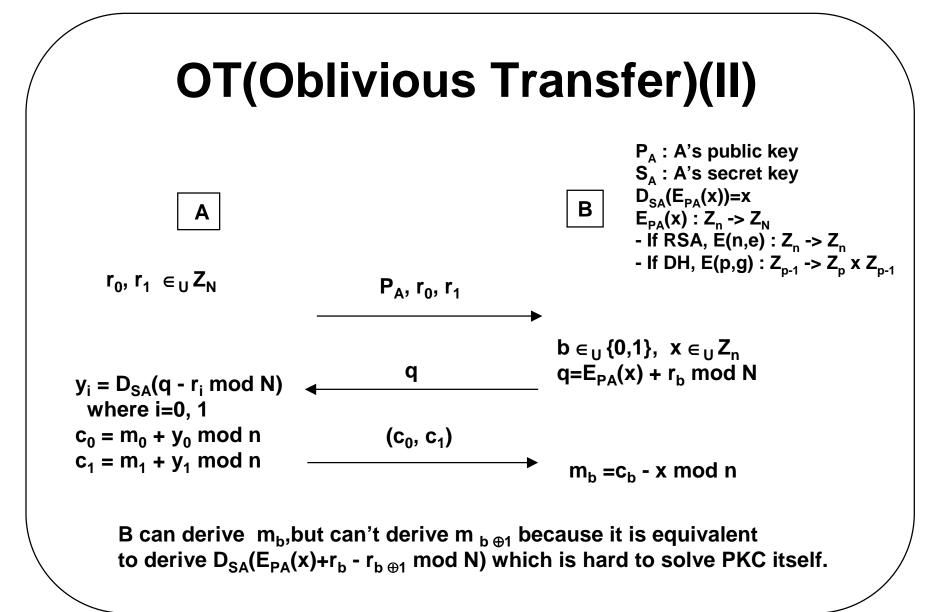
(Example) A voter sends his vote to *n* centers, it is hard to reveal his secret voting without collaborating more than *k* centers.

OT(Oblivious Transfer)(I)

- (Purpose) While keeping secret, sending the corresponding information.
- (Ex) OT : Alice has a secret bit, b. At the end of protocol, one of the following two events occurs, each with probability 1/2.
 - (1) Bob learns the value of *b*.

(2) Alice gains no further information about the value of *b* (other than what Bob knew before the protocol)

[Result] If there exists PKC, feasible to construct OT[EGL85]
[Application] electronic contract signing, multi-party protocol, etc.



OT (III)

- [1-2 Oblivious String Transfer]
- Alice has 2 strings, S_0 and S_1 . Bob has a selection bit, s. At the end of protocol, the following three conditions hold.
- (1) Bob learns the value of S_s .
- (2) Bob gains no further information about the value of S_{1-s} .
- (3) Alice learns nothing about the value of s.
- Alice has 2 secret strings. Bob select exactly one of them, and Alice doesn't know which secret Bob selected.
- [Oblivious Circuit Evaluation] Alice has some secret, i, and Bob has some secret, j. Both agreed on some circuit f. At the end of protocol, the following three conditions holds.
- (1) Bob learns the value of f(i,j).
- (2) Bob learns no further information about j (other than that revealed by knowing i, f(i,j).
- (3) Alice learn nothing about i or f(i,j).

Anonymous Channel(I)

- (Def 1) A channel is a set of probabilistic polynomial time Turing machines $(P_1,...,P_n,S_1,...,S_n)$ together with a public board. P_i is called a sender, S_i is called a shuffle machine agent. P_i or S_i is called a player.
- (Def 2) Let m_i be input of P_i and OUT={ $o_1,...,o_n$ } be the final list of public board. A channel is called an anonymous channel if the following conditions hold.

[Completeness] If every player is honest, {o₁, ...,o_n}={m₁,...,m_n}.
[Privacy] For any i, the correspondence between P_i and m_i is kept secret.

An election scheme is an anonymous channel with the following condition.

[Verifiability] If $\{o_1,...,o_n\} \neq \{m_1,...,m_n\}$, every P_i can detect this fact with overwhelming probability.

Anonymous Channel(II)

Simple Mix Anonymous Channel

(Preparation)Sender : A₁,...A_n, Receiver: B_i, B_i's public key : E_{Bi}, Role of shuffle agent S_i : decrypting each sender's encryption, removing its random part, and sorting alphabetical order then output S_i's public key :E_i
 (Purpose) Each sender doesn't know the corresponding information of message, m_i.

- (step 1) Each A_i chooses a random number R and writes C_i= E₁(R ° B_i ° E _{Bi}(m_i)) on the public board.
- (step 2) S_1 decrypts and throws away R, and then writes $\{B_i \circ E_{B_i}(m_i)\}$ on the public board in lexicographical order.
- This gives that everyone except S_1 can't tell the correspondence between $\{A_i\}$ and $\{B_i\}$.

If a Mix is dishonest, it will be big problem.!

E-vote by anonymous channel(I)

(To prevent malicious acts of Mix)

[Registration phase]

(step 1) Each P_i chooses (K_i, K_i⁻¹) where K_i is public key and K_i⁻¹ is its secret key. P_i writes E₁(R₁ ° E₂ (R₂ ... E_k(R_k ° K_i) ...)) on the public board with his digital signature.

(step 2) The k MIXes anonymous channel shuffles {K_i} in secret.

(step 3) S_k writes K_i on the public board in lexicographical order.

```
Let the list be (K'_1, K'_2,...).
```

[Claiming phase]

(step 4) Each P_i checks that his K_i exists in the list. If not, P_i objects and election stops. If no objects in some period of time, goto the next phase.

E-voting by anonymous channel(II)

[Voting phase]

- (step 5) Each P_i writes $E_1(R_1 \circ E_2(R_2...E_k(R_k \circ (K_i \circ K_i^{-1} (V_i \circ 0^l)))...))$ on the public board with his digital signature.
- (step 6) After the voting is over, the k MIXes anonymous channel shuffles $K_i \circ K_i^{-1}(V_i \circ 0^i)$ in secret.
- (step 7) S_k writes K_i $^{\circ}$ K_i⁻¹(V_i $^{\circ}$ 0^l) on the public board in lexicographical order. Let the list be (u₁ $^{\circ}$ v₁), (u₂ $^{\circ}$ v₂),...
- (step 8) Everyone checks that $u_i = K'_i$ and $u_i(v_i) = * ...* 0^i$ for each i. If the checks fails, stop.

(step 9) It is easy for everyone to obtain $\{V_1, ..., V_n\}$.

Other e-voting scheme

□ McEliece ('81) : (k,n) threshold scheme : BCH codes

Ben-Or, Goldwasser, Widgerson('88)

: using error-correcting capability of BCH to tell a center lying

References(I)

- □ J.C.Benaloh, "Secret sharing homomorphisms : keeping shares of a secret", Crypto'86, pp.251-260, 1986
- D.Chaum, "Untraceable electronic mail, return addresses and digital pseudonyms", Com. Of ACM, 24,2, pp.84-88, 1981
- D.Chaum, "Elections with unconditionally-secret ballots and disruption to breaking RSA", Proc. of Eurocrypt'88, pp.177-182,1988
- □ J.Cohen and M. Fischer, "A robust and verifiable cryptographically secure election scheme", Proc. of 26th IEEE symp. On FOCS, pp.372-382, 1985
- S.Even, O.Goldreich and A. Lempel, "A randomized protocol for signing contracts", Com. Of ACM, 28, 6, pp.637-647, 1985
- A.Fujioka, T.Okamoto and K. Ohta, "A practical secret voting scheme for large scale election", Proc. of Auscrypt'92, 1992
- K.Iverson, "A cryptographic scheme for comoputerized general elections", Advances in Cryptology, Proc. of Crypto'91, pp.405-419, 1992
- □ Choonsik Park,et al, "실용적 선거 방식과 의명 통신로", SCIS93-6C, 1993
- Koyama Kenji, "RSA **공개키 암호를 이용한 안전한 무기명 투표 방식**", Trans. of IEICE, J68-D, 11, pp.1956-1966, 1985
- H.Nurmi, A.Salomaa and L. Santean, "Secret ballot elections in computer networks", Computer & Security, 10,6, pp.553-560, 1991
- T.Okamoto, A.Fujjoka and K.Ohta, "A practical large scale secret voting scheme based on nonanonymous channels", SCIS93-1C, 1993

References(II)

- **K.Sako**, "Electronic voting system with objection to the center", SCIS92-13C, 1992
- **K.Sako**, "Electronic voting system allowing open objection to the tally", SCIS93-1B,1993
- □ J.C.Benaloh and M.Yung, "Distributing the power of a government to enhance the privacy of voters". Proc. of 5th ACM Symp. on Principles in Distributed computing, pp.53-62,1986
- □ J.C.Benaloh and D.Tuinstra, "Receipt-free secret ballot elections", Proc. of 26th ACM STOC, pp.544-553, 1994
- K.Sako and J.Killian, "Secure voting using partially compatible homomorphisms", Proc. of Crypto'94, pp.411-424, 1994
- □ K.Sako and J.Killian, "Receipt-free Mix type voting scheme a practical solution to the implementation of a voting booth", Proc. of Eurocrypt'95, pp.393-403, 1995
- C.Boyd, "A New Multiple Key Cipher and an Improved Voting Scheme", Proc. of Eurocrypt'89, pp.617-625, 1990
- C.S.Park, K.Itoh and K. Kurosawa, "Efficient anonymous channel and all/nothing election scheme", Proc. of Eurocrypt'93, pp.248-259, 1993
- K.Kurosawa, Y.Katayama, Y.Ogata and S.Tsujii, "General public key residue cryptosystems and mental poker protocols", Proc. of Eurocrypt'90, pp.374-388, 1990
- A.Pfitzmann and M.Waider, "Networks without user observability -design options", Proc. of Eurocrypt'85, pp.245-253, 1986
- D.L.Chaum, "The dining cryptographers problem : unconditional sender and receipt untraceability", J. of Cryptology, Vol.1, No.1, pp.65-75, 1988
- B.Phitzmann and A.Pfitzmann, "How to break the direct RSA implementation of MIXes", Proc. of Eurocrypt'89, pp.373-381, 1989

References(III)

- C.Rackoff and D.R.Simon, "Cryptographic defense against traffic analysis", Proc. of 25th ACM STOC, pp.672-681, 1993
- M.Waider and B.Pfitzmann, "The dining cryptographers in the disco : unconditional sender and recipient untraceability with computationally secure serviceability", Proc. of Eurocrypt'89, pp.690, 1990
- M. Waider, "Unconditional sender and receipt untraceability in spite of active attacks", Proc. of Eurocrypt'89, pp.302-319, 1990
- J.Bos and B. den Boer, "Detection of disrupters in the DC protocol', Proc. of Eurocrypt'89, pp.320-327, 1990
- B.Beaver and D.Goldwasser, "Multiparty computations with faulty majority", Proc. of 30th annaul IEEE Symp. On FOCS, pp.468-473, 1989
- O.Goldreich, S.Micali and A.Wigderson, "How to play any mental game", Proc. of 19th ACM STOC, pp.218-229, 1987
- □ V.Niemi and A.Renvall, "How to prevent buying of voters in computer elections", Proc. of Asiacrypt94, pp.164-170, 1995
- Choonsik Park, "A Study on Security and Efficiency of Cryptographic Protocols", Ph.D Dissertation, Tokyo Institute of Tech., 1995
- B. Chor, S.Goldwasser, S.Micali, B.Awerbach, "Verfifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults", Proc. of FOCS, pp.383-395, 1885