Course

∠ Title: Network Security (ICE615)

∠ Credit/Hour: 3/3

Prof : Kwangjo Kim

TA: Byongcheon Lee

∠ Hour : Tue. / Thu., PM 1:30 - 3:00

∠ Web page :

http://caislab.icu.ac.kr/course/2001/autumn/ice615

Syllabus

1. Course Description

This course offers how to evaluate a variety of vulnerabilities over the existing network and how to construct security protocols and their applications by using cryptoalgorithms, digital signature and hash function to guarantee integrity of information and authentication of network entities. Moreover, every student can get the knowledge on a typical network authentication protocol like Kerberos, secure e-mailing system like PEM, X.400, S/MIME and PGP, emerging network security protocol like IPSEC and SET protocol and firewall.

2. Textbook

- Main : Network Security : Private Communication in a Public World, C. Kaufmann, R. Perlman, M. Speciner, Prentice Hall, 1995, ISBN 0-13-061466-1
- Auxilary:
- (1) Cryptography Theory and Practice, Dougals R. Stinson, CRC Press, ISBN 0-8493-8521-0,1995.
- (2) Cryptography and Network Security, William Stallings, Prentice Hall, ISBN 0-13-869017-0,1998.
- (3) Internet RFCs / Handout
- 3. Test and Evaluation
- Midterm Exam: 17% Quiz:3% Final Exam:20% Homework: 20% Term Project : 20% -Term Paper : 15%, Attendance : 5%

Weekly Lecture

W	/eek	Contents (Comment	Wee	ek Contents	Comment		
1	Introd	duction	TP	9	E-mail Security (PC	SP) HW#3		
2	2 Digital Signature & Hash ft HW #1				10 E-mail Security (S/MIME)			
3	Basic	Protocol		11	IPSEC	HW#4		
4	Appli	ed Protocol	TP Rep#1	12	Web security	TP rep#3		
5	Authe	entication System		13	Firewall			
6	Authe	entication Protocol	HW#2	14	TP contest	(AC'00)		
7	Kerbe	eros	TP Rep#2	15	Final Exam	Written		
8	Midte	rm Exam	Written					

Term Projects(I)

- Security application to your majors
- **∠** Trust analysis: PGP web of trust vs. trust hierarchy
- ∠ NSA's FORTEZZA card and key escrow issues
- ∠ Security features of various software packages: data bases, OS's
- Vulnerabilities revealed by traffic analysis
- Secure OS technologies (TMACH, CMWs)
- Computer architectures for security
- Digital watermarks and copyrights
- ∠ Vulnerabilities of Java, javascript, ActiveX
- Techniques/algorithms for hi-speed crypto (parallel)
- DNS security
- Cryptographic hashes
- Information warfare /electronic warfare
- ∠ IPv6 key mgt: photuris, SKIP, ISAKMP

Term projects(II)

- Key distribution for multicast sessions
- Encryption in banking, e-commerce, or digital cell phone
- **Electronic payment schemes (IKP, ecash, ...)**
- **∠** Chaotic functions as one-time pads
- **∠** Compare firewall products
- Authorization models (capabilities, ACLs)
- Virtual Private Networks
- **∠** Compare UNIX scanners (ISS, COPS, SPI)
- Micropayment schemes
- ∠ Implement 64-bit block ciphers (on Alpha)
- **∠** Performance comparison of: ciphers, hashes, public key
- Adding security to an application (talk, irc, ...). First add authentication, then secret-key encryption, then Diffie-Hellman, then public-key, then multi-platform.

Etc.

Why are you taking this course?

- Need credits
- Thought a real professor was teaching
- Want to be rich and famous
- ✓ Security is a hot issue.

- Etc./

Security

- Protecting asset
- Security goals
- Security policy
- **∠** Identify threats
- Develop controls / countermeasure

Computer Security

- Asset
 - Hardware
 - Software
 - Information
- - Privacy (Confidentiality)
 - Integrity (Accuracy)
 - Availability

Threats

- Natural and Physical
- **∠** Unintentional
- - Interruption
 - Interception
 - Modification
 - Fabrication

Threat Jargon

∠ Active (Program)

- Worm (independent): program that replicates itself through network
- Logic bomb: malicious instructions that trigger on some event in the future, such as a particular time occuring
- Trojan horse: program that does something unexpected (and often secretly)
- Trapdoor: an undocumented entry point intentionally written into a program, often for debugging purposes, which can be exploited as a security flaw
- Virus : program fragment that, when executed, attached itself to other programs

∠ Passive

- Sniffer
- Wiretap
- TEMPEST
- Social Engineering (dumpster diving)

Countermeasures

- **∠** Education
- Physical protection
- Authentication
- Authorization
- Auditing

* Threat/countermeasures : never ending cycle

Risks and Countermeasures

	DB Storage	Host computer	Wireless Network	Router	Telephone FAX Terminal	Smart Card
Risk	Data /file deletion copy modification	OS / Application vulnerabilities Denial-of-service Virus Replay attack EMI/EMC	Wiretapping Data Modi- fication EMI/EMC	Protocol Vulnerability Traffic overload	Imperso- nation EMI/EMC	Imperso- nation Duplica- tion
Mea sure	Access Control Secure DBMS	Identification Vul. diagonsis Crypto API Digital Signature TEMPEST Anti-virus Secure OS	Cipher algorithm Hash ft.	Vulnerability checking Secure Router	Identification TEMPEST	Identifi- cation Secure COS High speed LSI

"Classification of Information Security", KIISC Review, '98.3.p.7

Network Security Physical Datalink Transport Session Presentation Application Network Layer 2 Layer 1 Layer 5 Layer 3 Layer 4 Layer 6 Layer 7 **Authentication** Confidentiality Integrity Non-repudiation **Access Control Encryption Authentication** Data **Digital Access Control Exchange Signature** Integrity **Traffic Control Notorization Routing Control Security Label Detection Trust Audit** Recovery

Are we at risk?

Assets

air defense nuclear weapon system

command and control Taco Bell

banking electronic funds transfer

power grid air traffic control

phone system elevator

traffic signal trains

corporate e-mail grades

refinery stock exchange

DMV(Dep't of Motor Vehicles) TV/radio

medical records police record

personnel records payroll

∠ Information Warfare / Electronic Warfare

The Attackers

- **Amature**
- ∠ Insider (greed, disguntled)
- **∠** Hackers
- **Criminals**

Why?

- Money
- retribution
- pathological
- political/military
 - ; easy to do, hard to catch, harder to prosecute

Detect & Correct

When an incident is detected:

- ∠ Don't panic
- ∠ Identify the problem
- Assess the damage

- ∠ Determine/eliminate cause
- ✓ Notify mgt, CERT (CERT-KR)

Handling the Intruder

- Monitoring the intruder
- Tracing the connection
- Contacting the intruder
- Terminating the intruder :-)

Legal/Political Issues

- classified or military information
- rules of evidence (hardcopy)
- US law classifies cryptography as a munitions!; many encryption algorithm are patented/licensed. key escrow.
- Should the citizens of a country have the right to create and store documents their government can't read?

 -- Ron Rivest

Risk Assessment

- Identify assets and value
- Determine vulnerabilities
- Estimate probabilities
- Estimate losses
- **∠** Identify controls and their cost
- Estimate savings