
A Thesis for the Degree of Master

An Efficient Tree-based Group Key

Agreement

using Bilinear Map

Sang-won Lee

School of Engineering

Information and Communications University

2003

An Efficient Tree-based Group Key

Agreement

using Bilinear Map

An Efficient Tree-based Group Key

Agreement

using Bilinear Map

Advisor : Professor Kwangjo Kim

by

Sang-won Lee

School of Engineering

Information and Communications University

A thesis submitted to the faculty of Information and Com-

munications University in partial fulfillment of the require-

ments for the degree of Master of Science in the School of

Engineering

Taejon, Korea

Dec. 20. 2000

Approved by

(signed)

Professor Kwangjo Kim

Major Advisor

An Efficient Tree-based Group Key

Agreement

using Bilinear Map

Sang-won Lee

We certify that this work has passed the scholastic stan-

dards required by the Information and Communications Uni-

versity as a thesis for the degree of Master

Dec. 20. 2000

Approved:

Chairman of the Committee
Chon-Ja Park, Assistant Professor
School of Engineering

Committee Member
Chong-Bo Lee, Professor
School of Engineering

Committee Member
Kyong-Young Yu, Associate Professor
School of Engineering

M.S.

2001807

Sang-won Lee

An Efficient Tree-based Group Key Agreement

using Bilinear Map

School of Engineering, 2003, 30p.

Major Advisor : Prof. Kwangjo Kim.

Text in English

Abstract

Secure and reliable group communication is an increasingly active

research area by growing popularity in group-oriented and collaborative

application. One of the important challenges is to design secure and

efficient group key management. While centralized management is often

appropriate for key distribution in large multicast-style groups, many

collaborative group settings require distributed key agreement. The

communication and computation cost is one of important factors in the

group key management for Dynamic Peer Group. In this paper, we

extend TGDH (Tree-based Group Diffie-Hellman) protocol to improve

the computational efficiency by utilizing pairing-based cryptography.

The resulting protocol reduces computational cost of TGDH protocol

without degrading the communication complexity.

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

List of Abbreviations vi

List of Notations vii

I Introduction 1

II Previous Work 3

2.1 Group Key Management 3

2.2 Group Membership Operations 4

2.3 Bilinear Pairings and BDH Assumption 5

2.3.1 BDH Problem . 6

2.3.2 BDH Assumption 6

IIIOur Protocol 7

3.1 Join Protocol . 9

3.2 Leave Protocol . 13

3.3 Partition Protocol . 14

3.4 Merge Protocol . 16

ii

IV Analysis 19

4.1 Security Analysis . 19

4.2 Performance . 24

V Concluding Remarks 27

Appendix

28

References 29

Acknowledgement 31

Curriculum Vitae 32

iii

List of Tables

3.1 Notations . 8

3.2 Join Protocol . 10

3.3 Leave Protocol . 12

3.4 Partition Protocol . 15

3.5 Merge Protocol . 17

4.1 Communication Costs 25

4.2 Computation Costs . 26

iv

List of Figures

3.1 An example of a key tree 9

3.2 Tree-updating in join operation 11

3.3 Tree-updating in leave operation 13

3.4 Tree-updating in partition operation 14

3.5 Tree-updating in merge operation 18

4.1 Notation for fully ballanced ternary tree 19

v

List of Abbreviations

DH Diffie-Hellman

CDH Computational Diffie-Hellman

BDH Bilinear Diffie-Hellman

DBDH Decisional Bilinear Diffie-Hellman

ECDH Elliptic Curve Diffie-Hellman

GDH Group Diffie-Hellman

TGDH Tree-based Group Diffie-Hellman

vi

List of Notations

ICU Information and Communications University

N Member of protocol parties(group members)

C Set of current group members

L Set of leaving members

Mi i-th group member; i ∈ {1,2, ..., N}

h The height of the key tree

< l, v > v-th node at the l-th level in a tree

Ti Mi’s view of the key tree

T̂i Mi’s modified tree after membership operation

T<i,j> A subtree rooted at node < i, j >

BK∗
i set of Mi’s blinded keys

P Public information, a point on an elliptic curve

H1 Hash function, H1 : G2 → Z∗
q

H2 Hash function, H2 : G1 → Z∗
q

vii

I. Introduction

Secure and reliable communications have become critical in modern

computing. The centralized services like e-mail and file sharing can

be changed into distributed or collaborated system through multiple

systems and networks. Basic cryptographic requirements such as data

confidentiality, data integrity, authentication and access control are re-

quired to build secure collaborative system in the broadcast channel.

When all group members have the shared secret key, these security ser-

vices can be easily implemented.

Dynamic Peer Group (DPG) belongs to a kind of ad hoc group which

its membership can be frequently changed and the communicating party

in a group can be dynamically configured.

Recently, Joux[5] presented a three-party key agreement protocol

which requires each entity to make on a single round using pairings on

algebraic curves. This should be contrasted with the obvious extension

of the conventional Diffie-Hellman key distribution protocol to three

parties requiring two interactions per peer entity. We extend this three-

party key agreement protocol to group key agreement protocol using

ternary tree and also use two-party key agreement protocol for some

subtree node.

Y. Kim et al.[9] proposed a secure, simple and efficient key man-

agement method, called TGDH(Tree-based Group Diffie-Hellman) pro-

tocol, which uses key tree with Diffie-Hellman key exchange to effi-

ciently compute and update group keys. Since the computation cost of

tree-based key management is proportional to the height of configured

key tree. Using ternary key tree, we can reduce the computation cost

O(log2n) of TGDH to O(log3n).

1

This paper is organized as follows: Section 2 briefly introduces pre-

vious work in group key management, group membership events and

bilinear map. Section 3 explains the protocol. Performance analysis

is described in Section 4. We suggest concluding remarks in Section 5

following with the security analysis of our protocol in Appendix.

2

II. Previous Work

2.1 Group Key Management

There are different approaches to group key management in peer group.

First, centralized group key distribution is that a single key server gen-

erates keys and distributes them to the group. Essentially, a key server

maintains long-term shared keys with each group member in order to

enable secure two-party communication for the actual key distribution.

This approach has a drawback: Key server must be always available to

every possible subset of a group in order to support continued operation

in the event of network reconfiguration.

Another approach, called decentralized group key distribution, in-

cludes dynamically selecting a group member that generates and dis-

tributes keys to other group members. This approach is more robust

and applicable to many-to-many groups since any partition can continue

operation by electing a key server. But a key server must establish long-

term pair-wise secure channels with all current group members in order

to distribute group keys.

Contributory group key agreement method is that each group mem-

ber contributes an equal share to the common group key. This method

can avoid the problems with centralized trust. Moreover contributory

method does not require the establishment of pair-wise secure channels

among group members.

3

2.2 Group Membership Operations

A comprehensive group key agreement must handle adjustments to

group secrets subsequent to all membership operations in the under-

lying group communication system.

We distinguish among single and multiple member operations. Sin-

gle member changes include member addition or deletion. This oc-

curs when a member wants to join(or leave) a group. Multiple member

changes also include addition and deletion: Member Join and Leave .

We refer to the multiple addition operation as Group Merge , in which

case two or more groups merge to form a single group. We refer to the

multiple leave operation as Group Partition , whereby a group is split

into smaller groups. Group Merge and Partition event are common

owing to network misconfiguration and router failures. Hence, dealing

with Group Partition and Merge is a crucial component of group

key agreement.

In addition to the single and multiple membership operations, peri-

odic refreshes of group secrets are advisable so as to limit the amount

of ciphertext generated with the same key and to recover from poten-

tial compromise of member’s contribution or prior session keys. Key

Refresh is one of the most important security requirements of a group

key agreement.

The special member, referred to as sponsor, is responsible for broad-

casting all link values of the current tree to the members. Note that the

sponsor is not a privileged member. His task is only to broadcast the

current tree information to the group members. Any current member

could perform this task. We assume that every member can unambigu-

ously determine both the sponsors and the insertion location in the key

tree. Key Refresh operation can be considered to be a special case of

Member Leave without any members actually leaving the group.

4

Let’s summarize all membership operations as follows:

• Member Join : A new member is added to the group.

• Member Leave : A member is removed from the group.

• Group Merge : A group is merged with the current group.

• Group Partition : A subset of members are split from the

group.

• Key Refresh : The group key is updated.

Group key agreement of dynamic group must provide four security

properties: Group key secrecy is basically supported property in group

communication. Forward secrecy means that any leaving member from

a group can not generate new group key. Backward secrecy means that

any joining member into a group can not discover previously-used group

key. The combination of backward secrecy and forward secrecy forms

key independence.

2.3 Bilinear Pairings and BDH Assump-

tion

Let G1 be an additive group generated by P , whose order is a prime q,

and G2 be a multiplicative group of the same order q. We assume that

the discrete logarithm problem(DLP) in both G1 and G2 is hard. Let

e : G1 ×G1 → G2 be a paring which satisfies the following conditions:

1. Bilinear: e(P1 + P2, Q) = e(P1, Q)e(P2, Q) and e(P,Q1 + Q2) =

e(P,Q1)e(P,Q2)

2. Non-degenerate : There exist P and Q ∈ G1 such that e(P,Q) �= 1

5

3. Computability : There is an efficient algorithm to compute e(P,Q)

for all P,Q ∈ G1

The Weil or Tate pairings associated with supersingular elliptic curves

or Abelian varieties can be modified to create such bilinear maps.

2.3.1 BDH Problem

: The Bilinear Diffie-Hellman(BDH) Problem for a bilinear map e :

G1 ×G1 → G2 is defined as follows: given P, aP, bP, cP ∈ G1, compute

e(P, P)abc, where a, b, c are randomly chosen from Z∗
q . An algorithm A

is said to solve the BDH problem with an advantage of ε if

Pr[A(P, aP, bP, cP) = e(P, P)abc] ≥ ε

2.3.2 BDH Assumption

: We assume that the BDH problem is hard, which means there is no

polynomial algorithm to solve BDH problem with non-negligible prob-

ability.

6

III. Our Protocol

Table 3.1 shows the notations used in this paper. We can classify three

nodes of a key tree as follows:

• Member node : represent each group member as leaf node.

• Key node : correspond with one key. This key is shared by all

members of the subtree rooted at this key node.

• Root node : represent the shared group key.

Fig. 3.1 shows an example of a key tree. The root is located at the 0-

th level and the lowest leaves are at the h-th level. Since we use ternary

tree, every node can be a leaf or a parent of two nodes or a parent of

three nodes. The node are denoted < l, v >, where 0 ≤ v ≤ 3l− 1 since

each level l hosts at most 3l nodes. Each node < l, v > is associated

with the key K<l,v> and the blinded key (bkey) BK<l,v> = K<l,v>P .

The multiplication kP is obtained by repeating k times addition over

an elliptic curve. We assume that a leaf node < l, v > is associated with

Mi, then the node < l, v > has Mi’s session random key K<l,v>. We

further assume that the member Mi at node < l, v > knows every key

along the path from < l, v > to < 0, 0 >, referred to as the key-path. In

Fig. 3.1, if a member M3 owns the tree T3, then M3 knows every key

{K<2,2>, K<1,0>, K<0,0>} and every bkey BK∗
3 = {BK<2,2>, BK<1,0>,

BK<0,0>} on T3.

The case of subtree having three child node at < l, v >, computing a

key requires the knowledge of the key in one of the three child node and

the bkey of the other child node. We can get a key K<l,v> by computing

pairings. In another case, we need to know the key of one of the two

7

Table 3.1: Notations
N Member of protocol parties(group members)

C Set of current group members

L Set of leaving members

Mi i-th group member; i ∈ {1,2, ..., N}
h The height of the key tree

< l, v > v-th node at the l-th level in a tree

Ti Mi’s view of the key tree

T̂i Mi’s modified tree after membership operation

T<i,j> A subtree rooted at node < i, j >

BK∗
i set of Mi’s blinded keys

P Public information, a point on an elliptic curve

H1 Hash function, H1 : G2 → Z∗
q

H2 Hash function, H2 : G1 → Z∗
q

child node and the bkey of the other child node. We can get a key

K<l,v> by computing a point multiplication on elliptic curve. K<0,0> at

the root node is the group secret shared by all members.

For example, in Fig. 3.1, M3 can compute K<1,0>, K<0,0> using

BK<2,0>, BK<2,1>, BK<1,1> and K<2,2>. The final group key K<0,0> is

:

K<0,0> = H1(ê(H1(ê(P, P)r4r5r6), r7P)H1(ê(r1P,r2P)r3))

If there are 8 members in group, then the final group key K<0,0> is :

K<0,0> = H1(ê(H1(ê(P, P)r4r5r6), H2(r7r8P))H1(ê(r1P,r2P)r3))

where r7r8P is the shared key between M7 and M8 using ECDH (Ellip-

tic Curve Diffie-Hellman)problem.

8

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

M1 M2 M3 M4 M5 M6

M7

l = 0

l = 1

l = 2

h = 2
N = 7

Figure 3.1: An example of a key tree

Now we describe the group operation: Join , Leave , Partition and

Merge . We modify this operation in TGDH by utilizing the ternary

tree and bilinear map.

3.1 Join Protocol

We assume the group has n members: {M1,M2, ...,Mn}. The new mem-

ber Mn+1 initiates the protocol by broadcasting a join request message

that contains its own bkey BK<0,0> (= rn+1P).

Each current member receives this message and first determines the

insertion point in the tree. The insertion point is the shallowest right-

most node, where the join does not increase the height of the key tree.

Otherwise, if the key tree is fully balanced, the new member joins to

the root node. The sponsor is the rightmost leaf in the subtree rooted

at the insertion point. If the intermediate node in the rightmost has

two member nodes, the sponsor inserts the new member node under

this intermediate node. The tree becomes fully balanced. Otherwise,

each member creates a new intermediate node and a new member node,

and promotes the new intermediate node to be the parent of both the

insertion node and the new member node. After updating the tree,

9

Table 3.2: Join Protocol
Step 1 : The new member broadcasts request for join

Mn+1
BK<0,0>=rn+1P−−−−−−−−−−−−→ C

Step 2 : Every member

– if key tree contains the subtree that has two child

node, add the new member node for updating key

tree. otherwise, add the new member node and

new intermediate node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

The sponsor Ms additionally

– generates new share and computes all [key, bkey]

pairs on the key-path,

– broadcasts updated tree T̂s including only bkeys.

Ms
T̂s(BK∗

s)−−−−−−−−−−−−→ C ∪ {Mn+1}

Step 3 : Every member computes the group key using T̂s.

all members, except the sponsor, are blocked. The sponsor proceeds

to update his share and computes the new group key; the sponsor can

do this operation since it knows all necessary bkeys. Next, the sponsor

broadcasts the new tree which contains all bkeys. All other members

update their trees accordingly and compute the new group key.

It might appear wasteful to broadcast the entire tree to all members,

10

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

<2,6> <2,7>

Tree T7Tree T7

M1 M2 M3 M4 M5 M6

M7

M1 M2 M3 M4 M5 M6 M7 M8

Sponsor

New Intermediate Node

New Member

Figure 3.2: Tree-updating in join operation

since they already know most of the bkeys. However, since the sponsor

needs to send a broadcast the entire tree to the group anyhow, it might

as well include more information which is useful to the new member,

thus saving one unicast message to the new member (which would have

to contain the entire tree).

Fig. 2 illustrates an example of member M8 joining a group where

the sponsor (M7) performs the following actions:

1. Rename node < 1, 2 > to < 2, 6 >.

2. Generate a new intermediate node < 1, 2 > and a new member

node < 2, 7 >.

3. Update < 1, 2 > as the parent node of < 2, 6 > and < 2, 7 >.

4. Generate new share and compute all [key, bkey] pairs.

5. Broadcast updated tree T̂8.

Since all members know BK<2,7>, BK<1,0> and BK<1,1>, M7 can com-

pute the new group key K<0,0>. Every other member also performs

steps 1 and 2, but cannot compute the group key in the first round.

Upon receiving the broadcasted bkeys, every member can compute the

new group key.

11

If another member M9 wants to join the group, the new sponsor(M8)

performs the following actions:

1. Generate a new member node < 2, 8 > under the intermediate

node < 1, 2 >.

2. Generate new share and compute all [key, bkey] pairs.

3. Broadcast updated tree T̂8.

Every member also performs step 1, and then can compute the new

group key with the broadcasted messages.

Table 3.3: Leave Protocol
Step 1 : Every member

– update key tree by removing the leaving member

node,

– remove relevant parent node, if this node have only

one member node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

The sponsor Ms additionally

– generates new share and computes all [key, bkey]

pairs on the key-path,

– broadcasts updated tree T̂s including only bkeys.

Ms
T̂s(BK∗

s)−−−−−−−−−−−−→ C − L

Step 2 : Every member computes the group key using T̂s.

12

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1>

<0,0>

Tree T10

M1 M2 M3 M4 M5 M6

<2,6> <2,7>

<1,2>

M7

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1>

<0,0>

Tree T10

M1 M2 M3 M4 M5 M6

<1,2>

Sponsor

<3,21> <3,22> <3,23>

M8 M9 M10

<2,6> <2,7> <2,8>

M8 M9 M10

Figure 3.3: Tree-updating in leave operation

3.2 Leave Protocol

Such as Join protocol, we start with n members and assume that mem-

ber Md leaves the group. The sponsor in this case is the rightmost leaf

node of the subtree rooted at leaving member’s sibling node. First, if

the number of leaving member’s sibling node is two, each member up-

dates its key tree by deleting the leaf node corresponding to Md. Then

the former sibling of Md is updated to replace Md’s parent node. Oth-

erwise each member only deleting the leaf node corresponding to Md.

The sponsor generates a new key share, computes all [key, bkey] pairs

on the key-path up to the root, and broadcasts the new set of bkey. This

allows all members to compute the new group key.

In Fig. 3.3, if member M7 leaves the group, every remaining member

deletes < 1, 2 > and < 2, 6 >. After updating the tree, the sponsor

(M10) picks a new share K<2,8>, recomputes K<1,2>, K<0,0>, BK<2,8>

and BK<1,2>, and broadcasts the updated tree T̂10 with BK∗
10. Upon

receiving the broadcast message, all members compute the group key.

Note that M7 cannot compute the group key, though he knows all the

bkeys, because his share is no longer a part of the group key.

In Fig. 3.3, if member M10 leaves the group, every remaining mem-

13

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

Tree T13

M4 M5 M6 M7 M8

<2,3> <2,4> <2,5>

M9 M10

<3,0> <2,4> <2,5>

M1 M2 M3

<2,3> <2,4> <2,5>

M11 M12 M13

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>

Tree T13

M4 M5 M6 M7 M8

<2,3> <2,4> <2,5>

M11 M12M2 M13

Sponsor Sponsor

Sponsor Sponsor

Figure 3.4: Tree-updating in partition operation

bers delete only < 3, 23 >. After updating the tree, the sponsor (M9)

generates new share K<3,22>, recomputes K<2,7>, K<1,2>, K<0,0>, BK<2,7>

and BK<1,2>, and broadcasts the updated tree T̂9 with BK∗
9 . Upon re-

ceiving the broadcast message, all members can compute the group key.

3.3 Partition Protocol

We assume that a network failure causes a partition of the n-member

group. From the viewpoint of each remaining member, this event ap-

pears as a simultaneous leaving of multiple members. The Partition

protocol is involves multiple rounds; it runs until all members compute

the new group key. In the first round, each remaining member updates

its tree by deleting all partitioned members as well as their respective

parent nodes and “compacting” the tree. The procedure is summarized

in Table 3.4.

Fig. 3.4 shows an example. In the first round, all remaining mem-

bers delete all nodes of leaving members and compute keys and bkeys.

Any member can not compute the group key since they lack the bkey in-

formation. However, M5 generates new share and computes and broad-

casts BK<1,0> in the first round, and M13 can thus compute the group

14

Table 3.4: Partition Protocol
Step 1 : Every member

– update key tree by removing all the leaving mem-

ber node,

– remove their relevant parent node, if this node

have only one member node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

Each sponsor Mst

– if Mst is the shallowest rightmost sponsor, generate

new share,

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– broadcast updated tree T̂st including only bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ C − L

Step 2 to h (Until a sponsor Msj
could compute the group key)

: For each sponsor Mst

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– broadcast updated tree T̂st including only bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ C − L

Step 3 : Every member computes the group key using T̂s.

15

key. After M13 generates new share and broadcasts BK<1,2>, M5 can

compute the group key. Finally every member knows all bkeys and can

compute the group key.

Note that if some member Mi can compute the new group key in

round h′, then all other member can compute the group key, in round

h′ + 1, since Mi’s broadcast message contains every bkey in the key

tree, each member can detect the completion of the partition protocol

independently.

3.4 Merge Protocol

After the network failure recovers, subgroup may need to be merged

back into a single group. We now describe the merge protocol for k

merging groups.

In the first round of the merge protocol, each sponsor(the right-

most member of each group) broadcasts its tree with all bkeys to all

other groups after updating the secret share of the sponsor and relevant

[key, bkey] pairs up to the root node. Upon receiving these message,

all members can uniquely and independently determine how to merge

those k trees by tree management policy.

Next, each sponsor computes [key, bkey] pairs on the key-path until

either this computation reaches the root or the sponsor can not compute

a new intermediate key. The sponsor broadcast his view of the tree to

the group. All members then update their tree views with the new

information. If the broadcasting sponsor computed the root key, upon

receiving the broadcast, all other members can compute the root key as

well.

Fig. 3.5 shows an example of merging two groups, where the sponsors

M5 and M14 broadcast their trees (T5 and T14) containing all the bkeys,

along with BK∗
5 and BK∗

14. Upon receiving these broadcast messages,

16

Table 3.5: Merge Protocol

Step 1 : All sponsors Msi
in each Tsi

– generate new share and compute all [key, bkey]

pairs on the key-path of Tsi
,

– broadcast updated tree T̂si
including only bkeys.

Msi

T̂si (BK∗
si

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step 2 : Every member

– update key tree by adding new trees and new in-

termediate nodes,

– remove all keys and bkeys from leaf node related

to the sponsor to the root node.

Each Sponsor Mst additionally

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– and broadcast updated tree T̂st including only

bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step 3 to h (Until a sponsor Msj
could compute the group key)

: For each sponsor Mst

– computes all [key, bkey] pairs on the key-path until

it can proceed,

– and broadcasts updated tree T̂st including only

bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step h + 1 : Every member computes the group key using T̂s

17

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>Tree T5

M4 M5 M6 M7 M8

<2,6> <2,7> <2,8>

M9 M10

<3,0> <3,1> <3,2>

M1 M2 M3

Sponsor

M11

<0,0>

<1,0> <1,1> <1,2>

M12 M13 M14

Tree T14

<2,1> <2,2><2,0>

<1,0>

<2,3> <2,4> <2,5>

<1,1> <1,2>

<0,0>Tree T5

M6 M7 M8

<2,6> <2,7> <2,8>

M9 M10

<3,0> <3,1> <3,2>

M1 M2 M3

M11

<3,3> <3,4> <3,5>

M12 M13 M15

<3,6> <3,7>

M4 M5

New Intermediate Node

Current MembersNew Members

Figure 3.5: Tree-updating in merge operation

every member checks whether it belongs to the sponsor in the second

round. Every member in both groups merges two trees, and then the

sponsor(M5) in this example updates the key tree and computes and

broadcasts bkeys.

18

IV. Analysis

4.1 Security Analysis

Here we describe Decisional Ternary tree Group Bilinear Diffie-Hellman

(DTGBDH) problem and apply security proof of TGDH in [9] to the

ternary key tree. Fig. 4.1 is an example of a key tree when n = 9.

For (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn) for

Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri, we

define the following random variables:

• Ki
j : i-th level of j-th key (secret value), each leaf node is asso-

ciated with a member’s session random, i.e., K0
j = Rk for some

k ∈ [1, n].

• BKi
j : i-th level of j-th blinded key (public value), i.e., Ki

jP .

• Ki
j is recursively defined as follows:

Ki
j = ê(P, P)Ki−1

3j−2Ki−1
3j−1Ki−1

3j = ê(Ki−1
3j−2P,Ki−1

3j P)Ki−1
3j−1

= ê(Ki−1
3j−2P,Ki−1

3j−1P)Ki−1
3j = ê(Ki−1

3j−1P,Ki−1
3j P)Ki−1

3j−2

K1
0 K2

0 K3
0 K4

0 K5
0 K6

0 K7
0 K8

0

K1
1 K2

1
K3

1

K1
2

BK1
0 BK2

0 BK3
0 BK4

0 BK5
0 BK6

0 BK7
0 BK8

0

BK1
1 BK2

1
BK3

1

K9
0

BK9
0

Figure 4.1: Notation for fully ballanced ternary tree

19

For (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn) for

Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri, we

can define public and secret values as below:

• view(h,X, T) := {Ki
jP where j and i are defined according to T}

• K(h,X, T) := ê(P, P)Kh−1
1 Kh−1

2 Kh−1
3

Note that view(h,X, T) is exactly the view of the adversary in our

proposed protocol, where the final secret key is K(h,X, T). Let the

following two random variables be defined by generating (q,G1, G2, ê)←
g(1k), choosing X randomly from Z∗

q and choosing key tree T randomly

from all binary trees having n leaf nodes:

• Ah := (view(h,X, T), y)

• Hh := (view(h,X, T), K(h,X, T))

Definition IV.1 Let (q,G1, G2, ê)← g(1k), n ∈ N and X = (R1, R2, ..., Rn)

for Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri.

Ah and Hh defined as above. DTGBDH algorithm AT is a proba-

bilistic polynomial time algorithm satisfying, for some fixed k > 0 and

sufficiently large m:

|Prob[AT (Ah) = “True”]− Prob[AT (Hh) = “True”]| > 1

mk

Accordingly, DTGBDH problem is to find an Ternary Tree DBDH

algorithm.

Theorem IV.2 If the three-party DBDH on G1, G2 is hard, then there

is no probabilistic polynomial time algorithm which can distinguish Ah

from Hh.

20

We first note that Ah and Hh can be rewritten as:

If XL = (R1, R2, ..., Rl), XC = (Rl+1, Rl+2, ..., Rm) and XR = (Rm+1, Rm+2, ..., Rn)

where R1 through Rl are associated with leaf node in the left tree TL,

Rl + 1 through Rm are in the center tree TC and Rm + 1 through Rn

are in the right tree TR:

Ah := (view(h,X, T), y)

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

BKh−1
1 , BKh−1

2 , BKh−1
3 , y)

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, y)

Hh := (view(h,X, T), K(h,X, T))

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

BKh−1
1 , BKh−1

2 , BKh−1
3 , ê(P, P)Kh−1

1 Kh−1
2 Kh−1

3)

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, ê(P, P)Kh−1

1 Kh−1
2 Kh−1

3)

We prove this theorem by induction and contradiction. The 3-party

DBDH problem in G1 and G2 is equivalent to distinguish A1 from H1.

We assume that Ah−1 and Hh−1 are indistinguishable in polynomial time

as the induction hypothesis. We further assume that there exist a poly-

nomial algorithm that can distinguish Ah from Hh for a random ternary

tree. We will show that this algorithm can be used to distinguish Ah−1

from Hh−1 or can be used to solve the 3-party DBDH problem.

We consider the following equations:

21

Ah = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, y)

Bh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP,Kh−1
2 P,Kh−1

3 P, y)

Ch = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P,Kh−1
3 P, y)

Dh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P, r′′P, y)

Eh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P, r′′P, ê(P, P)rr′r′′)

Fh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P,Kh−1
3 P, ê(P, P)rr′Kh−1

3)

Gh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP,Kh−1
2 P,Kh−1

3 P, ê(P, P)rKh−1
2 Kh−1

3)

Hh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, ê(P, P)Kh−1

1 Kh−1
2 Kh−1

3)

Since we can distinguish Ah and Eh in polynomial time, we can dis-

tinguish at least one of (Ah, Bh),(Bh, Ch),(Ch, Dh),(Dh, Eh),(Eh, Fh),(Fh, Gh)

or (Gh, Hh).

Ah and Bh: Suppose we can distinguish Ah and Bh in polynomial time.

We will show that this distinguisher AABh
can be used to solve

DTGBDH problem with height h − 1. Suppose we want to de-

cide whether P ′
h−1 = (view(h − 1, X1, T1), r1) is an instance of

DTGBDH problem or r1 is a random number. To solve this, we

generate trees T2 and T3 of height h− 1 with distribution X2 and

X3, respectively. Note that we know all secret and public infor-

mation of T2 and T3. Using P ′
h−1 and (T2, X2), (T3, X3) pairs, we

generate the distribution:

22

P ′
h = (view(h− 1, X1, T1), view(h− 1, X2, T2), view(h− 1, X3, T3),

r1P,K(h− 1, X2, T2)P,K(h− 1, X3, T3)P, y)

Now we put P ′
h as input of AABh

. If P ′
h is an instance of Ah(Bh),

then P ′
h−1 is an instance Fh−1(Ah−1).

Bh and Ch: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of ABCh

which can distinguish Bh and Ch. If

P ′
h is an instance of Bh(Ch), then P ′

h−1 is an instance Fh−1(Ah−1).

Ch and Dh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of ACDh

which can distinguish Ch and Dh. If

P ′
h is an instance of Ch(Dh), then P ′

h−1 is an instance Fh−1(Ah−1).

Dh and Eh: Suppose we can distinguish Eh and Eh in polynomial time.

Then, this distinguisher ADEh
can be used to solve 3-party BDH

problem in groups G1 and G2. Note that rP , r1P and r2P are

independent random variable from view(h− 1, XL, TL), view(h−
1, XC , TC) and view(h − 1, XR, TR). Suppose we want to decide

whether (aP, bP, cP, e(P, P)abc) is a BDH quadruple or not. To

solve this, we generate three tree T1, T2 and T3 of height h − 1

with distribution X1, X2 and X3 respectively. Now we generate

new distribution:

P ′
h = (view(h− 1, X1, T1), view(h− 1, X2, T2), view(h− 1, X3, T3),

aP, bP, cP, ê(P, P)abc)

23

Now we put P ′
h as input of ADEh

. If P ′
h is an instance of Dh(Eh),

then (aP, bP, cP, ê(P, P)abc) is an invalid(valid) BDH quadruple.

Eh and Fh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AEF h

which can distinguish Eh and Fh.

If P ′
h is an instance of Eh(Fh), then P ′

h−1 is an instance Ah−1(Fh−1).

Fh and Gh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AFGh

which can distinguish Fh and Gh.

If P ′
h is an instance of Eh(Fh), then P ′

h−1 is an instance Ah−1(Fh−1).

Gh and Hh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AGHh

which can distinguish Gh and Hh. If

P ′
h is an instance of Gh(Hh), then P ′

h−1 is an instance Ah−1(Fh−1).

4.2 Performance

This section analyzes the communication and computation costs for

Join , Leave , Merge and Partition protocols. We count the number

of rounds, the total number of messages, the serial number of expo-

nentiations, pairings and point multiplications. The serial cost assumes

parallelization within each protocol round and presents the greatest cost

incurred by any participant in a given round(or protocol). The total cost

is simply the sum of all participants’ costs in a given round(or protocol).

Table 4.2 summarizes the communication and computation costs

of TGDH and our protocol. The number of current group members,

merging groups are denoted by n and k, respectively. The overhead

of protocol depends on the tree height, the balance of the key tree,

24

Table 4.1: Communication Costs
Rounds Messages

Join 2 3

TGDH Leave 1 1

cline2-4 Merge log2k + 1 2k

Partition min(log2p, h) 2�log2n	
Join 2 3

Our Leave 1 1

Protocol Merge log3k + 1 2k

Partition min(log3p, h) 2�log3n	

the location of the joining tree and the leaving nodes. In our analysis,

we assume the worst case configuration and list the worst-case cost for

TGDH and our protocol.

Since we modified TGDH protocol, the number of communication is

equals to TGDH except the number of rounds in merge and key length.

But our proposed protocol can reduce the number of computation in

each event operation because of low height of key tree. The number of

pairings and point multiplications for our protocol depends on whether

there exists the subtree with two member nodes or not. We thus com-

pute the cost of average case.

In all events we can reduce the computation cost O(log2n) to O(log3n).

We can get the advantage of the number of computation about 4 times

in Join , Leave and Merge and 2 times in Partition . The pairings

computation is a critical operation in pairings based cryptosystem. The

research of pairings implementation continuously have been studied.

Barreto et al.[3] proposed an efficient algorithm for pairing-based cryp-

tosystems. In this research we can get the result that computing pairings

is about 3 times slower than the modular exponentiation. Therefore our

25

Table 4.2: Computation Costs

Exponentiations Pairings Multiplications

Join 3
2
�log2n	 0 0

TGDH Leave 3
2
�log2n	 0 0

Merge 3
2
�log2n	 0 0

Partition 3�log2n	 0 0

Join 0 �log3n	 − 1 �log3n	+ 1

Our Leave 0 �log3n	 − 1 �log3n	+ 1

Protocol Merge 0 �log3n	 − 1 �log3n	+ 1

Partition 0 2�log3n	 2�log3n	

protocol requires less the number of communication and computation

than TGDH. However, since involving the pairings computation, our

protocol admits of improvement in computational efficiency.

The security analysis of our protocol is in Appendix for details. We

describe and prove the Decisional Ternary tree Group Bilinear Diffie-

Hellman (DTGBDH) problem.

26

V. Concluding Remarks

This paper present TGDH group event operation using bilinear map.

The modified TGDH using bilinear map support dynamic membership

group events with forward and backward secrecy. Our protocol involves

pairings operation whose computation is computationally slower than

modular exponentiation. However, fast implementation of pairings has

been studied actively recently. Since we use ternary key tree, our proto-

col can use any two-party and three-party key agreement protocol. In

this paper, because we use the two-party key agreement protocol using

ECDH and the three-party key agreement protocol using bilinear map,

the security of our protocol relies on this two protocol. Finally our

protocol can reduce the number of computation in group events while

preserving the communication and the security property.

27

.

.

28

References

1. S. Al-Riyami and K. Paterson, “Authenticated three party key

agreement protocols from pairings,” Cryptology ePrint Archive,

Report 2002/035, available at http://eprint.iacr.org/2002/035/.

2. D. Boneh and M. Franklin. “Identity-based encryption

from the Weil pairing,” Advances in Cryptology-Crypto

2001, LNCS 2139, pp.213-229, Springer-Verlag, 2001.

http://www.crypto.stanford.edu/ dabo/abstracts/ibe.html

3. P.S.L.M. Barreto, H.Y. Kim, B.Lynn, and M.Scott, “Efficient Algo-

rithms for pairing-based cryptosystems,” To appear in Cryptology-

Crypto’2002, available at http://eprint.iacr.org/2002/008/.

4. Wallner, Debby M., Eric J. Harder, and Ryan C. Agee, “Key man-

agement for multicast: Issues and architectures,” RFC 2627, June

1999.

5. A. Joux, “A one round protocol for tripartite Diffie-Hellman,” In

W. Bosma, editor, Proceedings of Algorothmic Number Theory

Symposium - ANTS IV, volume 1838 of LNCS, pages 385-394.

Springer-verlag, 2000

6. A. Joux, “The Weil and Tate Pairings as building blocks for public

key cryptosystems,” in Algorithm Number Theory, 5th Interna-

tional Symposium ANTS-V, LNCS 2369, Springer-Verlag, 2002,

pp. 20-32.

7. N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Com-

putation, vol. 48, pp. 203-209, 1987

29

8. Y. Kim. A. Perrig and G. Tsudik, “Communication-Efficient Group

Key Agreement,” IFIP SEC 2001, Jun. 2001.

9. Y. Kim, A. Perrig, G. Tsudik, “Tree-based Group Diffie-Hellman

Protocol,” In Submission.

10. A. Perrig, D. Song, and J. D. Tyger, “ELK, a New Protocol for

Efficient Large Group Key Distribution,” In 2001 IEEE Symposium

on Security and Privacy, Oakland, CA, USA, May 2001.

11. N.P. Smart, “An identity based authenticated key agreement pro-

tocol based on the weil pairing,” Election. Lett., Vol.38, No.13,

pp.630-632, 2002

12. F. Zhang, S. Liu and K. Kim, “ID-Based One Round Authenticated

Tripartite Key Agreement Protocol with Pairings,” Available at

http://eprint.iacr.org, 2002.

30

Acknowledgement

I would like to express my sincere gratitude to the individuals who

assisted with this work.

Curriculum Vitae

Name : Sang-won Lee

Date of Birth : May. 25. 1975

Sex : Male

Nationality : Korean

Education

1995.3–1999.2 Electronic Engineering

Hankook University (B.S.)

1999.3–2001.2 Engineering

Information and Communications University (M.S.)

Career

1999.3–1999.8 Graduate Research Assistant

Project Title

Korea Telecom

1999.9–2001.2 Graduate Research Assistant

Project Title

The Ministry of Information and Communications

2000 Fall Graduate Teaching Assistant

ICE000 Engineering

Academic Experience

1997.3– IEEE student member

1999.3– IEEK student member

Publications

(1) 2000.12 Authors, Paper Title, summited to IEEE Microwave

and Guided Wave Letter U.S.A.

