
A Thesis for the Degree of Master

Complexity-based Packed

Executable Classification with High

Accuracy

Hanyoung Noh

School of Engineering

Information and Communications University

2009

Complexity-based Packed

Executable Classification with High

Accuracy

Complexity-based Packed

Executable Classification with High

Accuracy

Advisor : Professor Kwangjo Kim

by

Hanyoung Noh

School of Engineering

Information and Communications University

A thesis submitted to the faculty of Information and Com-

munications University in partial fulfillment of the require-

ments for the degree of Master of Science in the School of

Engineering

Daejeon, Korea

December 16, 2008

Approved by

Professor Kwangjo Kim

Major Advisor

Complexity-based Packed

Executable Classification with High

Accuracy

Hanyoung Noh

We certify that this work has passed the scholastic stan-

dards required by the Information and Communications Uni-

versity as a thesis for the degree of Master

December 16, 2008

Approved:

Chairman of the Committee
Kwangjo Kim, Professor
School of Engineering

Committee Member
Soontae Kim, Assistant Professor
School of Engineering

Committee Member
Doo Ho Choi, Ph.D
ETRI

M.S.

20072030

Hanyoung Noh

Complexity-based Packed Executable Classification with

High Accuracy

School of Engineering, 2009, 35p.

Major Advisor : Professor Kwangjo Kim.

Text in English

Abstract

Signature-based anti-virus scanner that utilizes specific bytes string

is one of the popular malware detection methods. This method shows

high efficiency and low false rate in detecting malware. However, it

can’t successfully detect the malware when packer method is applied

to the malware. Packer compresses or encrypts the target file and pads

compressed or encrypted file to additional section. Therefore, it changes

the bit structure of the malware. When packed executable file is exe-

cuted, compressed or encrypted file is decompressed or decrypted on

memory. Then, the program that is loaded on the memory is executed.

This means that function of the packed executable program is same as

an original program.

Signature-based anti-virus scanner employs two methods to over-

come the difficulty of detecting packed malware: packed executable

classification and generic unpacking. Packed executable classification

decides whether the target program is packed or not. Then, generic

unpacking is performed depends on the decision of a packed executable

classification. Various generic unpacking methods have been researched

[13, 14, 15, 22], but these generic unpacking methods consume long time

i

and computing resources. Thus, accuracy of a packed executable clas-

sification is the critical issue in efficient malware detection. Because

a false positive case happens, unnecessary time and resource is wasted

performing generic unpacking on a non-packed executable file. On the

other hand, a false negative case happens, malware detection would fail.

Previous packed executable classification methods show high false

rate and can be easily evaded. PEiD[11] can be easily evaded by false

signature. Bintropy[20] shows about 10% false rate. This method also

can be evaded by monotonous padding bytes. Finally, Roberto et al.

show high classification accuracy rate about 97%, but this method can

be evaded by PE headers modification.

In this thesis, we propose highly accurate classification method which

is resistant against evasion. Moreover, our method is efficient enough to

be applied to practical anti-virus scanner. Our proposed classification

method is based on complexity since packed executable file is usually

compressed or encrypted.

We use LZO compression algorithm to measure the complexity which

is the fastest compression algorithm as far as we know. Moreover, we

propose a block dividing algorithm for exact complexity measurement

which is previous step of complexity measurement. This block dividing

step removes unnecessary part of complexity measurement. In our ex-

periment, our proposed method shows accuracy about 97%. This rate

is about 10% more accurate than Bintropy. In addition, our proposed

method cannot be evaded by known evasion techniques, and it is effi-

cient to be applied to practical anti-virus scanner.

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

List of Abbreviations vii

List of Notations viii

I Introduction 1

1.1 Overview . 1

1.2 Our Goals . 3

1.3 Organization . 4

II Preliminaries 5

2.1 Portable Executable File Format 5

2.2 Packer . 7

IIIRelated Work 10

3.1 Unpacking Methods . 10

3.1.1 Signature-based Unpacking method 10

3.1.2 Algorithm-based Unpacking method 11

3.1.3 Generic Unpacking method 11

3.2 Packed Executable Classification 12

3.2.1 PEiD [11] . 13

iii

3.2.2 Bintropy [20] . 15

3.2.3 Roberto et al. [21] 16

IV Proposed Method 18

4.1 Our Approach . 18

4.2 Implementation . 20

4.2.1 Step 1 : Block Dividing 20

4.2.2 Step 2 : Complexity Measure 22

4.2.3 Step 3 : Classification 24

V Experiment & Analysis 25

5.1 Environment . 25

5.2 Threshold Setting . 25

5.3 Analysis . 26

5.4 Comparison . 28

VI Conclusion 29

국문요약 31

References 33

Acknowledgement 36

Curriculum Vitae 37

iv

List of Figures

1.1 Operation of Signature-based Anti-virus Scanner 2

2.1 File and memory of PE Structure 6

2.2 Packer structure . 7

2.3 Execution operation of packed executable file 8

3.1 Insert the fake signature by RLPack [19] 14

3.2 Modification of PE Header by Stud PE [4] 17

4.1 Overview of Proposed Method Implmentation 21

4.2 Block Dividing Algorithm 23

v

List of Tables

4.1 Notation of Block Dividing 22

5.1 Machine Learning Result 26

5.2 Average entropy and complexity of target files 26

5.3 Standard Deviation of target files 27

5.4 Result of Classification 27

5.5 Packed classification methods comparison table 28

vi

List of Abbreviations

DLL Dynamic Link Library

EAT Export Address Table

IAT Import Address Table

LZW Lempel-Ziv-Welch

LZO Lempel-Ziv-Oberhumer

PE Portable Executable

vii

List of Notations

B Block String without unnecessary string

C Complexity value

CC Collision count

Compress(X) the length of compressed X

CT Collision threshold

H(X) the entropy of random variable X

K(X) the Kolmogorov complexity of random variable X

min(X) the minimum length of input string using specific algorithm

p(x) distribution of x

th Threshold

W Window

W ′ Temporary window

x a random variable in X

X a finite string

viii

I. Introduction

1.1 Overview

An enormous amount of economic loss was caused by spread of malware,

which exceeds $13 billion dollar in 2007 [5], and this is still seriously

increasing.

To defeat the malware, anti-virus scanner, firewall, intrusion detec-

tion system, honeypot and etc. are proposed. Among the proposed

methods, anti-virus scanner is commonly used since it has low false rate

and high efficiency. Two types of host-based anti-virus scanner exist:

behavior-based and signature-based [6]. The behavior-based anti-virus

scanner is usually used to detect unknown malware such as zero-day

worm, but it has high false rate. On the other hand, signature-based

anti-virus scanner is more popularly used to detect malware since it has

false rate. In this thesis, we focus on signature-based anti-virus scanner.

The signature-based anti-virus scanner detects the malware by sig-

nature which exists in malware as a specific bytes string, so it has low

false-negative rate. If no signature is matched with the target, anti-virus

scanner will classify an input file as non-malware. However, malware

maker uses various evasion techniques such as control-flow obfuscation,

source obfuscation, instruction virtualization, and packer which com-

bine all evading techniques. In fact, the packer is originally proposed

to reduce file size, but malware maker misuse packer to hide its mali-

cious intention. As we mentioned before, signature is a specific bytes

string. When packer technique is applied to specific file, that file will

have different file structure in comparison to the original file. It means

that malware makers can generate variant of malware using packers.

1

Thus, anti-virus scanner cannot detect variant of malware by original

signature. Recently, almost 92% malwares are found to be protected by

packers [24]. To overcome those difficulties, generic anti-virus scanner

will follow Figure 1.1 operation.

Figure 1.1: Operation of Signature-based Anti-virus Scanner

Before the concept of packer was proposed, we did not require spe-

cific algorithm such as packed file classification or generic unpacking

procedures. When suspicious file is input, anti-virus scanner checks the

file type, and signature detects whether the suspicious file is malware

or not. However, packer changed entire structure of anti-virus scanner.

Let us assume that suspicious file is input into anti-virus scanner.

Then, a file type should be checked, and packed file classification pro-

2

cedure is necessary. If suspicious file is packed, that goes into generic

unpacking procedure. The generic unpacking unpacks the packed ex-

ecutable file. Finally, suspicious file is detected by signature. When

signature is found, it means that suspicious file is malware.

Therefore, anti-virus scanner should have specific mechanism that

could judge whether the packer protects the malware or not. There

have been many research works proposed for unpacking methods [13,

14, 15, 22]. Nevertheless, these proposed unpacking methods have been

low unpacking success rate, and requires longer time to unpack.

To detect malware with high accuracy and efficiency, we need more

exact packed executable classification method which is pre-step of generic

unpacking method. If packed file classification conducts false classifi-

cation, it wastes unnecessary time and computing resources, and user’s

terminal could be infected by malware.

However, packed file classification is not popularly researched [20,

21], and those works that are already proposed to have various weak-

nesses. [20] has high false classification rate, [21] can be evaded easily

even if it performs with high classification rate.

1.2 Our Goals

Our main goals are to achieve high accuracy on packed file classifica-

tion with appropriate performance for practical anti-virus scanner. In

addition, our proposed method is not evaded by avoidance techniques.

Ultimately, our goal is that reduce the malware infection.

To achieve these goals, we approach the packed executable file classi-

fication based on complexity, not signature, entropy, or characteristics.

Since packed executable file that is compressed or encrypted usually has

high complexity, we can easily judge that executable file is packed or

not. A complexity concept can measure the information quantity more

3

correctly than entropy concept.

We implement our proposed method using Lempel-Ziv-Oberhumer

(LZO) compression algorithm [18] which is the fastest compression al-

gorithm as far as we know. In our experiment, our proposed method

achieves our goals: high accuracy about 97% with enough performance

in our experiment, and cannot be evaded by known evade techniques.

1.3 Organization

The remaining parts of this thesis are organized as follows: Chapter

II give portable executable file structure and definition of packer in

briefly to explain previous related works. In Chapter III, we describe

previously proposed unpacking why we need high accuracy of packed file

classification method. In addition, we explain limitations and detail of

previous proposed packed executable classification methods. In Chapter

IV, we present our proposed method based on complexity. We describe

the implementation and experiment result of proposed method. Finally,

we summarize and conclude this thesis in Chapter VI.

4

II. Preliminaries

2.1 Portable Executable File Format

In this thesis, we introduce this portable executable(PE) file format for

two reasons: understanding operation of packer and explaining Roberto

et al. [21] what they use the values of PE headers.

The PE file format is designed for Win32-based systems, it supposed

to be across all 32-bit operating systems of Microsoft. Users can use

same PE format executable on any version of Windows: Windows NT,

Windows 95, Windows XP, and Win32s. Moreover, it can support 64-

bit operating systems such as Windows Vista by setting a value of PE

header. Executable files(.exe), object code(.obj), and Dynamic Link

Library(DLL)(.dll) are kind of PE file formats.

PE file format is constructed with IMAGE DOS HEADER, MS-

DOS Stub Program, IMAGE NT HEADER, IMAGE SECTION HE-

ADERS, and IMAGE SECTIONS. Figure 2.1 illustrates the PE file for-

mat.

When we execute the PE executable file, PE loader verifies the PE

executable file and maps the file on the virtual memory. And then, loads

the functions of import table using DLL files.

Every PE file begins with IMAGE DOS HEADER. This header needs

for execution on old version Windows O/S. The only importance value

is e lfanew value which is a file offset of the PE header. This e lfanew

value points out the PE header.

The IMAGE NT HEADER is most important header of PE file for-

mat; it has core information for PE loader. This header begins with PE

signature means Portable Executable. This header consists with two

5

Figure 2.1: File and memory of PE Structure

headers: IMAGE FILE HEADER and IMAGE OPTIONAL HEADER.

IMAGE FILE HEADER has the number of sections value which is used

in Roberto et al. IMAGE OPTIONAL HEADER has the DataDirec-

tory structure which has Import Address Table(IAT) and Export Ad-

dress Table(EAT). This IAT is a list of used external functions of DLL

files. When the PE file is loaded, PE loader allocates the external func-

tions using IAT.

Next is IMAGE SECTION HEADRS. This header consists with sec-

tion name, characteristics of section such as permission of section: Read-

able/Writable/Executable, and IMAGE SECTION follows IMAGE SEC

TION HEADERS. Usually, Microsoft compiler makes sections like .text,

.data, and .rsrc.

This PE format specification is defined in winnt.h file, and [16, 17]

describe this PE format more detailed.

6

2.2 Packer

A packer is proposed to reduce file size at first. A file applied packer

that we called ’packed executable file’. This packed executable file op-

erates functionally same as original file. Figure 2.2 illustrates packing

operation of packer.

Figure 2.2: Packer structure

In packing procedure, a packer compresses or encrypts the IMAGE SE

CTION of input file that is the packed data, and then insert additional

UNPACKING SECTION HEADER and UNPACK SECTION which can

decompress or decrypt the packed data. Lastly, Packer modifies the en-

try point to start instruction of UNPACKING SECTION. Those are all

of packing process. Therefore, packed executable file has smaller size

than original file size and same functional operation as original file.

Now, we explain the execution of packed executable file. Follow

Figure 2.3 illustrates the procedures of execution of packed executable

7

file.

Figure 2.3: Execution operation of packed executable file

When a packed executable file is executed, PE loader loads the

packed file to virtual memory, and then the instruction of UNPACK-

ING SECTION that is indicated by entry point is executed. Next,

UNPACKING SECTION decompresses PACKED SECTION which is

original section(s). Lastly, UNPACKED SECTION is executed on vir-

tual memory. That is why operation of packed executable file is func-

tionally same.

However, a packed executable file has a different bytes structure with

original file. Namely, packed executable file has a different signature

with original file. Therefore, anti-virus scanner does not consider packer

that cannot detect the packed executable file by a signature of original

8

file.

There exists various packers such as UPX, FSG, ASPack, Morphine,

Exestealph, Pecompact, Yodacrypt, MEW, Packman, Upack, RLPack,

Icrypt, EXE Smasher, Themida, and etc. Also, these packers have lots

of versions, and manual packers which malware makers made exists.

Malware maker is able to generate variant of malware using lots of

packers to evade anti-virus scanner.

For instance, there exist one malware and three packers. Malware

maker generates three variant malwares using three packers. If malware

maker applies packers to three variant malwares repeatedly, lots of vari-

ant malwares can be generated. In this way, malware maker makes

variant malwares using various packers. As a matter of fact, 92% of

malwares are packed executable [24] in 2006. Of course, there exists

that usage of packer for protection of commercial programs from mali-

cious reverse engineering, but this normal usage is less than 2% (in fact,

there is no study about normal usage of packer). Thus, anti-malware

methods such as ’exepacker blacklisting [9]’ are proposed, that is packed

executable files are considered as malware.

9

III. Related Work

In this chapter, we review previously proposed methods about unpack-

ing and packed executable classification. Firstly, we describe why we

need high accuracy of packed executable classification method through-

out the review the limitations of previous unpacking methods. And

then, we review the shortcomings of proposed packed executable classi-

fication methods.

3.1 Unpacking Methods

Unpacking is the recovering the original file from a packed executable

file. Simply, we can unpack a program by executing and dumping the

program on virtual memory. However, it is infeasible in anti-virus scan-

ner since the packed executable could be malware. It means that ex-

ecutes the malware on user’s computer. Therefore, this executing and

dumping unpacking method cannot apply to anti-virus scanner. Ex-

cepting dumping unpacking method, we describe the safe unpacking

methods which can be applied anti-virus scanner.

3.1.1 Signature-based Unpacking method

Signature-based unpacking method is using optimized unpacking algo-

rithm which is determined by the signature that specific length of bytes

string of packed executable file. It is fast and exact unpacking method,

because using optimized unpacking algorithm. However, it must need

signature update and analysis of optimized unpacking algorithm. It

cannot respond to the new proposed packer and modified packer.

10

There exist a large number of packer programs such as commer-

cial, open-source packer, and manual packer. Therefore, it is a difficult

problem that deals with various packers using this signature-based un-

packing method. Moreover, to make optimized unpacking method, we

have to analyze the packed executable file. It needs more than hour

times and patience of human.

In this respect, we cannot apply signature-based unpacking method

to anti-virus scanner mainly.

3.1.2 Algorithm-based Unpacking method

Algorithm-based unpacking method is proposed by Miroslav et al. [15],

it overcomes the long time of analysis of packed executable file. Au-

thors suggest the decompression framework that is used characteristic

of packer which are used famous or similar compression algorithm such

as LZ77, Lempel-Ziv-Welch(LZW), etc. This unpacking method can

unpack by applying to decompress algorithm to packed executable file’s

packed section. For example, when packed executable files are packed

by LZW compression algorithm, authors can unpack all the packed ex-

ecutable files using one LZW decompression algorithm. In this way,

Miroslav et al. can reduce time of development of unpacking algorithm

using compression algorithm.

Nevertheless, Miroslav et al. have limitations that need analysis

of development unpacking of new compression algorithm. Moreover, a

little modification of packing algorithm needs an implementation of new

decompression algorithm.

3.1.3 Generic Unpacking method

Previous signature-based and algorithm-based unpacking method need

human resource for analysis of unpacking algorithm and decompress

11

algorithm. However, [13, 14, 22] are generic unpacking methods which

does not need any human resource for new packer.

PolyUnpack [22] can unpack the suspicious file using static and dy-

namic analysis. In their experiment, PolyUnpack takes average 1,020

seconds for unpacking. In fact, this time includes VMware’s startup

and shutdown time.

Renovo [14] achieved higher success rate and efficiency than PolyUn-

pack using instruction points moving where to newly-written memory

region which is a unique feature of packed executable file. Renovo has

about 9 times faster about 40 seconds than PolyUnpack about 365 sec-

onds in their experiment.

These PolyUnpack and Renovo can unpack the packed executable

files without human analysis, but it has huge to apply anti-virus scanner.

On the other hands, OminUnpack [13] is something different with

PolyUnpack and Renovo. This OmniUnpack locates on the kernel of

operating system, and it detects the signature of malware when a pro-

gram is executed. In this way, this OmniUnpack can detect malware

since the program is unpacked when execution time. OmniUnpack has

higher efficiency than PolyUnpack and Renovo, but it still needs more

improvement of efficiency. This unpacking method is about 5 times

lower than anti-virus scanner. Moreover, it operates on the kernel that

is another overhead.

3.2 Packed Executable Classification

Packed Executable Classification is previous step of unpacking proce-

dure. We review proposed unpacking methods in previous chapter;

unpacking methods need not only long time for unpacking, but also

unpacking success rate is not good. Therefore, this packed executable

classification step is important.

12

When non-packed executable file is classified to packed executable

file, then non-executable file goes to unpacking step. And then, generic

unpacker needs unnecessary time and user’s resource, because non-

executable file cannot be unpacked. On the contrary, packed-executable

file is classified to non-packed executable file, then packed executable

file is detected by anti-virus scanner. However, anti-virus scanner can-

not find the signature of malware from packed executable file since it is

packed. Therefore, high-accuracy packed executable classification can

reduce unnecessary time and user’s computing resources and archive

high malware detection rate.

There are three types of proposed packed executable classification

methods: PEiD, Bintropy, Roberto et al.

3.2.1 PEiD [11]

Packer has a unique signature that their own. This signature is almost

same as malware signature that anti-virus scanner used. The most fa-

mous signature-based classification method is PEiD [11] program; PEiD

supports plug-in and external signature database. It is fastest classifi-

cation method since using only specific length of byte string, and it has

low false positive rate.

However, signature-based classification method has limitations: it

needs periodic signature updates since the number of new proposed

packers is around 15 per month and modified packers(manual packer)

are easily programmed using open-source packer. In addition, malware

maker can modify the signature of packer easily. It is possible that

insert fake signature to pretend different signature of packer, not original

signature. Figure 3.1 shows a change of signature of packer by RLPack.

RLPack is a kind of packer that can insert a ’fake signature’. Ap-

plied RLPack executable file can be classified as another packer applied

13

Figure 3.1: Insert the fake signature by RLPack [19]

executable file. However, it means that it is possible insert unknown

signature to packed executable file, and then signature-based classifi-

cation method cannot find a matched packer signature. Summing up,

this signature-based classification has high efficiency and low false pos-

itive rate, but it needs signature updates and can be evaded by fake

signature.

14

3.2.2 Bintropy [20]

Bintropy is based on entropy packed executable classification method.

This entropy-based method can overcome the limitations of signature-

based classification method which needs of periodic signature database

update and fake signature evasion, because entropy-based method uses

entropy measure and classifies file as packed or not. This entropy con-

cept use that packed executable files are usually compressed or en-

crypted. In the other words, ordinary compressed or encrypted file

has been high-entropy, so if high entropy file can be classified to packed

executable file.

The entropy concept is proposed by Shannon [3] in 1948. Definition

of entropy is that a measure of the uncertainty of input string. Let X be

a finite or countable set, let x a random variable in X with distribution

P (X = x) = p(x). Then the entropy of random variable x is defined as

III.1.

H(X) = −
∑
x∈X

p(x) log p(x) (III.1)

Bintropy authors assume that the packed executable file has high

entropy, therefore Bintropy can classify the file as packed or not by

entropy value. Bintropy reads whole file once and calculate the entropy,

so it is fast. This Bintropy has a merit that does not need signature

of packer update which is a limitation of signature-based classification

method.

However, This method has two shortcomings. First is that Bintropy

has higher false rate around 10% [21] than other classification methods.

Second is that Bintropy can be evaded by simple evasion techniques

such as adding monotonous bytes string to the section. For example,

malware maker adds long null byte string to the packed executable file,

that packed executable file has low entropy rate which can be classified

15

to non-packed executable file by Bintropy method.

3.2.3 Roberto et al. [21]

Roberto et al. use values and entropy of PE format header. Following

is the feature values of Roberto et al., and these values described in PE

file format section of preliminaries.

• Number of standard sections

• Number of non-standard sections

• Number of Executable sections

• Number of Readable/Writable/Executable sections

• Number of entries in the IAT

• Entropy of the PE header

• Entropy of the code sections

• Entropy of the data sections

• Entropy of the entire PE file

Entropy values are calculated using III.1 and other values are counted

from PE format header. Authors define the standard sections: .text,

.data, and .rsrc., and others are non-standard sections. In addition,

number of entries in the IAT is important value since usually packed

executable files have a few numbers of IAT entries than ordinary exe-

cutable files. In general, executable files use dynamic implicit linking,

but packed executable files use dynamic explicit linking method.

For instance, UPX packed executable file has .UPX0, .UPX1, and

.rsrc sections; this packed file has one standard section and two non-

standard sections, and less than 10 IAT entries. Conversely, Ordinary

16

executable file has .text, .data, and .rsrc sections, and has been larger

than 100 IAT entries.

In this way, Roberto et al. have classified the suspicious file as packed

executable or not with high accuracy 98.91% in their experiment.

However, there is a blind point that feature values of PE format

header could be modified. Each name of section and permission of

each section is not absolute value. Therefore, all feature values could

be modified by malware makers to evade Roberto et al. For example,

malware maker modifies the UPX packer has .text, .data, and .rsrc

section names as same as ordinary executable file. Also, this packer pads

the monotonous bytes string to each section to reduce rate of entropy.

And then, Roberto et al. cannot classify the new packed executable file.

Figure 3.2: Modification of PE Header by Stud PE [4]

Figure 3.2 is the StudPE program which is one of the PE header

modification tools. StudPE can modify the name of section, number of

section, size of section, permission of section, and context of section. It

means that we can evade Roberto et al. by fake packed executable files

using StudPE.

17

IV. Proposed Method

4.1 Our Approach

In related work, we review the previously proposed unpacking and

packed executable classification methods. In this thesis, we propose

a packed executable file classification method. We have three goals:

archive high accuracy, non-evade technique, and efficiency that can ap-

ply practical anti-virus scanner. These goals ultimately contribute to

the anti-virus scanner that reduces malware infection with a little over-

head.

In Bintropy [20], authors assumed packed executable files has higher

entropy than non-packed executable files, but Bintropy has high false

rate about 10%. In this thesis, we assume packed executable files

have high complexity than non-packed executable files since packer fre-

quently used compression algorithms or encryption algorithms for pack-

ing. Both compressed data and encrypted data are known as that has

high complexity. Underlying this assumption, we propose complexity-

based packed executable file classification method.

Our approach is based on the complexity, not signature, entropy,

and characteristics. As a matter of fact, an entropy concept is a kind

of complexity concept, but there is some difference. In this section, we

describe what complexity is, how to measure the complexity, and how

to classify the file using complexity.

The complexity concept is proposed by Kolmogorov, Chaitin and

Solomonoff [10] to complement the entropy concept to more exact mea-

sure information quantity. The Kolmogorov complexity(simply, com-

plexity) K(X) of a finite string X will be defined as the length of the

18

shortest string of X. In other words, K(X) is the length of the shortest

computer program that represents X and then stops. The computer

program can be programming languages or any others. Complexity

function is defined as

K(X) = min{X} (IV.1)

For example, the finite string X as

11111....1︸ ︷︷ ︸
10,000times

then, we can represent this X as follow program.

print 10,000 times a ’1’

However, a serious problem of complexity concept is incomputable

[8], since finding optimal algorithm that makes the shortest length out-

put program from input string x is infeasible. A good news is compres-

sion algorithm as same as the complexity concept.

Compress(X) = (X ′) (IV.2)

where X ′ is the compressed string of string X. Thus, various compres-

sion algorithms are used to measure the complexity [23]. The definition

of compression algorithm is reduced input size to best smallest output

size using their algorithm. Therefore, we can measure the complexity of

the input file using compression algorithm for our classification method.

However, we do not need whole function of compression algorithm to

measure the complexity. Compression algorithm consists of calculation

of compressed length, writing compressed data, and writing a dictionary

or other additional data for decompressing. For complexity measure,

19

we do not need writing compressed data and writing additional data for

decompressing procedures. In means that performance of measure the

complexity is more efficient than whole compression algorithm.

In this way, our approach can classify the packed executable file

using complexity C and threshold th by follow operation.

1. C = Length of X / Length of Compress(X)

2. C > th : packed executable file.

3. Else : non-packed executable file.

where X is input string. Almost of packed executable file is com-

pressed or encrypted, we can classify the packed executable file when

file has high complexity that over the th value. In our approach, setting

th and choice the compression algorithm are important for accuracy and

performance.

4.2 Implementation

We consider three steps for implementation of our approach. First step

is a block dividing step for unnecessary bytes string of input file. Second

step is that measure the complexity of string throughout the step 1.

Last step is classification of input file, whether packed executable or

not using th. Figure 4.1 illustrates overview of proposed method. We

will describe all steps in detail.

4.2.1 Step 1 : Block Dividing

Step 1 is a block dividing step. In general, a PE file has lots of null bytes

for filling the left of used section alignment which is a basic unit of file

alignment. For example, compiler uses only 0x300 data space when file

20

Figure 4.1: Overview of Proposed Method Implmentation

alignment is 0x400, then 0x100 spaces is filled with null bytes. Moreover,

a PE file has Bitmap icon file which has low entropy value generally.

Moreover, occasionally packed executable file has lots of null bytes, icon

file with small size about less than 100KB. In this case, that null bytes

padding or icon file can reduce the complexity in largely since size is

small as could be reduced the complexity to evade the classification.

Simply put, these cases can interrupt our classification. Therefore,

we should consider this block dividing step. To implement this step, we

propose a simple algorithm. Following table 4.1 describes notation of

our block dividing algorithm and Figure 4.2 illustrates the algorithm.

Dividing algorithm is simple, if the same value of W is found con-

secutively over CT times, then removes W until W is different with W ′.

When this dividing algorithm is ended, B consists only necessary string

21

Table 4.1: Notation of Block Dividing

B Block string that without unnecessary string

W Window contains n length string

W ′ Temporary Window

CC Collision count

CT Collision Threshold

without unnecessary string such as icon, null bytes, or other monotonous

strings. We will use the B string in next complexity measure step.

4.2.2 Step 2 : Complexity Measure

Step 2 is complexity measure step which is most important step of

our proposed method. We implement the complexity measure using

Lempel-Ziv-Oberhumer(LZO) compression algorithm [18] which is the

fastest lossless compression algorithm as far as we know. The reason of

fastest LZO compression algorithm selection is that not only accuracy

is important, but also efficiency.

The LZO algorithm is fast lossless data compression and extremely

fast decompression algorithm based on slide dictionary. Slide dictionary

is developed for Lempel-Ziv(LZ) algorithm that is frequency-based com-

pression algorithm. Using dictionary, LZ or LZO compression algorithm

remove the redundancy of input string.

LZO package consists of various compression algorithms: LZO1,

LZO1A, LZO1-99, LZOX and etc. We use LZOX-1 algorithm for our

complexity measure step, because LZOX-1 algorithm is the fastest com-

pression algorithm among the LZO compression algorithm. LZOX-1 al-

gorithm has about 5 MB/s compression performances in [18]. In fact, it

is slower than memcpy() function that has about 60 Mb/s performance,

but 5 MB/s is enough performance in the view of anti-virus scanner

22

Figure 4.2: Block Dividing Algorithm

that has about 5∼10 MB/s.

In fact, we do not compress the input B string, but measure the

complexity. It means that we do not need implementation of writing of

compressed data and dictionary. Thus, we modified LZOX-1 compres-

sion algorithm simply, just calculates the length of compressed string B.

This implementation result has achieved about 6 times faster than orig-

inal LZO1-X compression algorithm in our experiment. When the end

of calculation of length of compressed B, we calculate the complexity

using equation IV.3

C =
B′

B
(IV.3)

where C is complexity rate, B′ is length of compressed B. In this

way, we measure the complexity.

23

4.2.3 Step 3 : Classification

Last step is classification using complexity value C and threshold th.

Generally packed executable file has high complexity rate than non-

packed executable file, we can classify the input file as packed or not

using th. In fact, this step is same as Bintropy. Only difference is that

Bintropy uses entropy, but our classification uses complexity.

If C > th, then a file is classified as a packed executable file, else a

file is classified as a non-packed executable file.

Therefore, setting the threshold th is significant to achieve high ac-

curate classification.

24

V. Experiment & Analysis

5.1 Environment

We implement the program with Visual C++ 6.0 program and experi-

ment environment is Windows XP SP3 on Intel Core 2 Duo CPU E6750

2.66GHz and 2GB RAMs. We gather 2332 sample files for experiment.

343 non-packed executable files from windows, windows/system, and

windows/system32 directory on Windows XP Service Pack 2, and then

we generated 2079 packed executable files using 6 packers(Aspack[1],

FSG, Morphine, PeCompact[2], Upack[7], UPX[12]) except packing er-

ror occurred files.

To comparing, we implement the four programs which are Bintropy,

Bintropy applied block dividing step, LZO complexity measure, and

proposed method that is LZO complexity measure with block dividing

step. Lastly, we implement a decision tree which is a kind of machine

learning algorithm for threshold setting.

5.2 Threshold Setting

Threshold setting is important to achieve exact classification. In this

thesis, we use a machine learning method, which is used by Roberto et

al. [21], to set the threshold th. We make five threshold setting groups

that each group consists of 50 non-packed executable files and 60 packed

executable files. Table 5.1 shows machine learning result.

Firstly, the unit of Bintropy and Bintropy with Block is entropy and

LZO and LZO with Block is complexity rate. ’with Block’ means that

applied our implementation step 2 which is the block dividing algorithm.

25

Table 5.1: Machine Learning Result

Bintropy Bintropy with Block LZO LZO with Block

Group1 6.466 6.604 0.694 0.808

Group2 6.604 6.732 0.692 0.810

Group3 6.530 6.623 0.686 0.810

Group4 6.501 6.592 0.700 0.800

Group5 6.181 6.650 0.693 0.799

Average 6.456 6.640 0.693 0.805

LZO with Block implementation is our proposed method which has step

1 and step 2.

In this table 5.1, block dividing step applied implementation has

higher value than others. Because monotonous bytes remove in input

file that means file has more complexity than before. We will use average

threshold values for classification in our experiment.

5.3 Analysis

We have experiment using th and remaining samples of threshold setting

groups. Before the classification, we calculate the average entropy and

complexity of target files by each implementation. Following table 5.2

shows average of calculation.

Table 5.2: Average entropy and complexity of target files

Bintropy Bintropy with Block LZO LZO with Block

Non-packed 5.275 5.945 0.546 0.676

Packed 7.209 7.506 0.873 0.945

Gap 1.934 1.561 0.327 0.269

At first glance, the gap between non-packed and packed file is smaller

than without applying block dividing algorithm. It looks that applying

26

block dividing algorithm makes difficult the separation between packed

and non-packed files.

Table 5.3: Standard Deviation of target files

Bintropy Bintropy with Block LZO LZO with Block

Non-packed 0.930 0.537 0.116 0.086

Packed 0.758 0.515 0.112 0.058

Average 0.844 0.526 0.114 0.072

However, this table 5.3 shows smaller average standard deviation

value of files applied block dividing algorithm than without block divid-

ing algorithm. It means that throughout block dividing algorithm, the

gap between the packed and non-packed file group is closed than before,

but each group is closed to average of each group. In this way, we can

easily separate between non-packed file and packed file using the block

dividing algorithm.

Table 5.4: Result of Classification
Bintropy Bintropy with Block LZO LZO with Block

Success 89.9% 93.1% 92.2% 97.2%

False 10.10% 6.92% 7.83% 2.84%

False positive 9.65% 6.66% 7.57% 2.52%

False negative 0.45% 0.26% 0.26% 0.32%

Table 5.4 shows average classification result when we applied a thresh-

old of each group to each implementation. This result shows that our

proposed method has higher accuracy than Bintropy, and block dividing

step also aids classification of implementations.

27

Table 5.5: Packed classification methods comparison table
PEiD [11] Bintropy [20] Roberto et al. [21] Proposed method

Based on Signature Entropy Characteristics Complexity

Accuracy High but Low High High

need signature (about 90%) (about 98%) (about 97%)

Evasion technique Fake signature Add null bytes PE header Modification Nothing

5.4 Comparison

Table 5.5 shows the brief comparison of packed executable classification

methods. First of all, our proposed method is based on complexity,

not signature, entropy, characteristics. In case of no avoid technique,

Bintropy show about 90% accuracy. This accuracy is lower than our

proposed method about 97%. This accuracy is almost same as Roberto

et al., but our proposed method does not have any known evasion tech-

niques such as padding null bytes or PE header modification.

In addition, our proposed method has high efficiency that is about

30 MB/s, and it needs smaller time than 2.5 µ second per one file

classification in our experiment. This efficiency is enough for applying

practical anti-virus scanner.

28

VI. Conclusion

To overcome packer technique, signature-based anti-virus scanner adopts

packed executable file classification and generic unpacking methods.

Generic unpacking method is relatively widely researched, but this method

has several limitations that is low unpacking rate and uses long time

and computing resource for unpacking. Therefore, packed executable

file classification method is important. Because, when wrong classifi-

cation is occurred, unnecessary unpacking step is needed or malware

cannot be detected. There are three packed file classification methods

are proposed. However, these methods have limitations, too. Previous

packed file classification methods can be easily evaded or have high false

rate.

In this thesis, we propose a high accuracy packed executable file

classification method based on complexity. This complexity concept

is presented to measure the information quantity more exact than en-

tropy concept. In short, complexity is that shortest output string using

optimal algorithm from input string. However, complexity is incom-

putable since finding optimal algorithm is infeasible. Therefore, many

researchers use compression algorithms to measure the complexity such

as LZ77, LZW, and etc.

We implement our proposed method using LZO compression algo-

rithm which is fastest compression algorithm as far as we know. In addi-

tion, we propose a block dividing step, which is removing monotonous

block, for exact complexity measure. In our experiment, we use the

threshold that sets by machine learning. Our experiment result shows

high classification accuracy about 97%, it is higher classification rate

than previous entropy-based classification method. Moreover, our pro-

posed method cannot be evaded by evasion techniques as far as we know,

29

and has enough performance applying to practical anti-virus scanner.

Our proposed method contributes low usage of computing resource and

high malware detection.

30

복잡도에 기반한 정확한 실행압축 파일 구분 기법

노한영

악성코드를 탐지하기 위한 대표적인 기법은 파일의 일부 바이트

를 서명으로 사용하는 서명 기반의 탐지 기법이다. 서명 기반의 탐지

기법은정확하고빠르다는장점을가지고있어서가장널리사용되고

있다. 악성코드 제작자는 이를 회피하기 위하여 파일의 구조를 변경

하는 실행압축 기법을 사용한다. 실행압축 기법은 파일의 일부 또는

전체를 암호화 또는 압축을 하고, 이를 복호화 또는 압축해제 하기 위

한 코드를 추가로 덧붙인다. 프로그램이 실행이 되면 먼저 복호화 또

는 압축해제 코드가 실행이 되고 메모리 상에 복호화, 압축 해제가 이

루어진 후에 프로그램이 실행이 된다.

서명 기반의 악성 코드 탐지 프로그램은 이에 대응하여 실행압축

여부를판단하고,실행압축을해제하는단계를추가하였다. 현재까지

실행압축해제단계는많이연구되었지만아직까지도그실행압축해

제율과속도는빠르지않다. 그렇기때문에, 실행압축해제단계의전

단계인 실행압축 판단 여부의 정확도는 더 중요하다. 실행압축 판단

이 잘못되면, 필요치 않은 실행압축 해제 시간이 소모되거나 악성코

드 탐지에 실패하게 된다. 본 논문에서는 사용자의 자원 사용을 낮추

고, 악성코드 탐지율을 높이기 위하여 실행압축 여부를 판단하는 기

법에 대하여 연구하였다.

기존에 연구된 실행압축 여부를 판단하는 기법들은 그 정확도가

높지 않거나, 또는 간단한 회피 기법으로 회피가 가능하다는 단점을

가지고 있다. 본 논문에서는 정확도가 높고 회피 기법을 갖지 않으면

서도, 실제 악성코드 탐지 프로그램에 적용할 수 있는 속도를 가지는

기법을 제안한다. 제안 기법은 파일의 복잡도를 측정하여 실행압축

31

을 판단하는 기법으로, 실행 압축된 파일은 압축되어있거나, 암호화

가 되어있어 복잡도가 높다는 특징을 사용한다.

실제 구현에서는 복잡도 측정을 위하여 압축 기법을 사용하였으

며, 그 중에서도 빠른 실행 속도를 위하여 알려진 압축 알고리즘 중에

서 가장 빠른 Lempel-Ziv-Oberhumer(LZO) 압축 기법을 사용하였다.

그리고, 정확한 복잡도 측정을 위하여 불필요한 부분을 제거하는 단

계를 복잡도 측정 전 단계에 추가하였다. 구현 프로그램의 수행 결과

기존에 제안되었던 Bintropy 기법보다 정확도가 약 10% 가 향상이 되

었다. 그리고, 알려진 회피기법으로 회피가 불가능하며, 수행 속도는

일반적인악성코드탐지프로그램에적용하여도무리가없는빠른수

행 속도를 보여주었다.

32

References

1. ASPack Software. ASPack and ASProtect.

http://www.aspack.com/

2. Bitsum Technologies. PECompeact2.

http://www.bitsum.com/pec2.asp

3. C. E. Shannon, ”A mathematical theory of communication”, Bell

System Technical Journal, vol. 27, July and October, 1948, pp.

379–423 and 623-656.

4. CGSoftLabs, Stud PE

http://www.cgsoftlabs.ro/

5. Computereconomics, ”Annual Worldwide Economic Damages from

Malware Exceed $13 billion”, June, 2007.

http://www.computereconomics.com/article.cfm?id=1225

6. Daniel J. Sanok, Jr, ”An analysis of how antivirus methodologies

are utilized in protecting computers from malicious code”, InfoS-

ecCD ’05: Proceedings of the 2nd annual conference on Information

security curriculum development, 2005, pp. 142–144.

7. Dwing, UPack, 2008, http://wex.cn/dwing/mycomp.htm

8. G. Chaitin. The Limits of Mathematics., Springer-Verlag, 1998.

9. Gabor Szappanos, Exepacker blacklisting, Virus Bulletin, Oct.

2007, pp.14–19.

33

10. Grunwald, Peter and Vitanyi, Paul, ”Shannon information and

Kolmogorov complexity”, arXiv:cs.IT/0410002, 2004.

http://arxiv.org/abs/cs.IT/0410002

11. Jibz, Qwerton, snaker, and xineohP, PEiD, http://www.peid.info/

12. Markus F.X.J. Oberhumer and Laszlo Molnar and John F. Reiser,

UPX, http://upx.sourceforge.net/.

13. Martignoni, L. and Christodorescu, M. and Jha, S., ”OmniUnpack:

Fast, Generic, and Safe Unpacking of Malware”, Computer Secu-

rity Applications Conference, 2007. ACSAC 2007. Twenty-Third

Annual, Dec. 2007, pp. 431–441.

14. Min Gyung Kang and Pongsin Poosankam and Heng Yin, ”Renovo:

a hidden code extractor for packed executables”, WORM ’07: Pro-

ceedings of the 2007 ACM workshop on Recurring malcode, 2007,

pp. 46–53.

15. Miroslav Vnuk, ”Pavol Navrat, Decompression of Run-Time Com-

pressed PE-Files”, Studies in Informatics and Control, Vol. 15, No.

2, June 2006.

16. M. Pietrek. ”An in-depth look into the Win32 Portable Executable

file format”

http://msdn.microsoft.com/msdnmag/issues/02/02/PE/

17. M. Pietrek. ”An in-depth look into the Win32 Portable Executable

file format, part 2”

http://msdn.microsoft.com/msdnmag/issues/02/03/PE2/

18. Oberhumer.com, LZO Compression algorithm,

http://www.oberhumer.com/opensource/lzo/.

34

19. Reversing Labs Packer, RPack

http://rlpack.jezgra.net/index.html

20. Robert Lyda and James Hamrock, ”Using Entropy Analysis to Find

Encrypted and Packed Malware”, IEEE Security and Privacy, vol.

5, no. 2, March 2007, pp. 40–45.

21. Roberto Perdisci and Andrea Lanzi and Wenke Lee, ”Classifica-

tion of packed executables for accurate computer virus detection”,

Pattern Recogn. Lett., vol. 29, no. 14, June 2008, pp. 1941–1946.

22. Royal, P. Halpin, M. Dagon, D. Edmonds, R. Wenke Lee, ”PolyUn-

pack: Automating the Hidden-Code Extraction of Unpack-

Executing Malware”, Proceedings of 2006 Annual Computer Se-

curity Applications Conference (ACSAC), Dec. 2006, pp. 289–300.

23. Taras Kowaliw, ”Measures of complexity for artificial embryogeny”,

GECCO ’08: Proceedings of the 10th annual conference on Genetic

and evolutionary computation, 2008, pp. 843–850

24. T. Brosch and M. Morgenstern. ”Runtime packers: The hidden

problem?”, Black Hat USA 2006,

https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-

Morgenstern.pdf, 2006.

25. Wayne J. Radburn, PEview, http://www.magma.ca/ wjr/

35

Acknowledgement

There have been a lot of people without whom this thesis could

not have been completed. First of all, I cannot thank you enough,

or I do not know how to express my thanks to Prof. Kwangjo Kim,

my advisor. Furthermore, thanks for effort and interest of advisory

committee members who Prof. Soontae Kim and PhD. Doo Ho Choi.

Also, I thank all members of our laboratory: Hyunrok Lee, Zeen Kim,

Kyusuk Han, Konidala Munirathnam Divyan, Dang Nguyen Duc, Jang-

sung Kim, Minhea Kwak, Hwewon Park, Hyeran Mun, Sungmok Shin,

Myounghan You, and Imsung Choi who give me advices and encourage-

ment. Moreover, I also thanks Hyunkyoung Park for helpful as a staff

member.

Especially, I would like to give my special thanks to my family: my

parents and my brother. Without their help I am not able to complete

this thesis.

Curriculum Vitae

Name : Hanyoung Noh

Date of Birth : May 26, 1983

Sex : Male

Nationality : Korean

Education

2002.3–2007.2 Computer Science

Sungkyunkwan University (B.S.)

2007.2–2009.2 Engineering

Information and Communications University (M.S.)

Career

2007.03–2007.12 Graduate Research Assistant

Research and Development of Next Generation DRM

SK telecom

2007.03–2008.02 Graduate Research Assistant

Development of Sensor Tag and Sensor Node Tech-

nique for RFIDUSN

Electronics and Telecommunications Research Insti-

tute(ETRI)

2008.01–2008.12 Graduate Research Assistant

Research on the Next Generation Standard of EPC-

global

ETRI

2007.03–2008.06 Graduate Research Assistant

Research on ID-based Cryptography Technique and

Applications for 4G Mobile Network

Samsung-ICU Research Center

2007.03–2008.02 Graduate Research Assistant

Standards Development for Cyber Security Policy on

Digital Measurement & Control System

Korea Institute of Nuclear Safety(KINS)

2008.02–2008.12 Graduate Research Assistant

Development of Secure Sensor Network for Surveil-

lance and Reconnaissance

SNR

2008.03–2009.02 Graduate Research Assistant

A Study on Cyber Security Assessment using Pene-

tration Test of Digital I&C Systems

KINS

Publications

(1) 2007. 6 노한영,이현록,김광조, ”하드웨어고유번호기반소

프트웨어 보호 방식”, 2007년도 한국정보보호학회 하

계학술발표대회, pp.385-390, 2007. 6.22, 단국대학교

천안캠퍼스 제3과학관.

(2) 2007. 12 이현록, 노한영, 박재범, 김광조, ”난독화 서버를 이

용한 소프트웨어 보호방식”, CISC-W’07 Proceedings

vol.17, no.2, pp.410-413, 2007.12.1, 상명대학교, 서울.

(3) 2008. 1 Hanyoung Noh, Jangseong Kim, Chanyeob Yeun and

Kwangjo Kim, ”New Polymorphic Worm Detection based

on Instruction Distribution and Signature”, Proc. Of

SCIS 2008, Jan. 22-25, 2008, Miyajaki, Japan.

(4) 2008. 6 노한영, 김광조, ”오탐지 정확도를 개선한 실행압축

판단 기법 연구”, CISC-S’08 Proceedings vol.18, no.1,

pp.384-387, 2008.6.26, 순천향대학교, 천안.

(5) 2008. 12 노한영, 김장성, 김광조, ”포렌식을 고려한 휴대폰 데

이터보안”, CISC-W’08 Proceedings vol.19, no.1, pp.66-

69 , 2008.12.6, 고려대학교, 서울

