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Abstract

A digital signature is one of the most widely used algorithms in software

applications, due to its efficiency. It has a lot of types to generate signatures

with its usage. Each algorithm offers their own security properties as well

as standard security requirements. In practice, the greatest threat against

the security of a digital signature scheme is exposure of the secret key, due

to compromise of the security of the underlying system storing the key. The

danger of successful cryptanalysis of the signature scheme itself is hardly

as great as the danger of key exposure, as long as we stick to well known

schemes and use large security parameters. But in real world, people are

easy to lose their secret key and in most cases they are not aware of the

fact. The most widely considered solution to the problem of key exposure

is distribution of the key across multiple servers via secret sharing [10, 41].

However distribution of the key is quite expensive. Thus while we expect

digital signatures to be very widely used, we do not expect most people to

have the luxury of splitting their keys across several machines. Other ways

of protecting against key exposure include use of protected hardware such as

Smartcards, but these can be costly or impractical.

To protect some aspects of signature security against the exposure of the

secret signing key, the notion of forward security is suggested, in particu-
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lar without requiring distribution or protected storage devices, and without

increasing key management costs. Anderson [1] used firstly the notion of

forward secrecy in digital signature scheme. After that Bellare and Miner

[11] suggested the first practical signature scheme that guarantees the for-

ward security. And it is extended to intrusion resilient scheme by Itkis and

Reyzin [25]. But these schemes are not compatible with previous conventional

signature scheme.

With a different notion, Hwang, Lee and Lim [22] proposed c-times digital

signature scheme which restricts the number of messages that can be signed.

This scheme employs signature scheme that if a signer generates signatures

more than threshold values c, then anyone can reveal the signer’s secret key.

By restricting the signing capability, we can reduce the risk of exposure of

the secret signing key. This scheme is compatible with conventional scheme,

but it has limitation in its usage.

In this thesis, we focus on the way to reduce the risk of exposure of

secret signing key. We also consider the compatibility with the well-know

digital signature scheme such as Schnorr signature scheme, ElGamal signature

scheme and DSS (Digital Signature Standard). We propose key evolving

forward secure signature with bilinear pairing based on G-DH problem. We

prove the security of our scheme based on the fact that the C-DH problem is

hard in the additive group of points of elliptic curve over a finite field. The

security is analyzed in mathematical way such as cryptographic reduction.

We also propose a practical c − times signature. This scheme enables us to

restrict the signing capability of proxy signer in terms of limiting the number

of signatures. Our scheme is practical in the fact that it is compatible with

conventional digital signature scheme.
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Chapter 1

Introduction

As computer becomes popular, a digital signature is used widely in software

application. It offers security properties of authentication and identification.

It has a lot of types to generate signatures with its usage. It is efficient and

gives us convenience. But if we expose a secret signing key, all the security

system can be broken. As a result, we are damaged by the threat of exposure

of secret signing key. In this thesis, we argue on the risk of key exposure

problem in digital signature scheme and construct digital signature scheme

secure against key exposure problem.

1.1 Key Exposure Problem

A great deal of cryptography can be seen as finding ways to leverage the

possession of a small but totally secret piece of knowledge (a secret key) into

the ability to perform many useful and complex actions: from encryption and

decryption to identification and message authentication. But if we expose a

secret signing key, all the security system can be broken. It has been pointed

out that key exposure is one of the greatest threats to security in practice

[11]. There are several types of solutions to the problem of key exposure. We

classify it with five categories.
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1.1.1 Distribution Paradigm via Secret Sharing

The most widely considered solutions to the problem of key exposure are

distribution of keys across multiple servers via secret sharing. Secret sharing

schemes were discovered independently by Blakley [10] and Shamir [41]. The

motivation for secret sharing is secure key management. In some situations,

there is usually one secret key that provides access to many important files

and identification to some contracts. If such a key is lost or exposed (e.g.,

the person who knows the key becomes unavailable, the computer which

stores the key is destroyed, or someone takes the key without permission),

then all the important files become inaccessible and all the contracts can be

forged. The basic idea in secret sharing is to divide the secret key into pieces

and distribute the pieces to different persons so that certain subsets of the

persons can get together to recover the key. The general model for secret

sharing is called an t-out-of-n scheme (or (t, n)-threshold scheme) for integers

(1 ≤ t ≤ n). In the scheme, there is a sender (or dealer) and n participants.

The sender divides the secret into n parts and gives each participant one part

so that any t parts can be put together to recover the secret, but any t − 1

parts reveal no information about the secret. The pieces are usually called

shares or shadows. Different choices for the values of t and n reflect the

tradeoff between security and reliability. A secret sharing scheme is perfect if

any group of at most t−1 participants (insiders) has no advantage in guessing

the secret over the outsiders. Distribution across many systems, however, is

quite expensive. Such an option may be available to large organizations, but

is not realistic for the average user.

1.1.2 Forward Security

The goal of forward security is to protect some aspect of signature security

against the risk of exposure of the secret signing key without increasing key

management costs remarkably. As Bellare and Miner mentioned at [11], the

2



idea of “Forward Security” is that a distinction can be made between the

security of documents pertaining to the past and those pertaining to the

period after key exposure. More specifically, forward security property means

that even if the current secret key is compromised, a forger cannot forge

signatures for past time periods. This is accomplished by dividing the total

time that given public key is valid into T time period, and using a different

secret key in each time period while the public key remains fixed. Each

subsequent secret key is computed from the current secret key via key update

algorithm. The time period during which a message is signed becomes a part

of the signature.

1.1.3 All-Or-Nothing Transform

In contrast with distribution paradigm, Exposure Resilient Function(ERF)[12]

[16] and All-or-nothing transform (AONT)[9] enable a single user to protect

itself against partial key exposure on a single machine. A natural idea would

be to use a secret sharing scheme to split the key into shares, and then at-

tempt to provide protection by storing these shares instead of storing the

secret key directly. Roughly speaking, an AONT is a randomized mapping

which can be efficiently inverted if given the output in full, but which leaks

no information about its input to an adversary even if the adversary obtains

almost all the bits of the output. The AONT has been shown to have impor-

tant cryptographic applications ranging from increasing the efficiency of block

ciphers to protecting against almost complete exposure of secret keys . The

first formalization and constructions for the AONT were given by Boyko [9]

in the random oracle model. However, recently Canetti et. al. [12] were able

to formalize and exhibit efficient constructions for the AONT in the standard

computational model. They accomplished this goal by reducing the task of

constructing AONT’s to constructing a related primitive which they called

an Exposure-Resilient Function(ERF). An ERF is a deterministic function
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whose output looks random to an adversary even if the adversary obtains

almost all the bits of the input.

1.1.4 c− times Signature Scheme

The c−times signature schemes [22] can be used for the temporary restriction

of signing ability while the the cryptographic properties of the underlying

signature system is maintained. This scheme restricts the number of messages

that can be signed . They used c degree polynomial f(z) for restricting the

number of times of the signature. It employs signature scheme that if a

signer generates signatures more then threshold value c, then anyone can

calculate the signer’s secret key using Lagrange interpolation method. And

this characteristic is achieved by revealing partial information about secret

key using polynomial. This scheme is quite efficient in the sense that it is

compatible with DSS (Digital Signature Standard), ElGamal and Schnorr

signature scheme, but it has to keep additional information to limit signing

capability.

1.1.5 Other methods

Another widely considered proposal is the use of specially protected hardware

such as smartcards, which can also be costly or inapplicable to many contexts.

Thus, the cost or inconvenience of such solutions may make them prohibitive

for many application; some users simply may not have the luxury to afford

the investment such solutions would require.

1.2 Our Contribution

Over the years, many schemes have been offered. Distribution paradigm and

Exposure-Resilient Function are quite strong but costly. c− times Signature

Scheme is somewhat weak and can be used special purpose. And hardware

4



solutions such as smartcards are also be costly or inapplicable to many con-

texts. In this thesis, we construct a new key evolving forward secure signature

scheme based on the given hard problem, which is compatible with conven-

tional signature scheme. And additionally, we construct a practical c− times

signature based on Schnorr signature which can be applicable to proxy sig-

nature scheme. This is the first contribution of this thesis. We present a

formal model for key evolving forward secure signature scheme based on Gap

Diffie-Hellman problem where C-DH problem is hard but D-DH problem is

easy to solve and make the definition of security for this model. We general-

ize the method to design a forward secure signature. In the security model,

we prove that our scheme guarantee the forward security if the C-DH problem

is intractable. This is the second contribution of this thesis

1.3 Outline of the thesis

In this thesis, we deal with the risk of key exposure problem and discuss

the way to reduce the damage of exposure of secret signing key. The rest of

thesis is organized as follows. In Chapter 2, several forward secure signatures

are reviewed. Chapter 3 contains cryptographic primitives and definitions

which forms the basis of our scheme. In Chapter 4, we propose two kinds

of solutions. At first, our key evolving forward secure signature scheme is

presented based on G-DH problem. Secondly, a practical c− times signature

scheme is presented and applied to proxy signature scheme. In Chapter 5,

we give a formal proof of security for our scheme. In Chapter 6, we make

a comparison with several existing forward secure signature scheme. we end

with concluding remarks in Chapter 7.
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Chapter 2

Related Works

2.1 Forward Secure Signature Scheme

The idea of a digital signature scheme with forward security was suggested

by Anderson [1] in an invited lecture presented at the year 1997 ACM-CCS

conference. It was formalized by Bellare and Miner [11] in the context of a

forward-secure signature scheme. The basic idea presented in [11] is the use of

a key-evolving signature scheme whose operation is divided into time-periods,

with a different secret key being used for each time period. Each secret key

is used to sign the message in the current time-period and derive the secret

key for the next time-period. Like the ordinary signature scheme, the public

key is constant for all time-periods. A verification scheme checks both the

signature’s validity and time-period. The signature scheme is forward-secure

because it is impossible for an adversary to forge a signature for a previous

time-period even if it obtains the current secret key. Following the initial

work by [11], a sequence of other deviations of the Forward-secure signature

[3, 24, 25, 28, 29, 32] was suggested. In [3], an improved forward-secure signa-

ture scheme with much shorter keys than those outlined in [11] was proposed.

Krawczyk [29] suggested a method for constructing a forward-secure signa-

ture scheme from any signature scheme, and thus made the forward security

of standard signature schemes possible. Itkis and Reyzin [25] proposed an-

other forward-secure signature scheme based on the Guillou-Quisquater [19]

signature. It provides efficient signing, verifying and storage, but the price tag
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for these features is a longer running time for the key generation and update

routine. Integrating forward-secure signature with threshold techniques has

also been investigated in [2]. Forward-secure signature scheme using bilinear

map was suggested by Hu, Wu and Irwin at [24]. In that scheme, they update

keys using binary tree method which was introduced in [13]. Key insulated

cryptography [15] and intrusion resilient cryptography [25] were recently in-

troduced to achieve a higher level of security.

2.1.1 A Forward Secure Digital Signature Scheme

Bellare and Miner [11] suggested the first practical signature scheme that

guarantees forward security. The idea of this scheme is as follows :

Keys and key generation : The signer’s public key contains a modulus

N and l points U1, · · · , Ul in Z∗N . The corresponding base secret key SK0

contains points S1, · · · , Sl in Z∗N , where Sj is a 2T+1-th root of Uj for j =

1, · · · , T . The modulus is a Blum-Williams integer, meaning the product of

two distinct primes each congruent to 3 mod 4. They refer to Ui as the i

-th component of the public key. The public key PK is treated like that

of any ordinary signature scheme as far as registration, certification and key

generation are concerned. The factors p, q of N are deleted once the key

generation process is completed, so that they are not available to an attacker

that might later break into the system on which the secret key is stored.

Key evolution : During time period j, the signer signs using key SKj.

This key is generated at the start of period j, by applying a key update

algorithm to the key SKj−1. The update algorithm Upd(SKj−1) squares the

l points of the secret key at the previous stage to get the secret key at the

next stage. Once this update is performed, the signer deletes the key SKj−1.

Thus key exposure during period j will yield to an attacker the current key

(and also future keys) but not past keys. Notice that the components of the

7



secret key for period j are related to those of the base key as follows:

(S1,j, · · · , Sl,j) = (S2j

1,0, · · · , S2j

l,0) (2.1)

Signing : Signature generation during period j is done via the algorithm

SgnH
SKj

(M). It takes as input the secret key SKj of the current period,

the message m to be signed, and the value j of the period itself, to return a

signature 〈j, (Y, Z)〉, where (Y, Z) are values in Z∗N . The signer first generates

the “commitment” Y , and then hashes Y and the message m via a public

hash function Hl : {0, 1} → {0, 1}l to get an l-bit “challenge” c = c1, · · · , cl

which is viewed as selecting a subset of the components of the public key.

The signer then computes a 2T+1−j-th root of the product of the public key

components in the selected subset, and multiplies this by a 2T+1−j-th root of

Y to get the value Z. Thus, in the first time period, the signer is computing

2T -th roots; in the second time period,2T−1-th roots; and so on, until the

last time period, where it is simply computing square roots. Notice that in

the last time period, It simply has the Fiat-Shamir signature scheme.

Verifying : Verification of a candidate signature 〈j, (Y, Z)〉 for a given

message m with respect to a given public key PK is performed via the

V fH
PK(m, 〈j, (Y, Z)〉). Note the verification process depends on the claimed

“time-stamp” or period indicator j in the signature, meaning that the period

j too is authenticated.

2.1.2 Forward Secure Signatures with Optimal Signing

and Verifying

Itkis and Reyzin [25] proposed forward secure signature scheme based on GQ

scheme.

Signing and Verifying : The distinguishing feature of this scheme is the

efficiency of the signing and verification algorithms. Both are the same as the

previous efficient ordinary GQ scheme (verifying has the additional, negligible

component of testing whether e is in the right range and odd).
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Key Generation : This scheme needs to make strong assumptions on the

distributions of primes in order to estimate efficiency of key generation. First,

it assumes that at least one in O(k)dk/2e-bit numbers is a prime, and that

at least one in O(k) of those is of the form 2q + 1, where q is prime. Then,

generating n takes O(k2) primarily tests. Each primarily test can be done

in O(k3) bit operations. Thus, the modulus N is generated in O(k5) bit

operations. Similarly, They assume that at least one in O(l) integers in each

bucket [2l(1 + (i− 1)/T ), 2l(1 + i/T )] is a prime, so generating each ei takes

O(l4) bit operations. In addition to generating N and the ei’s, key generation

needs to compute the product of the ei’s modulo φ(N), which takes O(Tkl)

bit operations, and three modular exponentiations, each taking O(k2l) bit

operations. Therefore, key generation takes O(k5 + l4T + k2l + klT )) bit

operations.

Key Update : Key update cannot multiply all the relevant ei’s modulo

φ(N), because φ(N) is not available (otherwise, the scheme would not be

forward-secure). Therefore, it has to perform O(T ) modular exponentiations

separately, in addition to regenerating all the ei’s. However, for practical

values of l (on the order of 100) and k (on the order of 1000), l4T is roughly

the same as k2lT , so this only slows down the key update algorithm by a

small constant factor.

2.2 Forward Secure Encryption Scheme

Canetti, Halevi, and Katz [13] proposed forward secure public key encryption

scheme based on bilinear Diffie-Hellman assumption. This scheme assumes

for simplicity that the total number of time periods T is a power of 2; that

is , T = 2l. Then, a full binary tree of height l can be made. This scheme let

< i > denote the l − bit representation of integer i (where 0 ≤ i ≤ 2t − 1).

The leaves of the tree correspond to successive time periods. There is a fixed

public key PK associated with the tree, and every node w in the tree has

9



an associated secret key skw. However, only the secret keys of the leaves are

directly used for decryption. The other keys are kept only to help derive the

leaf keys when needed. The properties that needed from these keys are as

follows:

1. To decrypt a message encrypted using PK during period i, only the

leaf key sk<i> is needed.

2. Given a key of an internal node, skw, it is possible to efficiently derive

keys for its children skw0 and skw1.

3. It is infeasible to decrypt messages encrypted during period i (and, in

particular, to derive the secret key of a leaf < i >) without knowledge

of the secret key of one of the ancestors of leaf < i > in the tree.

The above requirements essentially imply the forward-security of this

scheme. This scheme is based on hierarchical identity-based encryption scheme

(HIBE) [18]

2.3 c− times Signature Scheme

Hwang, Lee and Lim[22] proposed c−time signature scheme. They formalized

the notion of c− times signature schemes and construct an implicit c− times

signature scheme cDS = (cKG, cSig, cVF) using conventional digital signature

scheme based on discrete logarithm problem(DLP) : SDS = (KG, Sig, VF).

Key generation algorithm : Given input 1k, the key generation algo-

rithm cKG first generates a DLP-based triple parameter (p, q, g). Next it runs

KG on input 1k to generate a key pair (x, y := gx) for the underlying signature

scheme SDS. Then it generates a polynomial f(z) of degree c over Z∗q with ε

as its constant coefficient. Namely it selects uniformly coefficients (ε1, ..., εc)

in Z∗q for f(z), (1 ≤ i ≤ c). It outputs PK = (y, (gε1 , ..., gεc), (p, q, g)) as the

public key and SK = (x, (ε1, ..., εc)) as the secret key.
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Signing algorithm :. The signing algorithm cSig, on input the secret

key SK and a message m ∈ {0, 1}∗, computes σ = SigSK(m) and f(h) =

x+ε1h+ε2h
2+. . .+εch

c mod q where h = H3(m,σ) and H2 : {0, 1}∗ → {0, 1}k

is a public hash function. Then it outputs a signature, cσ = (σ, f(h)).

Verification algorithm : The verification algorithm cVF on input PK,

m and cσ, outputs 1 if VF(m, σ, y) = 1 and gf(h) = y ·(gε1)h ·(gε2)h2 ·. . .·(gεc)hc
,

0 otherwise.

Legal forgery property : For given c + 1 signature values and their

corresponding messages, the secret value of the signer is calculated by using

the Lagrange interpolation formula. For a given




(cσi, mi, PK)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ≤ i ≤ c + 1
cσ ← Sigx(mi)

1 ← cVF(m, σ, y) = 1

m ∈M
cσi = (σi, f(zi))

zi = H2(mi, σi)




(2.2)

computes f(l) =
c+1∑
i=1

f(zi)
c+1∏

j=1,j 6=i

l − zj

zi − zj

(mod q) is easy.

This scheme enables us to restrict the signing capability of the signer up

to c− times which was predefined in key generation step.

11



Chapter 3

Preliminaries

3.1 Weil Pairing

We can make use of any bilinear map on an elliptic curve to construct a

group G in which the C-DH problem is intractable, but the D-DH problem

is tractable [4, 5, 7, 26, 31]. In particular, we make use of bilinear maps, in

particular the Weil-pairing.

Let E be an elliptic curve over a base field K and let G1 and G2 be two

cyclic groups of order q for some large prime q. The Weil pairing [4, 5, 7, 8,

33, 40] is defined by a bilinear map e between these groups,

eq : G1 ×G1 −→ G2

It can e shown that the following properties hold. Let P,Q ∈ G1.

(i) Identity : For all P ∈ G1, eq(P, P ) = 1.

(ii) Alternation: For all P, Q ∈ G1, eq(P,Q) = eq(Q,P )−1.

(iii) Bilinearity : For all P1, P2, P3 ∈ G1, eq(P1 + P2, P3) = eq(P1, P3) ·
eq(P2, P3) and eq(P1, P2 + P3) = eq(P1, P2) · eq(P1, P3).

(iv) Non-degeneracy : If eq(P, Q) = 1 for all Q ∈ G1, then P = O, where O
is a point at infinity.

(v) If G1 ⊂ E(K), then eq(P, Q) ∈ K for all P, Q ∈ G1 (that is G2 ⊂ K∗).

12



In addition to these properties, we have an efficient algorithm to compute

eq(P,Q) for all P,Q ∈ G1. In practice, in our basic scheme, we employ the

modified Weil pairing êq(P, Q) = eq(P, φ(Q)), where φ is an automorphism

on the group of points of E [5, 7]. For more details, we can refer to [5, 8, 33].

We write the Weil pairing and the modified Weil pairing as e and ê in the

place of eq and êq respectively.

As noted in [5], the existence of the bilinear map ê : G1 × G1 → G2 as

above has two direct implications to these groups.

The MOV reduction: Menezes, Okamoto, and Vanstone[34] show that DLP

in G1 is no harder than DLP in G2. To see this, let P, Q ∈ G1 be an

instance of DLP in G1 where both P, Q have order q. We wish to find

an a ∈ Zq such that Q = aP . Let g = ê(P, P ) and h = ê(Q,P ). Then,

by bilinearity of ê we know that h = ga. By non-degeneracy of ê both

g and h have order q in G2. Hence, we reduced DLP in G1 to DLP in

G2. It follows that for discrete log to be hard in G1 we must choose our

security parameter so that discrete log hard in G2.

Decision DH is easy: The D-DH problem [6] inG1 is to distinguish between

the distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉 where a, b, and

c are random in Zq and P is random in G1. Joux and Nguyen [26]

point out that D-DH in G1 is easy. To see this, observe that given

{P, aP, bP, cP} ∈ G∗1 we have

c = ab mod q ⇐⇒ ê(P, cP ) = ê(aP, bP ).

The C-DH problem in G1 can still be hard. Joux and Nguyen [26] give

examples of mappings ê : G1 ×G1 → G2 where C-DH in G1 is believed

to be hard even though D-DH in G1 is easy.

13



3.2 Bilinear Diffie-Hellman Assumption

3.2.1 Gap-problems

The computational assumptions when constructing cryptographic schemes

can mainly be classified into two types. One is the intractability of an invert-

ing problem such as inverting the RSA function, and computing the Diffie-

Hellman (DH) problem. The other is the intractability of a decision problem

such as the D-DH problem.

In addition to these problems, Okamoto and Pointcheval [38] define a new

class of problems, called the Gap-problems. Let f : {0, 1}∗×{0, 1}∗ → {0, 1}
be any relation. The inverting problem of f is the classical computational

version, and we can define a generalization of the decision problem, by the

R-decision problem of f , for any relation

R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1},

- The inverting problem of f is, given α, to compute any β such as

f(α, β) = 1 if it exists, or to answer Fail.

- The R-decision problem of f is, given (α, β), to decide whether R(f, α, β) =

1 or not. Here β may be the null string, ⊥.

The Gap-problem deals with the gap of difficulty between these problems.

The Gap-problem can be defined as follows:

Definition 3.1 The R-gap problem of f is to solve the inverting problem of

f with the help of the oracle of the R-decision problem of f .

Okamoto and Pointcheval [38] claimed that the DH problems are the typ-

ical instance of the Gap-problem. Since the inverting problem can be viewed

as the computational problem, C-DH problem corresponds to the inverting

one, and D-DH problem does to the R-decision one. Here, we describe the

G-DH problem. Let G be any group of prime order q.
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- The C-DH problem: given a triple of G elements (g, ga, gb), find the

element C = gab.

- The D-DH problem: given a quadruple of G elements (g, ga, gb, gc), de-

cide whether c = ab (mod q) or not.

- The G-DH problem: given a triple of G elements (g, ga, gb), find the

element C = gab with the help of a D-DH oracle (which answers whether

a given quadruple is a DH quadruple or not).

The Tate-pairing is given as a specific example that satisfies the property

of the G-DH problem [38]. For example [38], with an elliptic curve E =

J(Fq) of trace t = 2 and q = #E = q + 1 − t = q − 1, we have Jq(Fq) =

J(Fq)/qJ(Fq) = E and µq(Fq) = F∗q. Then

e : E × E → F∗q,

which is called officially a bilinear map. Let us consider a DH quadruple, P ,

A = a · P , B = b · P and C = c · P ,

e(A,B) = e(a · P, b · P ) = e(P, P )ab = e(P, ab · P ) = e(P,C).

And the latter equality only holds with the correct candidate C.

3.2.2 Gap Diffie-Hellman Assumption

Let IG be a B-DH parameter generator, and let ACDH be an algorithm whose

input consists of a group G1 of prime order q, and algorithm ADDH solving

D-DH problem, a generator P of G1, aP and bP (a, b ∈ Z∗
q ) and whose output

is an element of G1 that is expected to be abP . As usual the advantage of

ACDH with respect to IG is defined to be

Pr


ACDH(G1,ADDH , P, aP, bP ) = abP

∣∣∣∣∣∣∣∣

(G1,ADDH) ←− IG(1k),

P
R←− G1,

a, b
R←− Z∗q
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IG is said to satisfy the G-DH assumption if any polynomial time algo-

rithm ACDH has Adv ≤ 1/f(k) for polynomial f , that is, no polynomial time

algorithm can solve C-DH problem with not-negligible advantage.

3.2.3 Bilinear Diffie-Hellman problem

Since the D-DH problem in G1 is easy, we cannot use the D-DH problem to

build cryptosystems in the group G1. Instead, the security of our protocol

is based on a variant of the C-DH problem called the bilinear Diffie-Hellman

(B-DH) problem.

Definition 3.2 The B-DH problem in (G1,G2, ê) is the following: given

(P, aP, bP, cP ) for some a, b, c ∈ Z∗q, compute v ∈ G2 such that v = ê(P, P )abc.

B-DH parameter generator: We say that a randomized algorithm IG is

a B-DH parameter generator if

(1) IG takes a security parameter 0 < k ∈ Z,

(2) IG runs in polynomial time in k, and

(3) IG outputs the description of two groups G1,G2 and the description of

a bilinear map ê : G1 ×G1 → G2.

We require that the groups have the same prime order q = |G1| = |G2|.
We denote the output of IG by IG(1k). A concrete example of the B-DH

parameter generator is given in [5] as follows. Given a security parameter

k the B-DH parameter generator picks a random k-bit prime p such that

p = 2 mod 3 and p = 6q− 1 for some prime q. The group G1 is the subgroup

of order q of the group of points on the elliptic curve y2 = x3 + 1 over

Fp. The group of G2 is the subgroup of order q of F∗p2 . The bilinear map

ê : G1 ×G1 → G2 is the modified Weil paring defined in Section 3.1.
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Note that the isomorphisms from G1 to G2 induced by the Weil pairing

are one-way functions [5, 7]. For a point Q ∈ G∗1 defines the isomorphism

fQ : G1 → G2 by fQ(P ) = ê(P,Q). It is well known that an efficient algorithm

for inverting fQ would imply an efficient algorithm for deciding D-DH in the

group G2. Throughout this thesis the D-DH problem is believed to be hard

in the group G2. Hence, all the isomorphisms fQ : G1 → G2 are believed to

be one-way functions.

3.2.4 Bilinear Diffie-Hellman Assumption

Let IG be a B-DH parameter generator. We say that an algorithm ABDH

has advantage εBDH(k) in solving the B-DH problem for IG if for sufficiently
large k;

AdvABDH (k) = Pr

2
66664
ABDH

0
BBBB@

q, ê,

G1,G2,

P, aP,

bP, cP

1
CCCCA

= ê(P, P )abc

����������

*
q, ê,

G1,G2

+
← IG(1k),

P ← G∗1,

a, b, c ← Z∗q

3
77775
≥ εBDH(k)

We say that IG satisfies the B-DH assumption if for any randomized poly-

nomial time (in k) algorithm ABDH and for any polynomial f ∈ Z[x] we

have that AdvIG,A(k) < 1/f(k) for sufficiently large k. When IG satisfies the

B-DH assumption we say that B-DH is hard in groups generated by IG.
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Chapter 4

Proposed Scheme

In this chapter, we propose digital signature scheme secure against key expo-

sure problem. As we mentioned in section 1.1, there are several approaches

to overcome the risk of key exposure problem. Here we suggest two kinds

of solutions. One belongs to the notion of forward security and the other to

c− times signature scheme. At first, we will discuss a new method to guar-

antee the forward security and suggest key evolving forward secure signature

scheme. This scheme generalize the key evolving methods that can applicable

to standard signature scheme which is based on pairing. Secondly, we suggest

a practical c− times signature scheme. By using this scheme, we can restrict

the signing capability of the signer within the threshold value c.
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Scheme I

4.1 Forward Secure Signature with Bilinear

Pairing

4.1.1 Basic Ideas

There are several ways to design a forward secure signature scheme. Bellare

and Miner [11] employed Binary certification tree scheme in which key and

signature sizes are logarithmic in T . But basically, this method fixes public

key that it is not easy to design forward secure signature scheme which is

compatible with conventional signature. Therefore we aim to build efficient

way of designing forward secure signature scheme. We generalize the method

to evolve the key pairs in time period j. The concept is shown in figure 4.1.

In each period j, a signer updates key pairs (SKj,Pj) which we call as j-

th session secret key and session public key. To illustrate, the signer begins

by generating a key pair (SK0, PK) of the standard scheme. He publishes

the master public key (PK) of the key evolving scheme at public directory

and sets the starting secret key of the key evolving scheme to SK0. At the

start of period 1 the signer creates a new session key pairs (P1, SK1), and

deletes SK0. The signature of a message m in period 1 is (1, 〈h1, σ1〉 =

SignSK1
(m),P1). A signature (1, 〈h1, σ1〉,P1) on message m is verified by

checking that VFP1(σ1) = 1 and VFPK(P1) = 1. This continues iteratively, so

that at the start of period j > 2, the signer, in possession of SKj−1 and Pj−1

of previous period, creates a new session key pair (Pj, SKj ). The signature

of a message m in period j is (j, 〈hj, σj〉 = SignSKj
(m),Pj). A signature

(j, 〈hj, σj〉,Pj) on a message m is verified by checking that VFPj
(σj) = 1 and

VFPK(Pj) = 1.
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4.1.2 Definition

Here we provide definitions of key evolving digital signature scheme. First,

we define the form of algorithms to specify such schemes, and then discuss

security. This definition is straightforward adaption of [11] except that veri-

fication algorithm is more complicated.

Definition 4.1 Key Evolving Digital Signature Scheme FSS=(Gen, Upd, Sign,

VF) is a 4-tuple of PPT algorithms such that :

• The probabilistic key generation algorithm Gen takes as input a secret

parameter 1k and the total number of time periods T . It returns a

master public key PK and an initial secret key SK0.

• The probabilistic key update algorithm Upd takes as input the secret

signing key SKj−1 of the previous period and an index j. It returns

the j-th session secret key SKj of the current period and j-th session

public key Pj.

• The probabilistic Signing algorithm Sign takes as input a message m and

the secret signing key SKj of the current period. It returns a signature

(j, 〈hj, σj〉 = SignSKj
(m),Pj) of message m for period j.

• The deterministic Verification algorithm VF takes the public key PK,

message m and candidate signature (j, 〈hj, σj〉,Pj) . It returns a bit,

with 1 meaning accept and 0 meaning reject. This Verification algo-

rithm VF consists of two algorithms. One is session public key verifi-

cation algorithm VFPK(Pj) and the other is signature verification algo-

rithm VFPi
(σj).

We say that (j, 〈hj, σj〉,Pj) is a valid signature of m for period j if

VFPj
(σj) = 1 and VFPK(Pj) = 1.
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In this scheme, we use random oracle model. The algorithm above addi-

tionally have oracle access to a public hash function H2 which in the security

analysis is assumed random.

The notion of forward security is that it should be computationally infea-

sible for any adversary to forge a signature for any past time period even in

the event of exposure of the current secret key. To define forward security

formally, the notion of a secure digital signature of [20] is extended in [11]

and [25] to take into account the ability of the adversary to obtain a key by

means of a break-in.

In this model, similar with [11, 25] the forger first conducts an adaptive

chosen message attack (cma), requesting signatures on messages of its choice

for as many time periods as he desires. Whenever he chooses, he ”breaks in”:

requests the secret key SKj for the current time period j and then outputs

an (alleged) signature on a message m of his choice for a time period i < j.

The forger is considered to be successful if the signature is valid and the pair

(m, i) was not queried during cma.

The success probability in breaking the forward security of the signature

scheme is evaluated by the experiment in figure 4.2.

In this formulation, it is understood that the state of AFSS is preserved

across its various invocations, once we first pick and fix for it. The adversary

first gets access to an oracle for generating signature under SK1. It queries

this as often as it wants, and indicates it is done by outputting some value

d. We move in to the next stage, providing the adversary an oracle for

signing under the next key. Note that the process is strictly ordered; once

an adversary gives up the oracle for signing under SKj , by moving into the

next phase or breaking-in, it cannot obtain access to that oracle again. At

some point the adversary decides to use its break-in privilege, and is returned

the key SKj of the stage in which it did this. (If it does not break-in by the

last period, we give it the key SKj where j = T + 1. And this key is empty

string.) It will now try to forge signatures under SKi for some i < j and is
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Experiment A-forge(FSS,AFSS)

(PK, SK)
R←− Gen(1k, · · · , T )

j←0

Repeat

j ← j + 1; (SKj, PKj) ← Upd(SKj−1) ;

d ← ASignSkj
(·)

FSS (CMA, PK0)

Until (d = break-in ) or (j = T )

If (d 6= break-in and j = T ) then j ← T + 1

(m, i, 〈hi, σi〉,Pi) ← AFSS(forge, SKj)

If (V FPi
(σi) = 1 and V FPK(Pi) = 1 and

(1 ≤ i < j) and m is not queried of SignSKi
(·) in period i)

then return 1 else return 0

Figure 4.2: Experiment of evaluating success probability

declared successful if the signature is valid and the message is new. Here we

define the forward security which closely follows the one in [11]

Definition 4.2 (Standard Forward Security) Let FSS = (Gen, Upd, Sign, VF)

be a key-evolving signature scheme, and AFSS an adversary attacking its for-

ward security as described above. We let Succfwsig(FSS[k, T ],AFSS) denote

the probability that experiment A−Forge(FSS[k, T ],AFSS) returns 1. Then

the insecurity function of FSS is defined as

InSecfwsig(FSS[k, T ], t, qsig, qhash) = max
A
{Succfwsig(FSS[k, T ],AFSS)}

where the maximum is taken over all adversaries AFSS for which the following

condition holds : the execution time for the above experiment is at most t,

AFSS makes at most qsig signing queries to the signing oracle and qhash queries

to the random hash oracle.

We define SuccFSS(FSS[k, T ],AFSS) to be the probability that AFSS is

successful and let the function InSecFSS(FSS[k, T ], t, qsig) (the insecurity
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function) be the maximum, over all algorithms AFSS that are restricted to

running time t and qsig signature queries, of SuccFSS(FSS[k, T ],AFSS). The

insecurity function above gives us a measure of how secure or insecure the

scheme really is. Therefore, we want its value to be as small as possible. Our

goal in a security proof is to find its upper bound.

4.1.3 The Protocol

Our scheme is based on G-DH problem in pairing and requires a hash function

H2 : {0, 1}∗ −→ Z∗q which is assumed to be random.

Key Generation Algorithm

For a security parameter k, a pair of secret and public parameter is generated

as follows :

Algorithm Gen(1k, T )

1. Let k be a security parameter, and q be a large prime

2. Run IG(1k) to generate groups G1,G2 of prime order q and,

bilinear map ê : G1 ×G1 −→ G2

Select two random hash function H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}k

Select a large prime s ∈ Z∗q and set P = H1(ID) and Spub = sH1(ID)

3. Select a large prime rq ∈ Z∗q, and Set x0 = rq mod q

Set Q0 = x0P and P0 = φ

4. Compute xj = x2
j−1 mod q (1 ≤ j ≤ T )

Set PK = (q, k, T,G1,G2, ê, P, Q0, Spub, H1, H2) and

SK0 = ({(Sj, Qj)|Qj = xjP, Sj = xjSpub, (1 ≤ j ≤ T )}, P0)

5. Delete s, rq, xj, (0 ≤ j ≤ T )

6. Return (PK, SK0)
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Key Update Algorithm

Key update algorithm takes (SKj−1, j) as inputs and outputs (SKj,Pj).

Algorithm Upd(SKj−1, j)

1. Set Pj = Pj−1 ∪ (Qj ∈ SKj−1)

2. Delete Sj−1 and set SKj = ({(Sl, Ql)| (j ≤ l ≤ T )}, Pj)

3. Return (SKj,Pj)

Signing and Verifying Algorithm

This scheme follows conventional signing and verifying algorithm except that

additional session public key verifying algorithm is added in verification step.

Algorithm VF(m, j, 〈hj, σj〉,Pj))

I Additional session public key verifying algorithm

For l = 1 to j

if ê(Ql, P ) 6= ê(Ql−1, Ql−1)

then reject signature

else continue

I From here, conventional verification algorithm starts

4.1.4 Application to Schnorr Signature with Bilinear

pairing

In this section, we present one example of our scheme based on Schnorr signa-

ture scheme with Bilinear pairings [23]. Key evolving mechanism (Gen, Upd)

is used same way with above.
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Signing Algorithm

Algorithm Sign(m,SKj)

1. Select a random number α in Z∗q

2. Compute u = ê(αP, P ) and hj = H2(m,u), then signature is

σj = hjSj + αP

3. return (j, 〈σj, hj〉,Pj )

Verifying Algorithm

Algorithm VF(m, j, 〈hj, σj〉,Pj))

1. For l = 1 to j

if ê(Ql, P ) 6= ê(Ql−1, Ql−1) then reject signature else continue

2. Compute ū =
ê(σj ,P )

ê(Spub,Qj))
hj

and h̄j = H2(m, ū)

3. if and only if hj = h̄j then return 1, else return 0

4.1.5 Validity of Signatures

We construct a forward secure signature protocol. To guarantee the validity of

our scheme, we should check that signatures generated by the signing process

will always be accepted by the verification process.

Proposition 4.3 Let PK and SK0 be a key pair generated by the key gen-

eration algorithm of FSS. Let (j, 〈hj, σj〉,Pj)) be an output of Sign (m,SKj).

Then V FPi
(σi) = 1 and V FPK(Pi) = 1.

Proof: (Case 1)[Validity of Session Public Key] From Pj, we can extract

Ql−1 and Ql(1 ≤ l ≤ j) and we have Q0 from master public key. Then it is
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essy to show that Ql is the l-th session public key using D-DH problem

ê(Ql, P ) = ê(x2l

0 P, P ) = ê(P, P )x2l

0 = ê(P, P )x2l−1

0 ·x2l−1

0

= ê(x2l−1

0 P, x2l−1

0 P ) = ê(Ql−1, Ql−1)

(Case 2)[Validity of Signatures] Let Qj ∈ Pj be a j-th session public key

and h̄j = H2(m, ūj), then we check that ūj =
ê(σj ,P )

ê(Spub,Qj)
hj

ūj =
ê(σj, P )

ê(Spub, Qj)hj

=
ê(hjSj + αP , P )

ê(Spub, Qj)hj

=
ê(hjSj, P )ê(αP, P )

ê(Spub, Qj)hj

=
ê(Sj, P )hj ê(αP, P )

ê(Spub, Qj)hj

=
ê(Spub, P )x2j

0 ·hj · ê(αP, P )

ê(Spub, Qj)hj

=
ê(Spub, x

2j

0 P )hj · ê(αP, P )

ê(Spub, Qj)hj

=
ê(Spub, Qj)

hj · ê(αP, P )

ê(Spub, Qj)hj

= ê(αP, P ) = uj

we get as desired ¥
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Scheme II

4.2 A practical c− times signature

In this chapter, we propose Schnorr signature scheme with restricted signing

capability which is a variant of c− times signature scheme [22] and we apply

it to proxy signature scheme. We modify LKK [30] scheme to meet the

requirement of our scheme, and we construct Schnorr-based proxy signature

scheme with restricted signing capability.

4.2.1 Definition

We denote t as a number of pre-selected random secret integers. And we

require a hash function, H3 : {0, 1}∗ −→ Z∗q. Additional notations are

described as follows:

Definition 4.4 Let t be a small integer, and Ψ, Ω be sets having the follow-

ing characteristics,

a) A set,

Ψ = {αi | αi ∈R Z∗q, 1 ≤ i ≤ t}

b) A set,

Ω = {ωi | ωi = H3(g
αi || i), αi ∈ Ψ, 1 ≤ i ≤ t}

4.2.2 Main idea

The main idea of our scheme is that we pre-select random integer set Ψ in key

generation phase. And we publish corresponding set Ω at public directory. In

verification step, verifier checks whether the hashed value of v = gσ ·y−e mod p

is the element of Ω or not. This means that if the hash value of v is not an

element of Ω, the signature is not valid and should be rejected. If the signer
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uses a random secret value αi ∈ Ψ twice, then, the signer’s secret key x is

revealed as following,

σ1 = x · h1 + αi mod q, h1 = H3(m1|| gαi) (4.1)

σ2 = x · h2 + αi, mod q, h2 = H3(m2|| gαi) (4.2)

Equation (3.1) - (3.2) is

(σ1 − σ2) ≡ x · (h1 − h2) (mod q)

⇒ x ≡ (σ1 − σ2)

h1 − h2

(mod q)

The signer can use αi only one time to generate signature without revealing

of his secret key. In that reason, the signer can generate limited number of

signatures.

4.2.3 The Protocol

Our scheme is a variant of Schnorr signature scheme. So it employs a subgroup

of order q in Z∗p , where p is some large prime number. This scheme also

requires a hash function H3 : {0, 1}∗ −→ Z∗q as does in Schnorr signature

scheme [35].

Key Generation

1. Select prime numbers q and p with the property that q divides (p− 1).

2. Select a generator g of the unique cyclic group of order q in Z∗p.

- Select an element γ ∈ Z∗p and,

- Compute g = γ(p−1)/q mod p.
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- If g = 1 then repeat 2.

3. Select a random integer x such that 1 ≤ x ≤ q − 1.

4. Compute y = gx mod p.

5. Select random integer set Ψ.

6. Compute a set Ω where ωj = H3(g
αj ||j), and αj ∈ Ψ.

7. Keep x and Ψ as a secret value, and publish p, q, g, y and a set Ω .

Signature Generation

1. Select a random secret value αj ∈ Ψ.

2. Compute R = gαj mod p, h = H3(m||R||j), and σ = x · h + αj mod q.

3. Alice’s signature for m is the pair (σ, h, j)

Signature Verification

1. Obtain Alice’s authentic public key {p, q, g, y} and set Ω.

2. Compute R̄ = gσ · y−h mod p, and h̄ = H3(m||R̄||j).

3. Accept the signature if and only if h = h̄ and H3(R̄||j) ∈ Ω.

4.2.4 Application to Proxy Signature

We apply our scheme to proxy signature scheme. We demonstrate the proxy

signature scheme with limited number of signatures. our scheme restrict the

number of signatures in the range of 1 to t where t is the number of pre-

selected random secret integers.
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Proxy Generation

- Proxy signer Bob : (xB, yB)

1. Select random secret integer set Ψ and,

2. Compute corresponding public integer set Ω.

3. Send public integer set Ω to original signer, Alice, using public

channel.

- Original signer Alice : (xA, yA)

1. Select a random integer rA in Z∗q.

2. Compute public value RA = grA mod p.

3. Compute σA = xA · hA + rA mod q, where hA = H3(mw||RA||Ω).

4. Send (hA, σA, mw) to proxy signer, Bob, using public channel.

5. Original signer, Alice publishes Ω at public directory.

Proxy Key Generation

- Proxy signer Bob : (xB, yB)

1. Proxy signer, Bob does the following step

- Compute R̄A = gσA · y−hA
A mod p.

- Compute h̄A = H3(mw||R̄A||Ω).

- Accept if and only if hA = h̄A .

2. Compute proxy key xp = σA + xB mod q.

Proxy Signature Generation

- Proxy signer Bob : (xP , yB)

1. Select αj ∈ Ψ, and compute Rj = gαj mod p.
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2. Generate a proxy signature σj = xP · hP + αj mod q, where hP =

H3(m||Rj||j).
3. Send (σj, hA, hP , m, mw, RA) to verifier Carol.

Proxy Signature Verification

- Verifier Carol :

1. Compute R̄j = gσj · (yhA
A · yB ·RA)−hP modp,

2. Compute h̄P = H3(m||R̄j||j).
3. Accept if and only if H3(R̄j|| j) ∈ Ω and hP = h̄P . If the check is

hold simultaneously, then the signature is valid.
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Chapter 5

Security Analysis

5.1 Security Proof of Scheme I

The exact security of our scheme is close to that of [11, 24, 25]. It closely

follows the one in [3] and [11], combining ideas from [4, 25, 31].

We are able to prove that as long as C-DH problem is computationally

intractable, it is computationally infeasible to break the forward security of

our scheme. First, we state the Theorem 5.1 that will allow us to upper-bound

the insecurity function.

Theorem 5.1 If there exists an adversary AFSS for FSS[k, T ] that runs in

time at most tFSS, asking at most qhash queries and qSig signing queries, such

that Succfwsig (FSS[k, T ],AFSS) ≥ εFSS, then there exist an algorithm ACDH

that solves C-DH problem in G1 in expected time at most tCDH with probability

at least εCDH , where

tCDH = max{3tEPK + O(2k), 2tSig + O(k2)}

εFSS ≤ (qhash + 1)(qSig + T )

2k
+ T

√
+(qhash + 1)εCDH + 3

√
εCDH

Proof: [Outline] In Lemma 5.5 and 5.6, we compute tEPK , εEPK , tSig and

εSig. and in Lemma 5.8, we prove that the maximum success probability

of FSS is the sum of the maximum success probability of two subroutine

algorithms EPK and Sig. ¥
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To prove our scheme, we divide our scheme into two subroutine algorithm

EPK and Sig. We reduce the complexity of our scheme to the complexity

of C-DH problem as can be seen in figure 5.1.

Figure 5.1: Mathematical reduction

Firstly, we will prove that public key evolving algorithm is computation-

ally infeasible as long as C-DH problem is computationally intractable. Sec-

ondly, we will also prove that signature algorithm is computationally infeasi-

ble as long as C-DH problem is computationally intractable. Finally, we will

show that FSS is forward secure using these two proofs.

Case 1. [Public Key Evolving Algorithm] We start with the public

key evolving algorithm. we use C-SE problem as a bridge of reducing the

complexity of our scheme to C-DH problem. We define two experiment as

can be seen in 5.2 and 5.3.

Let ECSE(ACSE, k) be any algorithm that takes input ACSE and k, at-

tempts to return instance of the C-SE problem, and let tCSE be the running

time and εCSE be the success probability that above ECSE(ACSE, k) algo-

rithm solving the square exponent problem in group G1.

Let ECDH(ACDH , k) be any algorithm that takes input ACDH and k,

attempts to return instance of the C-DH problem, then we define

Definition 5.2 Let ACDH be an adversary for C-DH problem and let SuccCDH

(ACDH , k) denote the probability that experiment ECDH(ACDH , k) returns 1.
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ECSE(ACSE, k)

1. Generate 〈q, ê,G1,G2〉 ← IG(1k)

2. Select P
R←− G1

3. Repeat

- Select x
R←− Z∗q

- Compute Q = xP , Q2 = x2P

- Run Q′ ←− ACSE(Q,P )

- if Q2 = Q′ then return 1, else return 0

Figure 5.2: Experiment of solving C-SE problem in group G1

The insecurity of C-DH problem is the function

InSecCDH(ACDH , k) = max
A
{SuccCDH(ACDH , k)}

where the maximum here is taken over all adversaries ACDH for which the

above experiment runs in time at most t.

To prove that public key evolving algorithm is computationally infeasible

as long as C-DH problem is computationally intractable, we begin with the

following lemma.

Lemma 5.3 If there exist an adversary AEPK for session public key forgery

attack to our scheme with running time tEPK, and probability εEPK then their

exist an adversary ACSE for solving C-SE problem in G1 which has running

time tCSE and probability εCSE, where tCSE = tEPK and εCSE = εEPK

Proof: If the public key evolving oracle of our scheme OEPK is given, the

adversary of C-SE problem ACSE queries to OEPK with input (1, Q0 = x0P ),

then OEPK outputs Q1 = x2
0P . It directly implies that ACSE succeeds to

solves the C-SE problem. The running time tCSE = tEPK and the success

probability is εCSE = εEPK . We get as desired ¥
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ECDH(ACDH , k)

1. Generate 〈q, ê,G1,G2〉 ← IG(1k)

2. Select P
R←− G1

3. Repeat

- Select x
R←− Z∗q and y

R←− Z∗q
- Compute Qx = xP , Qy = yP and Qxy = xyP

- Run Q′ ←− ACDH(Qx, Qy, P )

- if Qxy = Q′ then return 1, else return 0

Figure 5.3: Experiment of solving C-DH problem in group G1

From here, we will show that the complexity of C-SE problem is equivalent

to that of C-DH problem in G1. We consider following Lemma.

Lemma 5.4 Let G1 and G2 be two groups of order q, and there exist a bi-

linear map ê : G1 ×G1 → G2, then given an oracle OCSE which breaks C-SE

problem in G1 with success probability at least εCSE, there exists an adversary

ACDH that breaks C-DH problem in G1 with success probability at least εCDH .

Proof: Similar proof is done by Maurer and Wolf in [37] and Sadeghi and

Steiner in [42]. They proved the equivalence between the C-SE and C-DH

problem in Z∗q.
The key observation is that

ê((x + y)2P, P ) = ê(2xyP, P )ê(x2P, P )ê(y2P, P )

This implies

ê((2xy)P, P ) = ê(((x + y)2 − x2 − y2)P, P )

= ê((x + y)2P, P )ê(x2P, P )−1ê(y2P, P )−1

Therefore, we can solve C-DH problem with three oracle calls (one for each

of ê((x + y)2P, P ), ê((x)2P, P ) and ê((y)2P, P )) and some additional compu-

tations such as inverse function.

36



[Running Time] To break the C-DH problem, there are 3 independent calls

to the C-SE oracle and some additional computations which is in the order of

group operation. Therefore, the running time tCDH = 3tCSE + O(2k)

[Probability] There are 3 independent calls to the C-SE oracle and thus

the success probability of algorithm ACDH is εCDH = ε3
CSE ¥

Lemma 5.5 If there exist an adversary AEPK for session public key forgery

attack to our scheme with running time tEPK, and probability εEPK then

their exist an adversary ACDH for solving C-DH problem in G1 which has

running time tCDH and probability εCDH , where tCDH = 3tEPK + O(2k) and

εCDH = ε3
EPK

Proof: Combining the Lemma 5.3 and 5.4, we get the result as we desired.

The running time tCDH is 3tCSE + O(2k) by Lemma 5.4 and tEPK = T · tCSE

by Lemma 5.3 that tCDH = 3tEPK +O(2k). And the success probability εCDH

is ε3
CSE by Lemma 5.4 and εCSE = εEPK by Lemma 5.3 that εCDH = ε3

EPK ¥

Case 2. [Signature Algorithm] To show that signature algorithm is

computationally infeasible as long as C-DH problem is computationally in-

tractable, we state the following theorem:

Lemma 5.6 If there exist an adversary ASig for adaptive chosen message

attack with fixed public key to our scheme with running time tSig, asking at

most qhash hash queries and qsig signing queries, then their exist an adversary

ACDH for solving C-DH problem in G1 which has running time tCDH and

probability εCDH . where

tCDH = 2tSig + O(K2)

εSig =
(qhash + 1)(qSig + T )

2k
+ T

√
(qhash + 1)εCDH
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Proof: [Oracle Reply Attack](Reduction to C-DH problem.) First,

we assume that the adversary ASig outputs (b, (h, σ)) as a forgery, then the

hashing oracle has to be queried on (b, u, m) where u = ê(σ,P )
ê(Spub,Qb)h . We will

also assume that ASig performs necessary bookkeeping so as not to ask same

hash query twice. Note that ASig may ask the same signature query twice,

because the answers will most likely be different.

ACDH has to guess the time period at which ASig will ask the break-in query:

it randomly select j, (1 < j ≤ T +1) hoping that the break-in will occur at j

or later, and the forgery will be for a time period earlier that j. It then sets

Qj = x2j
P and PK = (Qj, T ), and runs the adversary ASig first time. Note

that x is randomly selected in Z∗q and x2j
is modulus q. ACDH then comes up

with a random tape for ASig, and runs ASig on the tape. ACDH maintains

two tables : a hash query table and a signing query table

Signature queries can be answered almost at random, because ACDH controls

the hash oracle. In order to answer a signature query number l1 on a message

ml1 during time period jl1 . ACDH selects a random σl1 ∈ G1 and hl1 ∈
{0, 1}k, computes ul1 =

ê(σl1
,P )

ê(Spub,Qjl1
)h , and checks its signature query table to

see if a signature query on ml1 during time period jl1 has already been asked

and if u is used in answering it. If so, ACDH changes σl1 and hl1 to the σ

and h that were used in answering that query. Then ACDH adds the entry

(l1, jl1 , ul1 , hl1 , σl1 ,ml1) to its signature query table and outputs (jl1 , σl1 , hl1).

Hash queries are also answered at random. To answer the l2-th hashing query

(jl2 , σl2 ,ml2), ACDH first checks its signature query table to see if there is an

entry (l1, jl1 , ul1 , hl1 , σl1 ,ml1) such that (jl1 , σl1 ,ml1) = (jl2 , σl2 ,ml2). If so, it

just outputs hl1 . Otherwise, it picks a random hl2 ∈ {0, 1}k, records in its

hash query table (l2, jl2 , ul2 , hl2 , σl2 ,ml2) and outputs hl2 .

Now, we assume the break-in query occurs during time-period j, and the

forgery (b, (σ, h)) is output for a time period b < j. To answer the break-in

query, ACDH outputs Sj. Let u = ê(σ,P )
ê(Spub,Qb)h . As we setASig to first ask a hash

query on (j, u,m), we have that, for some l, (l, b, u,m, h) = (l, jl, ul,ml, hl) in
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the hash query table. ACDH finds such an l in its table and remember it.

ACDH now reset ASig with the same random tape as the first time, and runs

it again, giving the exact same answers to all ASig’s queries before the l-th

hash query. This means ASig will ask the same l-th hash query (b, u, m). As

soon as ASig asks the l-th hash query, ACDH stops giving the answers from

the tables and comes up with new answers at random, in the same manner

as the first time.

Assume again the break-in query occurs during time-period j, and the forgery

(b′, σ′, h′) is output for a time period b′ < j. If the second forgery was based

on hash query number l, then we have b = b′, and

u = u′

ê(σ, P )

ê(Spub, Qb)h
=

ê(σ′, P )

ê(Spub, Qb)h′

ê(Spub, Qb)
h−h′ = ê(σ, P ) · ê(σ′, P )−1

ê(Spub, P )x2b ·(h−h′) = ê(σ − σ′, P )

ê(x2b · (h− h′)Spub, P ) = ê(σ − σ′, P ) (5.1)

From Eqn. 5.1, we get

x2b · (h− h′)Spub = σ − σ′

x2b

Spub = (σ − σ′) · (h− h′)−1 (5.2)

As Spub = sH1(ID) = sP , that Equation 5.2 is (x2b
)sP = (σ−σ′) · (h−h′)−1.

By knowing Qb = x2b
P and Spub = sP and breaking forward security, we can

solve C-DH problem. Therefore we show that the adversary ACDH can solve

C-DH problem. The proof is completed as we desired.

¥
[Running Time Analysis] Adversary ACDH runs ASig twice. Answering

hashing and signing queries takes ACDH no longer than it would the real or-

acles. To find the hashing query which the signature corresponds to, to com-

pute (σ−σ′)·(h−h′)−1 takes one division and two substraction. Thus the run-

ning time ofACDH exceeds that ofASig by O(k2), that is tCDH = 2tSig+O(k2).

39



[Probability Analysis] First, we consider the following lemma.

Lemma 5.7 Let a1, a2, · · · , aλ be real numbers, Let a =
∑λ

µ=1 aµ. Let π =∑λ
µ=1 a2

µ. Then π ≥ a2

λ

Proof: Let ρ = a
λ

and ρµ = ρ − aµ. Note that
∑λ

µ=1 ρµ = λρ −∑λ
µ=1 aµ =

a− a = 0. Then

λ∑
µ=1

a2
µ =

λ∑
µ=1

(ρ− ρµ)2 = λρ2 − 2ρ
∑
µ=1

λρµ +
∑
µ=1

λρ2
µ ≥ λρ2 =

a2

λ

This is done by Abdalla and Reyzin in [3] and we rewrite it here. ¥

At first, we consider the probability that ACDH ’s answer to ASig’s oracle

queries are distributed as those of the true oracles that ASig expects. Because

σ is picked random in G1 and u = ê(σ,P )
ê(Spub,Qb)h is a random element of G2. The

probability of collision with a value from a hash query in the same execution

of ASig is qhash+1
2k . Thus, the difference of probability between ACDH and real

signer is
qsig(qhash+1)

2k . Let δ = εSig − qsig(qhash+1)

2k .

Let εj be the probability that ASig produces a successful forgery and that its

break-in query occurs in time-period j. Then, δ =
∑T+1

i=2 εj. If ACDH picked

a specific j as the time-period for break-in, Then the probability of that is

1/T .

We will now calculate the probability of the event that ASig outputs a valid

forgery based on the same hash query both times and that the hash query was

answered differently the second time and that the break-in query was j both

times. Let ε<l,j> be the probability that, in one run, ASig produces a valid

forgery based on hash query number l after break-in query in time-period j.

Then,

εj =

qhash+1∑

l=1

ε<l,j>
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Let ε<l,j,s> (for a sufficiently long binary string s of length ζ) be the

probability that, in one run, ASig produces a valid forgery based on hash

query number l after break-in query in time-period j, given that the string s

was used to determine the random tape of ASig and the responses to all the

oracle queries of ASig until the l-th hash query. We have that

2kε<l,j> =
∑

s∈{0,1}ζ

p<l,j,s>

Given such a fixed string s, the probability that ASig produces a valid

forgery based on the hash query number l after break-in query in time-period

j in both runs is ε2
<l,j,s>. because the first forgery is now independent of the

second forgery. The additional requirement that the answer to the hash query

in the second run be different reduces this probability to ε<l,j,s>·(ε<l,j,s>−2−k).

Thus, the probability ε<l,j> that ASig produces a valid forgery based on the

hash query number l in both runs and that the answer to the hash query is

different in the second run and that the break-in query was j in both runs is

ε<l,j> =
∑

s∈{0,1}ζ

2−ζε<l,j,s> · (ε<l,j,s> − 2−k)

= 2−ζ


 ∑

s∈{0,1}ζ

ε2
<l,j,s> − 2−k

∑

s∈{0,1}ζ

ε<l,j,s>




≥ 2−ζ(ε<l,j> · 2ζ)2

2ζ
− 2−kε<l,j> = ε2

<l,j> − 2−kε<l,j>

by Lemma 5.7.

The probability that ASig outputs a valid forgery based on the same hash

query both times and that the hash query was answered differently in the

second run and that the break-in query occurred in time-period j is now

qhash+1∑

h=1

ε<l,j> ≥
qhash+1∑

h=1

ε2
<l,j> −

qhash+1∑

h=1

2−kε<l,j> ≥
ε2

j

qhash + 1
− 2−kεj
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If this happens, then the forgery occurs in time-period b < j, because the

forgery has to occur before the break-in period, so ACDH will be able to solve

the C-DH problem. Finally, we remove the assumption that ACDH picked j

as the time-period to get the probability of ACDH ’s success:

εCDH ≥ 1

T

T+1∑
j=2

(
ε2

j

qhash + 1
− 2−kεj

)
≥ δ2

T 2(qhash + 1)
− δ

2kT

by lemma 5.7.

Now, we remove the δ, then the success probability of ACDH is

εCDH ≥ (εSig − qsig(qhash+1)

2k )2

T 2(qhash + 1)
− εSig − qsig(qhash+1)

2k

2kT
(5.3)

We let θ =
(
εSig − qsig(qhash+1)

2k

)
· T−1 then, we can define equation 5.3 as

follows :

f(θ)
def
= 2kθ2 − (qhash + 1)θ − 2k(qhash + 1)εCDH ≤ 0

As a function of θ the function f is first decreasing, then increasing. It

has two roots, and we need upper bound of probability. By quadratic formula

we have

θ =
(qhash + 1) +

√
(qhash + 1)2 + 22(k+1)(qhash + 1)εCDH

2k+1

= 2−(k+1)(qhash + 1) + 2−(k+1)(qhash + 1) +
√

(qhash + 1)εCDH

= 2−k(qhash + 1) +
√

(qhash + 1)εCDH (5.4)

As a result

εSig = 2−kqSig(qhash + 1) + T · 2−k(qhash + 1) + T
√

(qhash + 1)εCDH

=
(qhash + 1)(qSig + T )

2k
+ T

√
(qhash + 1)εCDH
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Until now, we show that two subroutine algorithm of FSS is infeasible

under the assumption that C-DH problem is computationally intractable. To

merge these two algorithm, we state the following lemma:

Lemma 5.8 Let AEPK and ASig be an adversary attacking our scheme with

session public key forgery attack and adaptive chosen message attack with fixed

session public key respectively. And we denote SuccEPK(V FPK0(Pi),AEPK)

is the probability that V FPK0(Pi) return 1, and SuccSIG(V FPi
(σi),ASig) is the

probability that V FPi
(σi) return 1. Then the success probability of A−Froge

is

Succfwsig(FSS[k, T ],AFSS) ≤ max{SuccEPK(V FPK0(Pi),AEPK)}
+ max{SuccSIG(V FPi

(σi),ASig)}

Proof: From experiment A − Forge, an attacker AFSS who tries to break

FSS[k, T ] wins the game if he succeed to forge one of these algorithms.

First, if he can make a valid session public key without secret informa-

tion, then he also can make valid signatures corresponding to this public

key. Furthermore, if he can forge valid signature without forging session pub-

lic key, it is straightforward that he can break FSS[k, T ]. Let Pr(C) be a

Succfwsig(FSS[k, T ],AFSS) and Pr(A), Pr(B) be SuccEPK(V FPK0(Pi),AEPK),

SuccSIG(V FPi
(σi),ASig) respectively then,

Pr(C) = Pr(A ∪ B)

= Pr(A) + Pr(B)− Pr(A ∩ B)

≤ Pr(A) + Pr(B)

Therefore, the maximum success probability of A− Forge can be written as

the sum of the maximum probability of two subroutine algorithms. We get

as desired. ¥

Theorem 5.1 allows us to state the following theorem about the insecurity

function of our scheme.
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Theorem 5.9 Let FSS[k, T ] represent our key evolving signature scheme

with security parameter k, and total time periods T . Then for any t, qSig and

qhash,

InSecfwsig(FSS[k, T ], t, qsig, qhash) ≤
(qhash+1)(qSig+T )

2k + 3

√
InSecCDH(k, tCDH)

+ T
√

+(qhash + 1)InSecCDH(k, tCDH)

where tCDH = max{3tEPK + O(2k), 2tSig + O(k2)}

Proof: The upper bound of insecurity function is simply derived from

Theorem 5.1. ¥
The security parameter k must be chosen large enough that InSecCDH(k, tCDH)

is very low. The theorem tells us that the probability of being able to com-

promise the forward security of the signature scheme is also low.
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5.2 Security Analysis of Scheme II

Basically, our scheme is the variant of Schnorr signature scheme and LKK

scheme [30]. Only the difference is that we pre-select the random integers in

key generation step. Therefore, as long as the random integers kept secretly,

the security level of our scheme is almost same as that of Schnorr signatures

[39]. Additionally, our scheme is a kind of c− tiems signature. We will show

that our scheme has c− times characteristic.

c− times characteristic

If a proxy signer generates signatures with same random value, αi ∈ Ψ, then

the secret key of the proxy signer can be revealed as follows:

σi = xP · hi + αi mod q, hi = H(mi||Ri||i), Ri = gαi mod p (5.5)

σj = xP · hj + αi mod q, hi = H(mj||Ri||j), Ri = gαi mod p (5.6)

Equation (5.5) - (5.6) is

xP =
σj − σi

hj − hi

(mod q) (5.7)

And

xB = σA + xP mod q (5.8)

By Eqs. (5.7) and (5.8), xB is revealed.

In that reason, the proxy signer can not use αi ∈ Ψ twice.

We pre-select random numbers, αi ∈ Ψ in key generation step, and we publish

corresponding hash values in public directory that the proxy signer can sign

on at most t numbers of messages, so our scheme has c−times characteristics.
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Chapter 6

Comparisons

We assume that the elliptic curve is chosen in the same way as [5]. As pointed

out in [5], from the practical point of view, we can assume that p and q is a

512-bit prime and 140-bit prime respectively, since the MOV reduction [34]

leads to a DLP in a finite field of size approximately 21024. In addition, we

assume that system parameter q for our basic scheme are 140-bit and the

modulus N for other scheme is 1024-bit and the output of random hash value

is 160-bit.

6.1 Comparison of Scheme I

In this section, we compare our key evolving forward secure signature scheme

with the prior scheme in terms of compatibility, computational overhead and

signature size. We denote M the cost of modular multiplication and E the

cost of exponentiation over a given finite field and A the cost of addition and

PA the cost of point addition and PM the cost of point addition over a given

elliptic curve and B the cost of computing bilinear map and H the cost of

hash operation. Table 6.1 shows the comparison of our key evolving forward

secure signature scheme.

From Table 6.1, we can state of the properties of our scheme as follows:

(1) Compare to Itkis and Reyzin scheme, our scheme is more efficient in

signing algorithm but less efficient in verifying algorithm. Our scheme has

overhead in signature size and public key verifying algorithm. As time goes
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Table 6.1: Comparison of key evolving forward secure signature schemes

Our scheme Bellare and Itkis and Hu, Wu

Miner Reyzin and Irwin

Security proof Yes Yes Yes Yes

Compatibility with Yes NO NO No

Conventional Scheme (Schnorr) (More precisely) (More precisely )

Underlying Problem G-DH IFP GQ BDH

Comp. Complexity 1PA+2PM (2 + k)M (1)M+2E+1H 1PA+1PM

(Signing) +2B+1H +kE+1H +1H

Comp. Complexity max{T}B + 1H (k + 1)M+1H (1)M+2E+1H (1 + log T )PM

(Verifying) +(k + 1)E +(2 + 2 log T )B

Signature Size(bits) (140)(2 + max{T}) (2048) (1024) (1 + log T ) · (140)

+2 log(1024)

Public Key Size(bits) 140 (1024) · l (1024) (140)

Secret Key Size(bits) (280) ·max{T} (1024) · l (2048) 2(log T − 1) · (140)

+2 log(1024)

on, signature size increase proportion to the time period until total time

period T . Therefore we have a further work to find more efficient one. (2)

Our scheme is compatible with conventional signature scheme. This is a

big advantage in practical use, because in real world, conventional signature

scheme has been already used and changing this signature scheme to new one

needs very high cost. Though, our scheme has some overhead, it is directly

applicable to conventional scheme such as Schnorr signature scheme. (3) Our

scheme use bilinear pairing that it is possible to extend to ID-based signature

scheme. (4) Another merit of our scheme is that it can be applied to proxy

signature scheme. Bellare and Miner’s scheme and Itkis and Reyzin’s scheme

are very difficult to apply to proxy signature because they use modulus N

which is a composite number.
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6.2 Comparison of Scheme II

In this section, we compare our c− times signature scheme whit that of HLL

[22] scheme. we assume that the signer generates t number of signatures.

Table 6.2: Comparison of c− times signature schemes

Our scheme HLL scheme

Comp. Complexity 0 tA + tM

(Signing) (Not Increase) (Increase)

Comp. Complexity 1H (t + 1)E+ tM

(Verifying) (Increase) (Increase)

Signature Size(bits) 0 (160)

(Not Increase) (Increase)

Public Key Size(bits) t · (160) t · (512)

(Increase) (Increase)

From Table 6.2 we can state that our scheme is more efficient than HLL

scheme. Our scheme has an additional step to check the validity of random

value Ri = gαi that it increase public key size by t · (160) and computa-

tional complexity of verifying step by one hash operation. But HLL scheme

has to compute t-degree polynomials that public key size and computation

complexity of singing and verifying is increased much more than that of our

scheme.
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Chapter 7

Conclusion

In this thesis, we study the risk of key exposure problem. We review previous

works and present current concerns on key exposure problem. And then

we present our suggestions to solve the problems. We suggest two kinds of

solutions. In scheme I, we present a key evolving forward secure signature

scheme based on the G-DH problem using bilinear pairing. The key evolving

forward secure signature scheme is compatible with conventional signature

scheme which is based on DH problem using the pairings. To guarantee that

our scheme gives forward security, first we define the key evolving signature

scheme and standard forward security. We show that any attacker that can

break the forward security can be transformed into an efficient algorithm

to solve the underlying well-studied problem, the C-DH problem in pairing.

Finally, we obtain an exact analysis of the security of the scheme rather than

asymptotic ones. In scheme II, we present a practical c − times signature.

This scheme can limit the signing capability of signer in terms of the number

of signature. We apply this scheme with proxy signature scheme. And we

can efficiently restrict the signing capability of proxy signer. As a result, we

can protect original signer from the abuse of proxy signer’s signing ability.

As a future work, it remains to find more efficient key evolving algorithm to

guarantee forward security which is compatible with conventional signature

scheme. We will apply this key evolving forward secure signature to proxy

signature scheme as well.
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v� �̧Ø�¦\� îß����ô�Ç �����"f"î
 l�ZO�\� �'aô�Ç ���½̈

þjô=ï�r

�����"f"î
l�ZO��ÉrÕª ò́Ö�¦$í
M:ë�H\�6£x6 x�èáÔàÔJ?#Q\�"f���©� ú́§s�æ¼s�

��H #Qe�¦o�H�s���� ×�æ_� ���s���. �����"f"î
�Ér ��6 x 6 x�̧\� ���� ���ª�ô�Ç "f

"î
 Òqt$í
 l�ZO�s� �>rF�ô�Ç��. y�� "f"î
l�ZO��Ér ³ðï�r �Ðîß¹כ�½̈ ���½Ó÷�rëß� ��m���

��6 x 6 x�̧\� ���Ér �¦Ä»ô�Ç �Ðîß¹כ�½̈ ���½Ó�̀¦ ]j/BN��¦ e����. �����"f"î
 ·ú��¦

o�7£§ ���̂_� îß����$í
�Ér ���7£x�)a �����"f"î
 l�ZO��̀¦ ��6 x�>� ÷&��� �&³F�_� >�íß�

0px§4�\�"f��H îß���������H ��z�́s� @/ÂÒì�r 7£x"î
÷&#Q e����. Õª�Q�� z�́Òqt�Ö̧\� e��

#Q"f �����"f"î
_� ���©� 	�H 0A+«>¹כ�è��H ·ú��¦o�7£§ ���̂_� îß����$í
 �Ð����H q�x9�

v� �̧Ø�¦\� _�K� îß����$í
s� ��õ�÷&��H �.���s	כ q�x9�v�_� �̧Ø�¦�Ér ��6 x��_� ÂÒ

ÅÒ_��� _��̧&h���� ]X���HÜ¼�Ð ~1�>� s�ÀÒ#Q |9� Ãº e���¦, z�́]j Òqt�Ö̧\�"f ��¥y� {9�

#Q���¦ e����H {9�s���. ¢̧ s�XO�>� q�x9�v�\�¦ �̧Ø�¦�>� ÷&���, îß����$í
s� 7£x"î
÷&

#Q e����H �����"f"î
 ·ú��¦o�7£§�̧ K�{©� q�x9�v�\� @/K�"f��H îß����$í
s� �̧¿º ��õ�

�)a��. s��Qô�Ç ë�H]j\�¦ K�����l� 0Aô�Ç ���©� {9�ìøÍ&h���� ~½ÓZO�s� q�x9�ì�ríß� l�ZO�

s��� [10, 41]. Õª�Q�� q�x9�ì�ríß�l�ZO��Ér ��Ãº_� ��6 x��\�>� q�x9��̀¦ ì�ríß��<ÊÜ¼

�Ð+� �¦q�6 x�̀¦ Ä»µ1Ïr������. ����"f {9�ìøÍ&h���� �����"f"î
 l�ZO�\���H &h�½+Ë�t�

·ú§��. ¢̧ô�Ç Û¼��àÔ
�×¼ü< °ú s� �×¼J?#Q\�¦ s�6 x���H ~½ÓZO��Ér :£¤Z>�ô�Ç 3lq&h�Ü¼

�Ð ��6 x�>� ÷&��� B�Äº Ä»6 x�t�ëß� q�x9�ì�ríß� l�ZO�õ� °ú s� �¦q�6 x�̀¦ Ä»µ1Ï�

Ù¼�Ð {9�ìøÍ&h���� �����"f"î
l�ZO�\�"f��H &h�½+Ë�t� ·ú§��.

q�x9�v� �̧Ø�¦r�\�q�x9�ì�ríß�l�ZO�s����×¼J?#Q�©�u�\�¦��6 x�t�·ú§�¦x�

K�\�¦ þj�è�o ���H ~½ÓZO�Ü¼�Ð ���~½Ó�Ðîß�_� >h¥Æ�s� ]jîß�÷&%3���. �����"f"î
l�ZO�

\�"f��H Anderson [1]s� %�6£§ ���~½Ó�Ðîß�(Forward Secure)_� >h¥Æ��̀¦ ��6 x�%i�

��. s�Êê Bellare ü< Miner[11]�� %�6£§Ü¼�Ð ���~½Ó�Ðîß��̀¦ �Ð�©�½+É Ãº e����H z�́6 x

��0pxô�Ç�����"f"î
l�ZO��̀¦]jîß��%i���. Itkisü< Reyzin [25]�Ér���~½Ó�Ðîß�_�>h¥Æ�

�̀¦ SX��©��#� gË>{9�y��?/ "f"î
l�ZO�(Intrusion Resilient Signature Scheme)�̀¦ ]j
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îß��%i���. ¢̧ ���Ér ]X���H ~½ÓZO� ×�æ_� ����Ð S!�&ñ
���1px[22]�Ér c− times �����"f

"î
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���� c��� s��©�_� "f"î
�̀¦ Òqt$í
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�Ér l��>r "f"î
l�ZO�õ�  ñ8̈��)a����H &h�\�"f z�́6 x&h�s����¦ ½+É Ãº e��t�ëß� ��6 x3lq

&h�s� ]jô�Ç÷&#Q e����.

�:r �<Æ0A�7Hë�H\�"f��H q�x9�v� �̧Ø�¦\� _�K� µ1ÏÒqt���H ë�H]j&h�[þt\� ÅÒ3lq�%i�

��. ¢̧ô�Ç�����"f"î
l�ZO��̀¦]jîß����HX<e��#Q"f Schnorr, ElGamalÕªo��¦ DSS
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\� @/ô�Ç &ñ
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�̀¦

î̈
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