
A Thesis for the Degree of Master

A Study on Securing AES against

Differential Power Analysis

Hwasun Chang

School of Engineering

Information and Communications University

2004

A Study on Securing AES against

Differential Power Analysis

A Study on Securing AES against

Differential Power Analysis

Advisor : Professor Kwangjo Kim

by

Hwasun Chang

School of Engineering

Information and Communications University

A thesis submitted to the faculty of Information and Com-

munications University in partial fulfillment of the require-

ments for the degree of Master of Science in the School of

Engineering

Daejeon, Korea

Dec. 29. 2003

Approved by

(signed)

Professor Kwangjo Kim

Major Advisor

A Study on Securing AES against

Differential Power Analysis

Hwasun Chang

We certify that this work has passed the scholastic stan-

dards required by the Information and Communications Uni-

versity as a thesis for the degree of Master

Dec. 29. 2003

Approved:

Chairman of the Committee
Kwangjo Kim, Professor
School of Engineering

Committee Member
Jae Choon Cha, Assistant Professor
School of Engineering

Committee Member
Daeyoung Kim, Assistant Professor
School of Engineering

M.S.

20022122

Hwasun Chang

A Study on Securing AES against Differential Power

Analysis

School of Engineering, 2004, 45p.

Major Advisor : Prof. Kwangjo Kim.

Text in English

Abstract

Major credit card companies are planning to convert most of credit

cards with magnetic stripe into smart cards within a few years. And

usage of smart cards are increasing in such fields like transportation,

electronic money, ID cards, etc. Major advantage of smart cards is that

internal data like secret key can be used for internal processing and only

the result is open to the public access.

However, the internal data kept inside smart cards and used inter-

nally can be found out using side channel attack. When cryptographic

processing is occurred using input message and secret key, information

like power consumption or electromagnetic radiation may be leaked. In

side channel attack, the information is used to find out the secret key.

Sometimes, attackers utilize timing information or induced faults during

computation. Differential Power Analysis (DPA) is a kind of side chan-

nel attacks that makes use of power consumption information. DPA is

a real threat because attackers can mount DPA with relatively cheap

equipments and without knowing the internal implementation. Coun-

termeasures against DPA can be divided into two categories. One is by

hardware and the other is by software. Smart card chips manufactured

i

recently are equipped with hardware countermeasures. But it is gen-

erally recognized that DPA can be prevented effectively only by using

both hardware and software countermeasures.

AES is the standard block cipher selected by NIST to replace DES

in 2000. Masking methods were proposed as software countermeasure

against DPA. But previous masking methods are vulnerable to Second

Order DPA (SODPA) and can be made simpler in regard to memory

and processing requirement.

In this thesis, simple fixed-value masking method that is resistant

to SODPA and more efficient than previous methods is proposed and

analyzed. The required memory for storing mask is 33% of previous

method and the number of xor operation for applying mask is 18% of

previous method. In practice, the reduction of memory usage will not

affect the overall algorithm size much. But reducing the number of

xor operations can improve the algorithm performance by about 10%

in 32 bit smart cards optimized for speed. To prevent SODPA, we

can make it hard for an attacker to catch the time when the mask

is accessed and select mask for each round. In analysis process, the

required properties of the generated masks, the appropriate number of

masks, the required additional processing and memory for implementing

the proposed countermeasure, and the security of the proposed method

are suggested.

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

List of Abbreviations viii

List of Notations ix

I Introduction 1

1.1 Block Cipher and Cryptanalysis 1

1.2 Countermeasures for AES against DPA 2

1.3 Our Contribution . 4

1.4 Outline of the Thesis . 4

II Preliminaries 5

2.1 AES . 5

2.1.1 State, Secret Key, and Number of Rounds 5

2.1.2 Round Transformation 6

2.1.3 Key Schedule . 7

2.2 DPA . 8

2.2.1 Power Consumption Model 8

2.2.2 DPA . 9

2.2.3 DPA on AES . 9

iii

IIIWays of Masking 13

3.1 Random Masking . 13

3.2 Multiplicative Masking 14

3.3 Fixed-Value Masking . 16

IV Design 19

4.1 Simple Fixed-Value Masking 19

4.1.1 Mask across Transformation 21

4.1.2 Consideration for Implementation 23

4.2 Securing against SODPA 23

4.2.1 SODPA . 23

4.2.2 Modification of Simple Fixed-Value Masking . . . 25

4.2.3 Consideration for Implementation 26

4.2.4 Less Efficient but Safer Method 26

V Analysis 28

5.1 Security Analysis . 28

5.1.1 Resistance against DPA 28

5.1.2 Resistance against SODPA 31

5.1.3 Number of Masks 31

5.2 Performance Analysis . 32

VI Comparison 33

6.1 Viewpoint . 33

6.2 Security . 33

6.3 Performance . 34

VIIConclusion 37

����������� 38

References 40

iv

Acknowledgement 46

Curriculum Vitae 47

v

List of Tables

2.1 Number of rounds (Nr) 6

6.1 Comparison of fixed-value masking and our scheme for

AES-128 . 36

vi

List of Figures

2.1 State (with Nb = 4) and secret key (with Nk = 4) . . . 5

3.1 ByteSub transformation 14

3.2 Modified inversion with multiplicative masking 15

3.3 Fixed-value masking . 17

4.1 Simple fixed-value masking 20

vii

List of Abbreviations

AES Advanced Encryption Standard

ALU Arithmetic Logic Unit

CPU Central Processing Unit

DES Data Encryption Standard

DPA Differential Power Analysis

EEPROM Electrically Erasable Programmable Read Only Memory

FIPS Federal Information Processing Standard

FVM Fixed-Value Masking

NIST National Institute of Standards and Technology

NSA National Security Agency

PODPA Perhaps Optimal Differential Power Analysis

RAM Random Access Memory

ROM Read Only Memory

SIM Subscriber Identification Module

SFVM Simple Fixed-Value Masking

SODPA Second-Order Differential Power Analysis

xor exclusive-OR

viii

List of Notations

ai,j A byte in the State at i-th row and j-th column

Ct Ciphertext

f Intermediate value appearing in the way of monitoring that is func-

tion of plaintext (or ciphertext) and part of key

FIN Mask applied before entering into ByteSub transformation

FKi,r r-th fixed-mask for i-th round key

FOUT Mask applied after leaving ByteSub transformation

n Block length of block cipher

K l l-th round key

K ′ l,r l-th round key masked with r-th fixed mask

kl
i,j A byte of l-th round key at i-th row and j-th column

mr Selected mask at position r

Nb Number of columns of the State

Nk Number of columns of secret key

Nm Number of monitoring

Nr Number of rounds

Pi Constant for xi in linear power consumption model

ix

Pt Plaintext

P (x) Power consumption of an instruction with operand x

q Number of stored masks

r Index for the selected mask and modified S-box

S Original S-box used for ByteSub transformation

S ′ Modified S-box recomputed by the corresponding mask

ski,j A byte in the secret key at i-th row and j-th column

smr Subsidiary mask used in multiplicative masking

tloadS′ The time when one byte of S ′ output is loaded

Vc(t) Power consumption trace of c-th monitoring with respect to time

t

xi i-th bit of x

βd(x) Probability of d-th bit of x being 0

δ0d(f) Set of Vc(t)s whose d-th bit of f at the time of interest is 0

δ1d(f) Set of Vc(t)s whose d-th bit of f at the time of interest is 1

∆d Differential power consumption curve, which is a differential of av-

erage power consumptions of Vc(t) ∈ δ1d(f) and Vc(t) ∈ δ0d(f)

εS′ Magnitude of the spike in differential power consumption for one

byte output of S ′

x

I. Introduction

1.1 Block Cipher and Cryptanalysis

A block cipher is a function which maps n-bit plaintext to n-bit cipher-

text block. n is called the block length. The function is parameterized

by a k-bit key K. It is generally assumed that the key is chosen at

random. To allow unique decryption, the encryption function must be

one-to-one. For n-bit plaintext and ciphertext blocks and a fixed key,

the encryption function is a bijection. Each key potentially defines a

different bijection. In block ciphers, same key is used for both encryp-

tion and decryption. On the other hand, asymmetric cryptosystem has

different key for encryption and decryption.

DES is currently the most well-known block cipher developed by

IBM. In 1977, DES was adopted by NIST as Federal Standard and

afterwards DES was evaluated every 5 years to check if it is adequate as

standard. In 1997, NIST decided that new algorithm is needed because

attacks like exhaustive key search exploiting the short key length of DES

had been demonstrated. Through three AES conferences, Rijndael was

selected as AES in 2000 and became FIPS-approved block cipher that

may be used by U.S. Government organizations and others to protect

sensitive information.

Cryptanalysis is the study of techniques attempting to defeat cryp-

tographic techniques. There are two kinds of cryptanalysis. One is

software cryptanalysis and the other is hardware cryptanalysis. In soft-

ware cryptanalysis, algorithm itself is analyzed and the examples are

differential cryptanalysis and linear cryptanalysis.

1

One of hardware cryptanalysis is side channel attack. When crypto-

graphic processing is occurred using input message and secret key, infor-

mation like power consumption or electromagnetic radiation is leaked.

In side channel attack, the information is used to find out the secret

key. Sometimes attackers utilize timing information or induced faults

during computation. DPA is a kind of side channel attacks that utilizes

power consumption information.

1.2 Countermeasures for AES against DPA

A smart card is the card with microcontroller and looks like a credit

card with yellow chip. In the microcontroller, there are CPU, serial

communication interface, ROM, RAM, EEPROM, and cryptographic

coprocessor. Until now, DES is the dominant block cipher implemented

in smart cards. But DES will be replaced by AES before long because

AES is more secure and efficient than DES and AES is the new standard.

With the mentioned resources, a smart card can process input data

and send the result through serial communication interface. Due to

processing capability, the usage of smart cards is increasing. In the

Asia Pacific region, Visa International is aiming to complete 90 percent

migration of cards and terminals to smart cards by end of 2008. Smart

cards are used also for electronic cash, royalty cards, ID cards and SIM

of mobile phones. In those applications, smart cards are used as tamper-

resistant devices. It is assumed that internal data like secret key are kept

secretly and it is difficult for an attacker to know its real value.

But Kocher et al. [1] showed that the key used internally by smart

cards can be found out by DPA. Because smart cards get power from

outside and the structure is relatively simple, it is convenient to apply

DPA on smart cards. After the announcement of DPA, many coun-

termeasures have been proposed and used. Countermeasures can be

2

divided into hardware and software countermeasures. Many smart card

chips manufactured recently have hardware countermeasures in them.

And a new hardware countermeasure against side channel attack espe-

cially against probing attack was suggested in Crypto ’03 conference

[10]. But, Clavier et al. [3] showed that software countermeasures

should be implemented even if hardware countermeasures exist. In real

applications, many hardware and software countermeasures are used

simultaneously to protect secret data in smart cards effectively.

As software countermeasure, Messerges [2] proposed random mask-

ing method for securing AES candidates against DPA. But this method

uses random masks generated for each execution, and new S-boxes have

to be computed accordingly. This requires more processing power and

much RAM space is needed to store modified S-boxes. Because RAM is

a limited resource in smart cards and processing power of smart cards

is relatively low, this will not be a good solution especially for cheap

smart cards.

To resolve the problem of random masking method, two kinds of

improvements were proposed. One is multiplicative masking method

and the other is fixed-value masking method. Multiplicative masking

method was proposed by Akkar et al. [5]. But Golic et al. [6] showed

that this method is inherently vulnerable to DPA. Some modifications

of multiplicative masking method [6, 7] were proposed but they required

much memory and processing.

Fixed-value masking method was suggested by Itoh et al. [4]. In

this method, fixed masks and modified S-boxes are stored in ROM and

a set of specific masks and modified S-boxes is selected randomly in the

beginning of encryption. Because modified S-boxes are computed in

advance and stored in ROM instead of RAM, it requires less processing

and uses less RAM than random masking method. And because ROM

has relatively more space than RAM in smart cards, this method is

3

practical.

1.3 Our Contribution

It seems that fixed-value masking method is the most suitable soft-

ware countermeasure for securing AES against DPA especially in cheap

smart cards. But existing fixed-value masking method is vulnerable to

SODPA [8]. SODPA uses two points in a power consumption curve

and it can be used for breaking masking method. And existing mask-

ing method has room for improvement in respect to memory usage and

processing requirement. In this thesis, we propose new method which is

characterized by memory-saving and efficiency and resistant to SODPA

as well.

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter II,

some underlying concepts and primitives are explained. In Chapter

III, existing masking methods are described. In Chapter IV, the im-

proved masking method is proposed and analyzed in regard to security

and performance in Chapter V. In Chapter VI, the proposed method is

compared with the previous method. Finally, we end with concluding

remarks in Chapter VII.

4

II. Preliminaries

2.1 AES

AES consists of an initial round key addition, variable Nr − 1 rounds

and a final round. In this section, we brief some parts of AES that is

related with thesis.

2.1.1 State, Secret Key, and Number of Rounds

The different transformations operate on the intermediate result called

“State”. The State can be pictured as a rectangular array of bytes. This

array has four rows. The number of columns is denoted by Nb and is

equal to four. The secret key is similarly pictured as a rectangular array

with four rows. The number of columns of the secret key is denoted by

Nk and equal to the key length divided by 32. Nk can be 4, 6, or 8.

These representations are illustrated in Fig.2.1.

Figure 2.1: State (with Nb = 4) and secret key (with Nk = 4)

5

Table 2.1: Number of rounds (Nr)

Nr Nk = 4 Nk = 6 Nk = 8

Nb = 4 10 12 14

The number of rounds denoted by Nr can be fixed by the value Nk,

which is given in Table 2.1.

2.1.2 Round Transformation

The round transformation is composed of four different transformations

which can be represented in pseudo C notation as follows:

Round(State, RoundKey){
ByteSub(State);

ShiftRow(State);

MixColumn(State);

AddRoundKey(State, RoundKey);

}

In the final round, MixColumn is omitted.

ByteSub transformation

ByteSub transformation is a non-linear byte substitution operating on

each byte of the State independently. It can be processed by table loop

up and the table is called S-box.

ShiftRow transformation

In ShiftRow transformation, the rows of the State are cyclically shifted

over different offsets. Row zero is not shifted, row one is shifted over

6

one byte, row two is shifted by two bytes and row three is shifted over

three bytes.

MixColumn transformation

In MixColumn transformation, the columns of the State are considered

as polynomials over GF (28) and multiplied modulo x4 + 1 with a fixed

polynomial c(x) given by c(x) = ‘03′x3 + ‘01′x2 + ‘01′x + ‘02′. This can

be written as a matrix multiplication.

b0,j

b1,j

b2,j

b3,j

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0,j

a1,j

a2,j

a3,j

AddRoundKey transformation

In AddRoundKey transformation, round key is applied to the State by

a simple bitwise xor.

2.1.3 Key Schedule

Round keys are derived from secret key by means of the key sched-

ule. This consists of key expansion and round key selection. The

expanded key is a linear array of four byte words and is denoted by

W [Nb ∗ (Nr + 1)]. The first Nk words contain the secret key. If Nk is

equal to or below 6, key expansion can be represented by the following

pseudo C notation.

KeyExpansion(byte Key[4 ∗ Nk], word W [Nb ∗ (Nr + 1)]){
for(i = 0; i < Nk; i + +)

W [i] = (Key[4∗ i], Key[4∗ i+1], Key[4∗ i+2], Key[4∗ i+3]);

for(i = Nk; i < Nb ∗ (Nr + 1); i + +){

7

temp = W [i − 1];

if(i%Nk == 0)

temp = SubByte(RotByte(temp)) ⊕ Rcon[i/Nk];

W [i] = W [i − Nk] ⊕ temp;

}
}

2.2 DPA

2.2.1 Power Consumption Model

Akkar et al. [12] derived power consumption model of two kinds of smart

cards by experiment. High-end smart cards could be represented by

linear model. When operand x is manipulated using assembly command

like store or load, the corresponding power consumption P (x) can be

represented by the following equation.

P (x) =
u−1∑
i=0

xiPi

In the equation, u is the number of bits in x and xi represents the i-th

bit of x. Pi is a constant given by the experiment. Pi is not a constant

value and has plus value for some i and negative value for the others.

From this result, we can see that Hamming weight model which states

that power consumption is proportional to the number of 1’s in operand,

is not always correct.

Although low-end smart cards cannot be represented by the linear

model, two kinds of cards had a common power consumption property.

Average power consumption was different when xi was zero and when

xi was one. And the average power consumption with xi = 1 was not

always greater than the average power consumption with xi = 0.

8

2.2.2 DPA

In DPA, power consumption information is analyzed statistically to find

out the secret key. First, the attacker select a bit that is function of

plaintext and part of key. For the selected bit, usually a bit of S-box

output is selected. The result of AddRoundKey transformation can be

used, too. By recursively executing the attack procedure, an attacker

can find out the part of key. For the part of key, attacker should try

with all combinations of the value in the worst case. But because the

attacker can find out the secret key part by part, the required number

of execution is much less than the exhaustive search for the entire key.

For example, if the attacker finds out the secret key 8 bits at a time, the

attacker should try 28 in the worst case to find out the part of key. If

the key size is 128 bits, an attacker can find out the secret key by trying

28 ∗ 16 = 212 times in the worst case. To find out the secret key with

128 bits using exhaustive search, the attacker should try 2128 times in

worst case. From this, we can see that the number of trials is reduced

dramatically using DPA.

2.2.3 DPA on AES

In this part, detailed procedure for applying DPA on AES is described.

As stated in the previous section, DPA can be applied at the output of

S-box or at the result of round key addition. Concrete procedures for

two approaches are as follows:

DPA on S-box Output

This method was proposed by Kocher et al. [1] for attacking S-box of

DES. From each execution of the following procedure, an attacker can

find out eight bits of the first round key. By executing this sixteen times,

the attacker can find out the entire first round key. In most cases, the

9

length of the secret key for AES is 128 bits and the first round key is

same with the secret key. If the length of secret key is longer than 128

bits, the second round key contains the remaining part of the secret

key. The second round key can be found out from the second ByteSub

transformation using similar procedure as the following and the first

round key. The procedure for attacking the first eight bits of the first

round key is like this.

DS1. The attacker generates many plaintexts randomly.

DS2. Encryption is done with the plaintexts using the unknown se-

cret key and the corresponding power consumption curves are

recorded.

DS3. The attacker selects a bit of first ByteSub transformation output,

which is a function of first byte of plaintext and first byte of first

round key.

DS4. The attacker assumes a value for the first byte of the first round

key, and from the assumed part of the key and plaintext, an at-

tacker calculates the value of the selected bit.

DS5. According to the value of the selected bit, power consumption

curves are divided into two groups.

DS6. The attacker calculates the average power consumption curve of

each group and the differential power consumption curve of two

average curves. If the key assumption is correct and accordingly

grouping is correct, two average power consumption curves will

show difference when the selected bit is manipulated. At that

point, we can observe a spike in differential power curve.

10

DPA on the Result of Round Key Addition

This method was proposed by Chari et al. [24] to attack the whiten-

ing process of Twofish encryption algorithm. Whitening is the tech-

nique for extending the length of key without modifying algorithm. For

whitening, key is xor-ed with data before the algorithm and after the

algorithm. In the attack, the fact that bit value of one in key inverts

the corresponding bit value of data is utilized. If the bit value of key is

zero, the corresponding data bit remains unchanged after xor operation.

If we divide the power consumption curves according to the value

of the bit value of data that is xor-ed with the key bit, we will obtain

two groups of curves. After calculating average curve of each group, we

can get differential curve of two average curves. When the key bit is

zero, we will observe two spikes with same direction in the differential

curve. This is because the difference of data bit exists in two points of

the differential curve and the bit value of data has not been changed.

If the bit value of key is one, the corresponding bit value of data

has different value before and after being xor-ed with key. If we divide

the power consumption curves according to the value of the data bit

value that is xor-ed with the key bit, the differential curve of average

power consumptions will have two spikes with opposite direction. This

is because the bit value of data has been changed.

By attacking AddRoundKey transformation, an attacker can find

out the first and second round keys. Therefore, as explained in the

previous part, an attacker can find out the secret key. The concrete

procedure for finding out a bit of the first round key is as follows:

DK1. The attacker generates many plaintexts randomly.

DK2. Encryption is done with the plaintexts using the unknown se-

cret key and the corresponding power consumption curves are

recorded.

11

DK3. The attacker selects a bit of the first round key. And the attacker

divides pairs of plaintext and the corresponding power consump-

tion curve into two groups according to the bit value of data that

is xor-ed with the selected round key.

DK4. The attacker calculates the average power consumption curve for

each group and the differential curve of two average curves. If the

key bit value is one, the attacker can observe two spikes with oppo-

site direction in the differential curve. Otherwise, the attacker can

observe two spikes with same direction in the differential curve.

12

III. Ways of Masking

3.1 Random Masking

Messerges [2] proposed random masking for securing AES candidates

against DPA. He suggests modified primitive operations so that masks

are applied. The modified primitives are as follows:

Table Loopup

A table lookup operation S that has x as input and y as output is

symbolically denoted as y = S[x]. When input mask min and output

mask mout are used, masked table S ′ can be defined by the following

equation.

S ′[x] = S[x ⊕ min] ⊕ mout

The masked table S ′ takes inputs that are masked with min and pro-

duces outputs that are masked with mout.

Bitwise Boolean Function

To compute the xor-ed value of two masked operands, compute xor-ed

value of the masked operands and xor-ed value of their corresponding

masks. If the masked operands x′ and y′ are masked with mx and my,

respectively, the masked output is z′ = x′ ⊕ y′ and the new mask is

mz = mx ⊕ my.

Shift Operation

In this operation, the masks simply shift along with the data.

13

Polynomial Multiplication over GF (28)

When the multiplication is performed using table lookups, shift and xor

operations, the corresponding methods to protect these operations can

be used.

Using the above modified primitives, masked data are encrypted

with masked key and the corresponding masks should be calculated at

the same time. At the end, masks are applied to get the unmasked

ciphertext. For this method, new masks should be generated randomly

for each byte in the State and for each round. But this method re-

quires much processing and memory. Each encryption should be ac-

companied by the mask calculation. And for each mask, new table for

ByteSub transformation should be constructed temporarily. Messerges

commented the possibility of using the same mask for different variables

and rounds and suggested use of fixed mask. But he did not mention

the detailed method.

3.2 Multiplicative Masking

Main problem of implementing a masking method comes from the non-

linear parts of the algorithm due to S-box recomputation, which requires

much processing and RAM.

Figure 3.1: ByteSub transformation

To resolve the problem, Akkar et al. [5] proposed multiplicative

masking. For AES, boolean mask is transformed into multiplicative

14

mask before inversion operation because ByteSub transformation is

composed of inversion in GF (28) and affine transformation as shown

in Fig.3.1. When a byte in the State ai,j is masked with mask mr,

we can get the same mask after inversion using the scheme shown in

Fig.3.2. With the scheme, S-box need not be recomputed and stored.

Figure 3.2: Modified inversion with multiplicative masking

But Golic et al. [6] showed that multiplicative masking is vulnerable

to DPA. The basic problem with the multiplicative masking is that it

does not mask the all-zero byte value of data.

15

3.3 Fixed-Value Masking

In this method, q sets of masks and the corresponding modified S-boxes

are computed in advance and stored in ROM. Two types of fixed-value

masking methods were proposed by Itoh et al. [4]. In the first method,

the applied masks are same across rounds but they are different from

byte to byte in the State. In the second method, the masks are same

across rounds and bytes in the State.

When the encryption is executed, a set of masks and modified S-

boxes are selected randomly and used. Because second method uses less

ROM, it is more adequate for cheap smart cards. AES algorithm using

the second method is shown in Fig. 3.3 and Algorithm 1. Algorithm

2 is the modified version of ByteSub transformation so that modified

S-box stored in ROM can be used. ShiftRow and MixColumn are the

same with the original transformations.

There are three kinds of masks FKi,r used for masking round keys.

That is for i = 0, i = 1, . . . , Nr−1 , and i = Nr where Nr is the number

of rounds in AES. And these masks are derived from FIN and FOUT.

FIN is the mask that the bytes in the State have before entering into

ByteSub FM transformation and FOUT is the mask that the bytes in

the State have after ByteSub FM transformation. FIN and FOUT are

generated randomly so that any bit of the masks is 0 with probability

1/2. Equation (3.3) shows how FKi,r is derived from FIN and FOUT.

Modified S-boxes are computed by Algorithm 3.

Algorithm 1 FixedMaskingAESEnc

FixedMaskingAESEnc(Pt)

1 /∗ K ′ i,r : masked round key (i = 0, . . . , Nr, r = 0, . . . , q−1) ∗/

2 r = GenerateRandomNumber(); / ∗ choose r = 0, . . . , q − 1 ∗ /

16

Figure 3.3: Fixed-value masking

3 T ′ = Pt;

4 for(i = 0; i < Nr − 1; i + +){
5 T ′ = T ′ ⊕ K ′ i,r;

6 T ′ = ByteSub FM(T ′, r);

7 T ′ = ShiftRow(T ′);

8 T ′ = MixColumn(T ′);

9 }
10 T ′ = T ′ ⊕ K ′ Nr−1,r;

11 T ′ = ByteSub FM(T ′, r);

12 T ′ = ShiftRow(T ′);

13 T = T ′ ⊕ K ′ Nr,r;

14 output T ;

In Algorithm 1, T ′ is the intermediate masked value. Let Ki be

the original round key and FKi,r be the fixed mask value. Then, K ′ i,r

17

satisfies K ′ i,r = Ki ⊕ FKi,r.

Algorithm 2 ByteSub FM

ByteSub FM(X, r)

1 (x15, x14, . . . , x0) = X;

2 for(j = 0; j < 16; j + +) xj = S ′
r[xj];

3 X = (x15, x14, . . . , x0);

4 output X;

Algorithm 3 SboxUpdate

SboxUpdate(S, r)

1 for(x = 0; x < 256; x + +) S ′[x] = S[x ⊕ FINr] ⊕ FOUTr;

2 output S ′;

FKi,r =

FINr, i = 0

MixColumn(ShiftRow(FOUTr)) ⊕ FINr, i = 1, . . . , Nr − 1

ShiftRow(FOUTr), i = Nr

18

IV. Design

In this chapter, we first describe the more efficient method than previous

fixed-value masking method. For cheap smart cards where SODPA

resistance is not required, this method is sufficient. But, for high-end

smart cards, SODPA should be considered. How to make the simple

fixed-value masking method resistant to SODPA is described in the

next section.

4.1 Simple Fixed-Value Masking

We propose simple fixed-value masking that requires less ROM and ad-

ditional processing than previous fixed-value masking method. In the

method, q pairs of one byte masks and modified S-boxes are stored in

ROM. Modified S-box is computed using the corresponding mask as in

Algorithm 6. One pair consisting of a mask and a modified S-box

is selected randomly at the start of encryption. All bytes of plaintext

are masked by the same one byte mask. Masked plaintext is encrypted

using the corresponding modified S-box. At the end of the algorithm,

mask is applied once again and the result is the desired ciphertext. In

Fig.4.1 and the following algorithms, mr (r = 0, 1, . . . , q − 1) represents

the selected mask. r is the index for the chosen mask and modified S-

box. S is the original S-box and S ′ is the modified S-box. ByteSub FM

is same with Algorithm 2.

Algorithm 4 SimpleF ixedMaskingAESEnc

19

Figure 4.1: Simple fixed-value masking

SimpleF ixedMaskingAESEnc(Pt)

1 r = GenerateRandomNumber(); / ∗ choose r = 0, . . . , q − 1 ∗ /

2 T ′ = Pt;

3 T ′ = ApplyMask(T ′, r);

4 T ′ = T ′ ⊕ K0;

5 for(i = 1; i < Nr; i + +){
6 T ′ = ByteSub FM(T ′, r);

7 T ′ = ShiftRow(T ′);

8 T ′ = MixColumn(T ′);

9 T ′ = T ′ ⊕ Ki;

10 }
11 T ′ = ByteSub FM(T ′, r);

12 T ′ = ShiftRow(T ′);

13 T ′ = T ′ ⊕ KNr;

14 T = ApplyMask(T ′, r);

20

15 output T ;

Algorithm 5 ApplyMask

ApplyMask(T ′, r)

1 (t′15, t
′
14, . . . , t

′
0) = T ′;

2 for(j = 0; j < 16; j + +) t′j = t′j ⊕ mr;

3 T ′ = (t′15, t
′
14, . . . , t

′
0);

4 output T ′;

Algorithm 6 SboxUpdate2

SboxUpdate2(S, r)

1 for(x = 0; x < 256; x + +) S ′[x] = S[x ⊕ mr] ⊕ mr;

2 output S ′;

4.1.1 Mask across Transformation

The reason why we can get the desired ciphertext at the end by applying

the same mask used in the beginning is that the mask is maintained

across transformations. Mask is not changed because modified S-box is

used and the same mask is applied to all bytes of the State. We will

show that the mask is maintained for each transformation used in AES.

ByteSub

During ByteSub transformation, the mask is maintained because the

modified S-box is generated so that the mask does not change using

Algorithm 6.

21

ShiftRow

ShiftRow transformation does not change the mask because all the

bytes in the State have the same mask and only the position is changed

by ShiftRow transformation.

MixColumn

If we consider j-th column of the State and denote each byte of the

column by ai,j(i = 0, 1, 2, 3), MixColumn transformation can be repre-

sented by the following equation as explained before.

b0,j

b1,j

b2,j

b3,j

=

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0,j

a1,j

a2,j

a3,j

If each byte of the column is masked with mr, the following equation

can be derived.

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

a0,j ⊕ mr

a1,j ⊕ mr

a2,j ⊕ mr

a3,j ⊕ mr

=

b0,j

b1,j

b2,j

b3,j

⊕ mr

02 ⊕ 03 ⊕ 01 ⊕ 01

01 ⊕ 02 ⊕ 03 ⊕ 01

01 ⊕ 01 ⊕ 02 ⊕ 03

03 ⊕ 01 ⊕ 01 ⊕ 02

=

b0,j ⊕ mr

b1,j ⊕ mr

b2,j ⊕ mr

b3,j ⊕ mr

From the above equations, we can see that the mask before MixColumn

transformation is maintained after the transformation.

22

AddRoundKey

The mask is maintained through AddRoundKey transformation because

(ai,j ⊕mr)⊕kl
i,j = (ai,j ⊕kl

i,j)⊕mr (r = 0, 1, . . . , q−1, i = 0, 1, 2, 3, j =

0, 1, 2, 3). ai,j is a byte of the State at i-th row and j-th column. And

mr is the selected mask. kl
i,j is a byte of l-th round key at i-th row and

j-th column.

4.1.2 Consideration for Implementation

If the masks and the modified S-boxes are stored in ROM, the values

are known to the developer and are same across smart cards that have

been produced with same mask. Maybe some attacks could be tried

using this fact. If the masks are stored in EEPROM and the masks and

the modified S-boxes are generated secretly and different from card to

card, cards will be more secure. And the random number for selecting

a mask can be acquired from hardware random number generator of

smart cards. Because smart cards are used for security, even the cheap

smart cards like S3C8982 of Samsung Electronics have hardware random

number generator in them.

4.2 Securing against SODPA

Masking method is known to be subject to SODPA [8]. In this section,

we propose how to make the masking method secure against SODPA.

4.2.1 SODPA

While masking method can be a countermeasure for DPA, it is vulner-

able to SODPA. Let’s consider the implementation of masking method

as shown in Algorithm 7.

23

Algorithm 7 MaskedFunction

MaskedFunction(T)

1 m = GenerateRandomNumber();

2 maskedT = T ⊕ m;

3 T ′ = maskedT ⊕ SecretKey;

4 . . .

5 other operations

6 . . .

7 output T ′;

It is known that if there is a linear relationship between the instan-

taneous power consumption and the Hamming weight of the data being

processed, Algorithm 8 is sound [8] and it was verified with exper-

iment. In Algorithm 8, i is the position of one bit in SecretKey in

Algorithm 7.

Algorithm 8 SecondOrderDPA

SecondOrderDPA(i)

1 for(b = 0; b <= 1; b + +){
2 Calculate average statistics Sb = |P1 − P3| by repeating{
3 Set the i − th bit of T input to b.

4 Make remaining bits of T random.

5 Collect algorithm′s instantaneous power consumption at

lines 1 and 3. Call these values P1 and P3 respectively.

6 }
7 }
8 Calculate the DPA bias statistic B = S0 − S1

24

9 If B > 0 then the i − th key bit is one, otherwise, it is zero

4.2.2 Modification of Simple Fixed-Value Masking

We can avoid SODPA by making it difficult for an attacker to decide the

point where mask is loaded. For this, we can load more than two masks

into memory that can be used for operand of xor instruction. And then

we can use one mask among them randomly. SODPA resistant simple

fixed-value masking method is shown in Algorithm 9.

Algorithm 9 SODPAResistantSFV MAESEnc

SODPAResistantSFV MAESEnc(Pt)

1 r[0] = GenerateRandomNumber(); / ∗ r[0] = 0, . . . , q − 1 ∗ /

2 r[1] = GenerateRandomNumber(); / ∗ r[1] = 0, . . . , q − 1 ∗ /

3 lm[0] = mr[0];

4 lm[1] = mr[1];

5 s = GenerateRandomNumber(); / ∗ choose s = 0 or 1 ∗ /

6 T ′ = Pt;

7 T ′ = ApplyMask2(T ′, s);

8 T ′ = T ′ ⊕ K0;

9 for(i = 1; i < Nr; i + +){
10 T ′ = ByteSub FM(T ′, r[s]);

11 T ′ = ShiftRow(T ′);

12 T ′ = MixColumn(T ′);

13 T ′ = T ′ ⊕ Ki;

14 }
15 T ′ = ByteSub FM(T ′, r[l]);

16 T ′ = ShiftRow(T ′);

17 T ′ = T ′ ⊕ KNr;

25

18 T = ApplyMask2(T ′, s);

19 output T ;

Algorithm 10 ApplyMask2

ApplyMask2(T ′, s)

1 (t′15, t
′
14, . . . , t

′
0) = T ′;

2 for(j = 0; j < 16; j + +) t′j = t′j ⊕ lm[s];

3 T ′ = (t′15, t
′
14, . . . , t

′
0);

4 output T ′;

Because the attacker cannot know which mask in the memory is used,

he cannot decide the point for SODPA.

4.2.3 Consideration for Implementation

An 8-bit microcontroller like ST72101 has xor instruction. The source

operand can be accumulator and memory address. The destination

operand can be accumulator. In implementing ApplyMask2, care should

be taken so that mask value is not moved from the place where it is

stored by line 3 or 4 in Algorithm 9. If it is moved to other memory,

the moment can be a target for SODPA. If the mask is not moved and

used in the place using the address of the mask, an attacker will not be

able to find a point to mount SODPA.

4.2.4 Less Efficient but Safer Method

In the method of previous sections, it may be possible for an attacker

to attack the point where mask is moved into ALU of microcontroller.

Each instruction has different degree of vulnerability to DPA and it

seems that the xor instruction is relatively less vulnerable to DPA. But

26

we can use the following algorithm for more security.

Algorithm 11 SODPAResistantSFV M2AESEnc

SODPAResistantSFV M2AESEnc(Pt)

1 r[0] = GenerateRandomNumber(); / ∗ r[0] = 0, . . . , q − 1 ∗ /

2 r[1] = GenerateRandomNumber(); / ∗ r[1] = 0, . . . , q − 1 ∗ /

3 lm[0] = mr[0];

4 lm[1] = mr[1];

5 s = GenerateRandomNumber(); / ∗ choose s = 0 or 1 ∗ /

6 Pt[0] = ApplyMask2(Pt, 0);

7 Pt[1] = ApplyMask2(Pt, 1);

8 T ′ = Pt[s];

9 T ′ = T ′ ⊕ K0;

10 for(i = 1; i < Nr; i + +){
11 T ′ = ByteSub FM(T ′, r[s]);

12 T ′ = ShiftRow(T ′);

13 T ′ = MixColumn(T ′);

14 T ′ = T ′ ⊕ Ki;

15 }
16 T ′ = ByteSub FM(T ′, r[l]);

17 T ′ = ShiftRow(T ′);

18 T ′ = T ′ ⊕ KNr;

19 Ct[0] = ApplyMask2(T ′, 0);

20 Ct[1] = ApplyMask2(T ′, 1);

21 output Ct[s];

Because two masked plaintext is prepared and only the selected one

is processed, an attacker will not be able to decide the mask loading

time.

27

V. Analysis

5.1 Security Analysis

5.1.1 Resistance against DPA

To apply DPA, there should be an intermediate value that is function

of plaintext (or ciphertext) and part of secret key. If this condition

is met, we can find out the secret key part by part. But in simple

fixed-value masking method, all the bytes in the State are masked with

randomly selected mask and an attacker cannot know which value is

used for masking. Therefore, the attacker cannot know the bytes of the

State from plaintext and part of key. Because the mask is maintained

until the final round key addition finishes, the attacker cannot guess the

bytes of the State before final round key addition from the ciphertext.

If we choose the masks so that any bit of mask can be 0 with proba-

bility of 1/2, simple fixed-value masking method will be secure against

probabilistic DPA proposed in [4]. The proof will be similar to that of

[4]. We can summarize the proof for probabilistic DPA on S-box and

on round key addition as follows:

Proof of Resistance against DPA on S-box

If we denote the probability of d-th bit of x being 0 as βd(x), the proof

is as follows.

The relation between the output of modified S-box S ′ and the orig-

inal S-box S of first round is like this.

S ′[ai,j ⊕ mr ⊕ k0
i,j] = S[ai,j ⊕ mr ⊕ k0

i,j ⊕ mr] ⊕ mr = S[ai,j ⊕ k0
i,j] ⊕ mr

28

The attacker guesses that the key is k0
i,j and calculates the differential

power consumption curve ∆d with the selected bit from f = S[ai,j⊕k0
i,j].

εS′ , the magnitude of the spike in differential power consumption for one

byte output of S ′ can be represented as follows:

εS′ =
2

N

∑
Vc∈δ1d(S[ai,j⊕k0

i,j])

Vc(tloadS′) −
∑

Vc∈δ0d(S[ai,j⊕k0
i,j])

Vc(tloadS′)

Because d-th bit of S[ai,j ⊕ k0
i,j] equals to d-th bit of S[ai,j ⊕ k0

i,j] ⊕ mr

with probability βd(mr), we can get the following equation.

εS′ =
2

N

βd(mr)

∑
Vc∈δ1d(S[ai,j⊕k0

i,j]⊕mr)

Vc(tloadS′)

+(1 − βd(mr))
∑

Vc∈δ0d(S[ai,j⊕k0
i,j]⊕mr)

Vc(tloadS′)

−βd(mr)
∑

Vc∈δ0d(S[ai,j⊕k0
i,j]⊕mr)

Vc(tloadS′)

−(1 − βd(mr))
∑

Vc∈δ1d(S[ai,j⊕k0
i,j]⊕mr)

Vc(tloadS′)

=
2(2βd(mr) − 1)

N

∑
Vc∈δ1d(S′[ai,j⊕mr⊕k0

i,j])

Vc(tloadS′)

−
∑

Vc∈δ0d(S′[ai,j⊕mr⊕k0
i,j])

Vc(tloadS′)

From the above equation, we can see that the magnitude of spike

is zero if βd(mr) is 1/2, which means that any bit of mask should be 0

with probability 1/2.

29

Proof of Resistance against DPA on round key addition

The attacker calculates the differential power consumption curve ∆d

with the selected bit from f = ai,j. We assume that the sequence of

operation for applying round key is as follows:

load ai,j

load k0
i,j

xor ti,j, ai,j, k0
i,j

store ti,j

load ti,j

The magnitude of the spike for load ti,j can be as follows:

εloadti,j =
2

N

∑
Vc∈δ1d(ai,j)

Vc(tloadti,j) −
∑

Vc∈δ0d(ai,j)

Vc(tloadti,j)

Considering that d-th bit of ai,j equals to d-th bit of ai,j ⊕ mr with

probability βd(mr), the magnitude of spike is as follows:

εloadti,j =
2

N

βd(mr)

∑
Vc∈δ1d(ai,j⊕mr)

Vc(tloadti,j)

+(1 − βd(mr))
∑

Vc∈δ0d(ai,j⊕mr)

Vc(tloadti,j)

−βd(mr)
∑

Vc∈δ0d(ai,j⊕mr)

Vc(tloadti,j)

−(1 − βd(mr))
∑

Vc∈δ1d(ai,j⊕mr)

Vc(tloadti,j)

30

=
2(2βd(mr) − 1)

N

∑
Vc∈δ1d(ai,j⊕mr)

Vc(tloadti,j)

−
∑

Vc∈δ0d(ai,j⊕mr)

Vc(tloadti,j)

In the above equation, if the value of βd(mr) is 1/2, which means

that d-th bit of mask will be zero with probability 1/2, the magnitude

of the spike is zero and the attacker cannot guess the key bit.

5.1.2 Resistance against SODPA

In the proposed method that is resistant to SODPA, the attacker can-

not know the mask loading time. Therefore, the attack proposed by

Messerges [8] cannot be applied because the attacker should know the

power consumption by the mask.

It is said that if same mask is used for more than one round, mutual

correlation can be used to mount SODPA [6]. To avoid this attack,

mask can be selected for each round. At the point of mask change, the

xor-ed value of the old mask and the new mask can be applied to each

byte of the State.

5.1.3 Number of Masks

To apply the proposed method in real smart cards, the number of masks

q should be determined. If we use only one mask, the value of the mask

should be 0xFF to satisfy the condition for resistance against proba-

bilistic DPA. But Akkar et al. [12] showed that a variant of DPA called

PODPA can be used to attack this situation. But to mount PODPA,

an attacker should know the precise power consumption characteristic

of the target device and this is not an easy task for a normal attacker.

31

Therefore, for low-end smart cards, the number of masks q can be one.

But for high-end smart cards, q should be greater than one. And to

satisfy the criteria for probabilistic DPA resistance, q should be even.

It seems that there is no known attack for q = 2 case. But for security

margin, we prefer that q is greater than or equal to 4.

5.2 Performance Analysis

For the DPA resistance, a mask and a modified S-box can be used for

an entire encryption. In this case, additional processing and memory

requirement is as follows. First, random number for selecting a mask

should be generated. Then, the mask should be xor-ed with each byte

of the State. Encryption can be done as usual except that the selected

modified S-box should be used instead. At the end of the encryption,

the mask is applied once again and the result is the required cipher-

text. In this flow, the additional processing consists of random number

generation, initial mask application and final mask application. The

additional memory will be one or two bytes of register and additional

processing is random number generation and 32 xor operations.

For SODPA resistance, more resource is required. For hiding the

mask loading time, three random numbers should be generated and

two masked plaintext should be prepared and two unmasked ciphertext

should be calculated. For this, about 40 bytes of additional memory and

64 additional xor operations are needed. For changing the mask across

rounds, new mask should be applied Nr times and Nr ∗ (1 + 16) ∗ 2

xor operations are needed additionally to calculate the 2 xor-ed values

of the old masks and the new masks and apply the calculated values to

each bytes of States. The number 2 accounts for the two masked States.

32

VI. Comparison

In this chapter, we compare the proposed method with existing fixed-

value masking that is most adequate for real smart cards.

6.1 Viewpoint

The proposed method is different from fixed-value masking in the view-

point of mask generation. In fixed-value masking, input mask and out-

put mask for S-box are determined and from those masks, masks for

round keys are derived. By following this approach, applied mask can

be changed only at fixed points. That is at the place where round key

is added or where ByteSub transformation is performed.

In the proposed method, mask for bytes of the State is generated

regardless of other parts. And the applied mask can be changed at any

points in the algorithm by applying the value generated by xor operation

of the old mask and the new mask.

6.2 Security

In fixed-value masking method, S-box input mask FIN is used in the

interval from AddRoundKey transformation to ByteSub transforma-

tion. S-box output mask FOUT is used in the interval from ByteSub

transformation to AddRoundKey transformation. Two masks are used

repeatedly across rounds. It seems that using two masks for one round

has no advantage against DPA. Therefore, the proposed method without

SODPA countermeasures is as secure as fixed-value masking method.

33

The proposed method has advantage against SODPA especially pro-

posed by Messerges [8]. In the proposed method, it is difficult for an

attacker to decide the mask loading time, and SODPA proposed by

Messerges is impossible. SODPA using the mutual correlation across

rounds [6] can be prevented more efficiently using the proposed method.

To be able to select mask for each round, three bytes should be stored

with the modified S-box in fixed-value masking. One byte is FINr. This

is used for round key mask when the set of masks and modified S-box is

selected for the first round. When the mask set is selected for interme-

diate rounds, FINr is used for generating the round key mask that is

the xor-ed value of FINr and MixColumn(ShiftRow(FOUTr)) in the

previous round. Another byte is ShiftRow(FOUTr). This is used for

round key mask when the set of masks and modified S-box is used for

the final round. The third is MixColumn(ShiftRow(FOUTr)). This

is used for round key generation of intermediate rounds as explained in

the first case.

But with the proposed method, only one byte mask mr is stored to

be resistant to SODPA proposed at [6]. Mask can be changed at any

point simply by applying the xor-ed value of the old mask and the new

mask to every byte of the State. When a modified S-box is needed, the

modified S-box that corresponds to the current mask can be selected

from ROM or EEPROM and can be used.

6.3 Performance

The proposed method has advantage in memory and processing require-

ment. Previous fixed-value masking method requires three bytes to store

one kind of mask. That is, one for initial round key, another for inter-

mediate round keys, and the third for final round key. But the proposed

method uses only one byte mask.

34

If we consider the case without SODPA resistance for comparison,

the proposed method requires less processing because mask is applied

only at two points. That is, before initial round key addition and after

final round key addition. But the fixed-value masking method applies

masks at (Nr + 1) points. Once at the initial round key addition, and

(Nr - 1) times at intermediate round key addition and once at final

round key addition. Moreover, if the key becomes larger than 128 bits,

it requires more xor computation at one point. For AES whose secret

key is 128 bits long, the number of xor operations for applying mask is

like this. In fixed-value masking method, it is 11 points * 16 bytes =

176 operations. In the proposed method, it is 2 points * 16 bytes = 32

operations. We summarize the comparison in Table 6.1.

In some applications of smart cards like in transportation, the speed

of processing is important. All transactions should be completed with-

out incurring user’s inconvenience. Because the processing power of

smart cards are relatively low and cryptographic processing occupies

much part of the transaction, simple implementation of cryptographic

algorithm is required. And recently, some 32 bit smart card chips like

SLE88CX720P of Infineon technologies are beginning to be used. Ac-

cording to the AES proposal of Rijndael [15], if we implement AES-128

in 32 bit processors with full optimization for speed, AES-128 can be

implemented with four table lookups and four xor operations for each

column of the State in a round. In such an implementation of AES-

128, sixteen table lookups and sixteen xor operations are needed for a

round. For entire encryption, four word size xor operations are needed

for the initial round key addition and 320 operations for the other parts.

And the total number of operations will be approximately 324. If we use

fixed-value masking, four additional word size xor operations are needed

for each round key. For the entire encryption, 4 * 11 = 44 xor operations

are needed additionally. This increases the overall number of operation

35

Table 6.1: Comparison of fixed-value masking and our scheme for AES-

128
Fixed-value masking Our scheme

ROM space for mask 3 Bytes/mask 1 Byte/mask

Number of xor for masking 176 32

by 13.6%. If we use the proposed method, 4 * 2 = 8 additional word

size xor operations are needed for masking the columns of the State.

The increase in the number of operations is 2.5%. From this, we can

see that the increase in processing for applying the countermeasure is

much less with the proposed method.

36

VII. Conclusion

In this thesis, we have studied the design and analysis of software coun-

termeasure for securing AES against DPA. We have reviewed AES,

DPA, and previous masking methods. And then we have suggested

an improved masking method.

Fixed-value masking method seems to be the most practical soft-

ware countermeasure for securing AES against DPA. The method is

especially adequate for cheap smart cards that have little RAM and low

processing power. But the method is vulnerable to SODPA and it can

be more simplified maintaining security. In this thesis, we propose a

SODPA resistant simple fixed-value masking method. In the proposed

method, we reduced the required memory for storing mask by 66% and

the xor operation for applying mask by 82%. By making it difficult to

determine the point for SODPA, we achieved SODPA resistance. For

more resistance against SODPA, we can select the mask for each round.

The additional RAM usage and processing for DPA resistance is rela-

tively small.

As the further works, it is necessary to implement proposed method

in real smart cards and assess its effectiveness. And the possibility of

other SODPA other than considered in this thesis should be checked

and study of DPA higher than second order is needed.

37

���������������Ǳ��� ����� AES ������	�
 ����� 	�
�� �����

��������

��Æ���� ����� ���� 	�
�����Æ ����������� ����������� ����� ������

���� ��	
����, ���������, �������������� �� ����������Æ �������� �����

��� ��	���� �������� �. ����������Æ !�"#	�
 �������� $����%� ����� �����

	�
 ���
����� ��
�������� &'�	�	�
 (), *+ �
�,������ -�
��� ������.�/0 ��
�

12��34��� ������.�56 7�89��� &' ��� ���� ��	�� �.

.�:���, ;����
�<=��� ����Ǳ��� ���>�:����?@ ����������Æ ����������

���������A ��� �.
�<=��� ����Ǳ���� ������ BC��:�-� $����%���
�34 ������ BC

��:���� ���� ���?@ ������.���� D'��� ���7���� �����.�/0 $����%���� ���E������

F�!" �� �. D'��� ���7������ ������ GHIJK� �����F�L� ����� �����.�F�MJ .�

�A ���
�� �������K� ���
�� #�$ ������.���� NJOP��� �����.�F�MJ 	�
 �. Q�������

�������Ǳ���� ������ GHIJ��� �����.����
�<=��� ����Ǳ��Æ ����%����� $������ R4

���Æ���$�������AS���&��
�TU '!���IJV����?@MJ����������(��.�/0����

����� �� ��� ���W��� 	�X=?@ �"#��������� ������� Y!�A ��� �. Q�������������

�Ǳ���	�	�
	�����$"������.��#$/Z���Æ	�
�$"%��,�GH[���#$/Z���Æ	�
�$"

%������ K�)" &' ��� �. ;���� ���
��Y!��� ������������ ��� ��\]�� Q�������

�������Ǳ�����%&F���	�
.��#$/Z	�����$"�����TU '!Y!/Z���������'̂��'�(:�

��, Q��������������Ǳ���� _̀,�������� �$":�.�F� ��X=?@��� GH[���#$/Z�� �Æ

	�
 	�����$"���MJ TU '!X=Ea 	�
 ���� ��	�� ���)&*������ �Æ'*��� �.

AES��� b�+,- +,-�(�cd.��F�!" ��	(NIST)�� DES��� 	������� ef����� cd.��

/��0
1 +%,89 ����AS���&���� 2000)Æ��� ������	�
 ����AS���&���� ��-���� g����

�� ��Q� �������� �������� �. AES��� Q��������������Ǳ�����
�34 7�89.�F� ��

	�
 GH[���#$/Z 	�����$"������� ����h� �$"%���� iC���Y!*+�:��� F�2
� ����

h��$"%�������Q�Q��������������Ǳ���	�X= ĵ_̀����,�-�ABCIJS�g����..",�

38

���
��.." �����?@MJ _̀3������� 4�5��� /0:��� ��� �.

6� ���7����?@��� ��Q� Q��������������Ǳ��� '*���� &' ����A F�2
� �$"%��7� �

_̀3�������� /��8�� ����h� �$"%����� iC���	�
 �. iC���	�
 �$"%����� ����h� ��\]

R4������ ��	�
 BCIJS� g����.."��?@ F�2
� �$"%���Æ 33%���� ����h� ���������

��	�
 xor ���
����� 128$��� %���� g����.���� AES F�.������ F�2
� �$"%���Æ

18%�� �. ����h��� �Æ	�
 BCIJS� g����.."��� #����� ��	��� �"#iC TU '! �� ���

�AS���& ���\] h�F��� $�.���� _̀,��� h�:� ��(�. .�:��� xor ���
����� #��

�����	�����9MJ��;��������� 32$��������������?@������\]&'�	���9MJ���

10%���MJ0."�����%���� _̀,������ �.��Q�Q��������������Ǳ�����$":�.�F���

X=?@��� ����Ǳ����� �"#iC g������� ����h��Æ ��:� ������� ��� &' ,�-MJ0
1 .�

��� �$"%��,� k�����%���� ����h���� ��lU��� �$"%����� iC���	�
 �. ����+�
����

��?@��� �������� ����h��� ��mnEa ��� "#';�,� ����h��Æ &', 	�����$"��� TU

 '!��o�Ǳ��p������
��..",�BCIJS�g����.."���iC��.��A������������1���	�

 �.

39

References

1. P. Kocher, J. Jaffe, and B. Jun, Differential Power Analysis,

Advances in Cryptology - Crypto 1999, LNCS 1666, pp.388-397,

Springer-Verlag, 1999.

2. T. Messerges, Securing the AES Finalists Against Power Analy-

sis Attacks, Fast Software Encryption Workshop - FSE 2000, LNCS

1978, pp.150-164, Springer-Verlag, 2001.

3. C. Clavier, J. Coron, and N. Dabbous, Differential Power

Analysis in the Presence of Hardware Countermeasures, Workshop

on Cryptographic Hardware and Embedded Systems - CHES 2000,

LNCS 1965, pp.252-263, Springer-Verlag, 2000.

4. K. Itoh, M. Takenaka, and N. Torii, DPA Countermeasure

Based on the Masking Method, International Conference on In-

formation, Communications and Signal Processing - ICICS 2001,

LNCS 2288, pp.440-456, Springer-Verlag, 2002.

5. M. Akkar and C. Giraud, An Implementation of DES and AES

Secure against Some Attacks, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 2001, LNCS 2162, pp.309-318,

Springer-Verlag, 2001.

6. J. Golic and C. Tymen, Multiplicative Masking and Power

Analysis of AES, Workshop on Cryptographic Hardware and Em-

bedded Systems - CHES 2002, LNCS 2523, pp.198-212, Springer-

Verlag, 2003.

40

7. E. Trichina, D. Seta, and L. Germani, Simplified Adaptive

Multiplicative Masking for AES, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 2002, LNCS 2523, pp.187-197,

Springer-Verlag, 2003.

8. T. Messerges, Using Second-Order Power Analysis to Attack

DPA Resistant Software, Workshop on Cryptographic Hardware

and Embedded Systems - CHES 2000, LNCS 1965, pp.238-251,

Springer-Verlag, 2000.

9. S. Yen, Amplified Differential Power Cryptanalysis on Rijndael

Implementations with Exponentially Fewer Power Traces, Informa-

tion Security and Privacy Australasian Conference - ACISP 2003,

LNCS 2727, pp.106-117, Springer-Verlag, 2003.

10. Y. Ishai, A. Sahai, and D. Wagner, Private Circuits: Secur-

ing Hardware against Probing Attacks, Advances in Cryptology -

Crypto 2003, LNCS 2729, pp.463-481, Springer-Verlag, 2003.

11. NIST, Federal Information Processing Standards Publication 197

- Specification for the Advanced Encryption Standard (AES),

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

12. M. Akkar, R. Bevan, P. Dischamp, and D. Moyart, Power

Analysis, What Is Now Possible..., Advances in Cryptology - ASI-

ACRYPT 2000, LNCS 1976, pp.489-502, Springer-Verlag, 2000.

13. S. Chari, C. Jutla, J. Rai, and P. Rohatgi, A Cautionary

Note Regarding Evaluation of AES Candidates on Smart-Cards,

Second AES Candidate Conference (AES2), 1999.

14. R. Bevan and E. Knudsen, Ways to Enhance Differential

Power Analysis, Information Security and Cryptology - ICISC

2002, LNCS 2587, pp.327-342, 2003.

41

15. J. Daemen and V. Rijmen, AES Proposal: Rijndael,

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-

ammended.pdf, 1999.

16. J. Coron and L. Goubin, On Boolean and Arithmetic Mask-

ing against Differential Power Analysis, Workshop on Crypto-

graphic Hardware and Embedded Systems - CHES 2000, LNCS

1965, pp.231-237, Springer-Verlag, 2000.

17. L. Goubin, A Sound Method for Switching between Boolean and

Arithmetic Masking, Workshop on Cryptographic Hardware and

Embedded Systems - CHES 2001, LNCS 2162, pp.3-15, Springer-

Verlag, 2001.

18. J. Coron, A. Tchulkine, A New Algorithm for Switching from

Arithmetic to Boolean Masking, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 2003, LNCS 2779, pp.89-97,

Springer-Verlag, 2003.

19. T. Messerges, E. Dabbish, and R. Sloan, Investigations of

Power Analysis Attacks on Smartcards, USENIX Workshop on

Smartcard Technology, pp.151-162, 1999.

20. P. Kocher, Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems, Advances in Cryptology

- Crypto 1996, LNCS 1109, pp.104-113, Springer-Verlag, 1996.

21. W. Schindler, F. Koeune, and J. Quisquater, Improving

Divide and Conquer Attacks against Cryptosystems by Better Er-

ror Detection / Correction Strategies, Cryptography and Coding

2001, LNCS 2260, pp.245-267, Springer-Verlag, 2001.

22. A. Shamir, Protecting Smart Cards from Passive Power Analysis

with Detached Power Supplies, Workshop on Cryptographic Hard-

42

ware and Embedded Systems - CHES 2000, LNCS 1965, pp.71-77,

Springer-Verlag, 2000.

23. S. Mangard, A Simple Power-Analysis (SPA) Attack on Imple-

mentations of the AES Key Expansion, Information Security and

Cryptology - ICISC 2002, LNCS 2587, pp.343-358, 2003.

24. S. Chari, C. Jutla, J. Rao, and P. Rohatgi, Towards

Sound Approaches to Counteract Power-Analysis Attacks, Ad-

vances in Cryptology - Crypto 1999, LNCS 1666, pp.398-412,

Springer-Verlag, 1999.

25. W. Schindler, A Combined Timing and Power Attack, Interna-

tional Workshop on Practice and Theory in Public Key Cryptogra-

phy - PKC 2002, LNCS 2274, pp.263-279, 2002.

26. M. Willich, A Technique with an Information-Theoretic Basis

for Protecting Secret Data from Differential Power Attacks, Cryp-

tography and Coding 2001, LNCS 2260, pp.44-62, 2001.

27. S. Yen, S. Kim, S. Lim, and S. Moon, A Countermeasure

against One Physical Cryptanalysis May Benefit Another Attack,

International Conference on Information, Communications and

Signal Processing - ICICS 2001, LNCS 2288, pp.414-427, Springer-

Verlag, 2002.

28. R. Sommer, Smartly Analyzing the Simplicity and the Power of

Simple Power Analysis on Smartcards, Workshop on Cryptographic

Hardware and Embedded Systems - CHES 2000, LNCS 1965, pp.78-

92, Springer-Verlag, 2000.

29. D. May, H. Muller, and N. Smart, Random Register Re-

naming to Foil DPA, Workshop on Cryptographic Hardware and

43

Embedded Systems - CHES 2001, LNCS 2162, pp.28-38, Springer-

Verlag, 2001.

30. L. Goubin and J. Patarin, DES and Differential Power Analy-

sis The “Duplication” Method, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 1999, LNCS 1717, pp.158-172,

Springer-Verlag, 1999.

31. V. Kĺıma and T. Rosa, Further Results and Considerations on

Side Channel Attacks on RSA, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 2002, LNCS 2523, pp.244-259,

Springer-Verlag, 2003.

32. C. Walter and S. Thompson, Distinguishing Exponent Dig-

its by Observing Modular Substractions, Cryptographer’s Track at

RSA Conference - CT-RSA 2001, LNCS 2020, pp.192-207, 2001.

33. R. Novak, SPA-Based Adaptive Chosen-Ciphertext Attack on

RSA Implementation, International Workshop on Practice and

Theory in Public Key Cryptography - PKC 2002, LNCS 2274,

pp.252-262, 2002.

34. J. Dhem, F. Koeune, P. Leroux, P. Mestré, J.

Quisquater, and J. Willems, A Practical Implementation

of the Timing Attack, UCL Crypto Group Technical Report

http://users.belgacom.net/dhem/papers/CG1998 1.pdf, 1998.

35. P. Fouque, G. Martinet, and G. Poupard, Attacking Un-

balanced RSA-CRT Using SPA, Workshop on Cryptographic Hard-

ware and Embedded Systems - CHES 2003, LNCS 2779, pp.254-268,

Springer-Verlag, 2003.

36. W. Schindler, A Timing Attack against RSA with the Chi-

nese Remainder Theorem, Workshop on Cryptographic Hardware

44

and Embedded Systems - CHES 2000, LNCS 1965, pp.109-124,

Springer-Verlag, 2000.

37. K. Gandolfi, C. Mourtel, and F. Olivier, Electromagnetic

Analysis: Concrete Results, Workshop on Cryptographic Hardware

and Embedded Systems - CHES 2001, LNCS 2162, pp.251-261,

Springer-Verlag, 2001.

38. D. Page, Theoretical Use of Cache Memory as a Cryptanalytic

Side-Channel, http://eprint.iacr.org/2002/169, 2002.

39. C. Giraud, DFA on AES, http://eprint.iacr.org/2003/008, 2003.

40. S. Skorobogatov and R. Anderson, Optical Fault Induction

Attacks, Workshop on Cryptographic Hardware and Embedded Sys-

tems - CHES 2002, LNCS 2523, pp.2-12, Springer-Verlag, 2003.

41. R. Anderson and M. Kuhn, Low Cost Attacks on Tamper Re-

sistant Devices, Security Protocols 1997, LNCS 1361, pp.125-136,

Springer-Verlag, 1997.

42. E. Biham and A. Shamir, Differential Fault Analysis, Advances

in Cryptology - Crypto 1997, LNCS 1294, pp.513-525, Springer-

Verlag, 1997.

43. R. Anderson and M. Kuhn, Tamper Resistance - a Caution-

ary Note, The Second Workshop on Electronic Commerce, pp.1-11,

1996.

44. D. Boneh, R. DeMillo, and R. Lipton, On the Importance of

Checking Cryptographic Protocols for Faults, Advances in Cryptol-

ogy - EUROCRYPT 1997, LNCS 1233, pp.37-51, Springer-Verlag,

1997.

45

Acknowledgement

First, I would like to express my sincere gratitude to Prof. Kwangjo

Kim, my academic advisor, for his constant direction and support. He

always has shown his consistent affection and encouragement for me

to carry out my research and life in ICU. Special thanks also goes to

Prof. Jaechoon Cha and Prof. Daeyoung Kim for their generosity and

agreeing to serve as committee members of my thesis.

In particular, I would like to thank to people in my company, Sam-

sung SDS for giving me a good chance to do research.

I also would like to thank to all members of cryptology and in-

formation security laboratory: Kyusuk Han, Sangwon Lee, Zeen Kim,

Byeonggon Kim, Songwon Lee, Chuljoon Choi, Sungjoon Min, Jae-

hyrk Park, Jungman Kim, Sugil Choi, Jungkyu Yang, Seokkyu Kang,

Jeongmi Choi, Vo Duc Liem, Yan Xie, Xiaofeng Chen, Ping Wang,

Jiqiang Lv, Ren Kui and Divyan, for giving me lots of interests and

good advices during the course of my study.

In addition, I appreciate to the graduates, Weonkeun Huh, Kyubeom

Hwang, Gookwhan An, Byoungcheon Lee, Manho Lee, Jinho Kim,

Myungsun Kim, Jongseung Kim, Wooseok Ham, Hyunrok Lee, and

Hyungki Choi for their everlasting guidance in life and study in ICU

and I want to present my sincere gratitude to previous C Lab. mem-

bers: Sangbae Park, Jungyun Lee, YunKyoung Jeong, and Junbaek Ki.

Most of all, I should mention my wife, Yunmi, Yujung, father,

mother, father-in-law, mother-in-law, brothers, and brother-in-laws for

their endless concerns and devotional affection. I cannot forget their

trust and encouragement on me. I hope God bless my family and to be

happy.

Curriculum Vitae

Name : Hwasun Chang

Date of Birth : Nov. 06. 1970

Sex : Male

Nationality : Korean

Education

1989.3–1993.2 Electrical Engineering

Yonsei University (B.E.)

1993.3–1995.2 Electrical Engineering

Yonsei University (M.E.)

2002.2–2004.2 Cryptology and Information Security, Engineering

Information and Communications University (M.S.)

Career

2003.6–2003.8 Graduate Teaching Assistant

ICE1210 Algorithm Design and Analysis

School of Engineering, ICU

2003.1–2003.12 Graduate Research Assistant

Research on Link Layer Security Algorithm Develop-

ment and Standardization

Electronics and Telecommunications Research Institute(ETRI)

2002.1–2002.12 Graduate Research Assistant

Middleware(8)

Electronics and Telecommunications Research Institute(ETRI)

2002.2–2003.2 Graduate Research Assistant

Cultivation of Top Level IT Security Manpower

The Ministry of Information and Communications(MIC)

2003.3– Graduate Research Assistant

Support for Running the International Research Cen-

ter for Information Security

The Ministry of Information and Communications(MIC)

1995.2–1998.6 Samsung Electronics Co., Ltd.

1998.7– Samsung SDS Co., Ltd.

Academic Experience

2002.4– KIISC student member

Publications

(1) 2003.10 Hwasun Chang and Kwangjo Kim, Securing AES against

Second-Order DPA by Simple Fixed-Value Masking,

Computer Security Symposium 2003, pp.145-150, Ki-

takyushu, Japan (0�/������7�����)

(2) 2003.12 ��������, ��2���q=, �����rJ, SEED�Æ Q��������������Ǳ��� 	�

	�
 3���� �$"���, 2003)Æ�MJ 	�
+,-���7�7�890�/�4 :�5s0�/!"

	��4, pp.274-280, 	�
+0�	�0�/��, 	�
+,-

(3) 2003.8 ��������,�����rJ, AES��	�	�
DPA	�����$"���5f���, 2003)Æ�

MJ 	�
+,-���7�7�890�/�4 ��$1�2:�
� 0�/!" 	��4, pp.3-10, ��$

=>1	�0�/��, 	�
+,-

(4) 2003.7 ��������,�����rJ, AES��	�	�
NJOPF�)&*����Ǳ�, 2003)Æ�MJ

	�
+,-���7�7�890�/�4 .�5s0�/!" 	��4, pp.138-141, q=t=	�

0�/��, 	�
+,-

