
A Thesis for the Degree of Master

A Study on Secure Group Mutual
Exclusion Algorithm

Jaehyrk Park
School of Engineering

Information and Communications University
2004

A Study on Secure Group Mutual

Exclusion Algorithm

A Study on Secure Group Mutual
Exclusion Algorithm

Advisor : Professor Kwangjo Kim

by

Jaehyrk Park
School of Engineering

Information and Communications University

A thesis submitted to the faculty of Information and Com-
munications University in partial ful�llment of the require-
ments for the degree of Master of Science in the School of
Engineering

Daejeon, Korea
Dec. 29. 2003
Approved by

(signed)
Professor Kwangjo Kim
Major Advisor

A Study on Secure Group Mutual
Exclusion Algorithm

Jaehyrk Park

We certify that this work has passed the scholastic stan-
dards required by the Information and Communications Uni-
versity as a thesis for the degree of Master

Dec. 29. 2003

Approved:
Chairman of the Committee
Kwangjo Kim, Professor
School of Engineering

Committee Member
Jae Choon Cha, Assistant Professor
School of Engineering

Committee Member
C.Pandu Rangan, Invited Professor
School of Engineering

M.S.
20022061

Jaehyrk Park
A Study on Secure Group Mutual Exclusion Algorithm
School of Engineering, 2004, 47p.
Major Advisor : Prof. Kwangjo Kim.
Text in English

Abstract

A distributed system can be viewed as a set of processes that share
many types of resources, such as processors, memory cells, buses, and
printers. Emerging network technologies require e�cient distributed
processing ability. A distributed algorithm in distributed system deals
with how to make the computers connected together work well. Main
focus of distributed algorithm is mutual exclusion problem that means
many shared resources must be accessed in a mutually exclusive manner.

This thesis gives a new quorum-based distributed group mutual ex-
clusion algorithm. In the group mutual exclusion problem, multiple
processes can enter critical section at the same time if they belong to
the same group. The former quorum-based group mutual exclusion al-
gorithm has a case when two processes cannot enter critical section at
the same time even if they can do so. We call the above situation as
unnecessary blocking. We give a new algorithm which prevents unnec-
essary blocking. Also, in this thesis, we present a method to control the
access to a secure database based on group mutual exclusion algorithm
using quorum systems. The security of algorithm is based on the secret
sharing scheme. The main goal of our algorithm is to integrate security
with distributed algorithm.

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

List of Abbreviations vi

List of Notations vii

I Introduction 1
1.1 Distributed Algorithm and Security 1
1.2 Our Contributions . 2
1.3 Organization . 3

II Preliminaries 4
2.1 Background . 4

2.1.1 Distributed Systems 4
2.1.2 Mutual Exclusion Problem 5
2.1.3 Quorum System 7
2.1.4 Group Mutual Exclusion Problem 7
2.1.5 Secret Sharing . 8

2.2 Related works . 9
2.2.1 Distributed Algorithm 9
2.2.2 Quorum-based Secure Protocol 10

ii

IIIProposed Scheme 12
3.1 Group Mutual Exclusion Algorithm without Unnecessary

Blocking . 12
3.1.1 Problem in Former Algorithm 13
3.1.2 Avoiding unnecessary blocking 14
3.1.3 New Group Mutual Exclusion Algorithm 15
3.1.4 Correctness of the Algorithm 19

3.2 Toward Secure Group Mutual Exclusion Algorithm . . . 21
3.2.1 Requirements . 21
3.2.2 Our Model and Assumptions 22
3.2.3 Modi�ed Algorithm 25
3.2.4 Comparison . 30

IVConclusion 34

Appendix

�±�%K�³À»ÈÐ 41

References 43

Acknowledgement 48

Curriculum Vitae 49

iii

List of Tables

3.1 Comparison of Algorithms 31
3.2 Communication Comparison 32

iv

List of Figures

3.1 Sketch of our Algorithm 26

v

List of Abbreviations

Algo. Algorithm
CA Certi�cation Authority

DB Database

PKI Public Key Infrastructure

SSS Secret Sharing Scheme

SDR System of distinct representatives

vi

List of Notations

AS Access Server

CS Critical Section

DS Data Server

G set of group

K set of process

p One requesting process

q One access server process

Q One quorum that is a set of processes

SK Secret Key

T set of partial secret value

U set of access server processes, U = fq1; q2; :::; qng

V set of requesting processes, V = fp1; p2; :::; png

X data part that user want

vii

I. Introduction

1.1 Distributed Algorithm and Security

A distributed system consists of a collection of computers, called sites,
that are geographically distributed and connected by a communication
network. Examples of distributed systems include distributed inven-
tory control systems, banking systems, airline reservation systems, and
campus-wide �le systems. In other words, a distributed system can be
viewed as a set of processes that share many types of resources, such
as processors, memory cells, buses, and printers. However, under the
distributed system environment, there is no shared memory for each pro-
cess. Therefore, in order to achieve cooperative tasks, processes must
communicate with other processes via communication links.

Distributed algorithm in distributed system deals with how to make
the computers connected together work well. Designing distributed al-
gorithms to control distributed systems is by no means easy since there
is no way to capture the global state of the system. So, computers must
send and receive messages to other computers to get enough information
to do their tasks. However, emerging network technology requires e�-
cient distributed processing ability, which is related to grid computing
or distributed algorithm area.

The main focus on distributed algorithm is mutual exclusion prob-
lem that means many shared resources must be accessed in a mutually
exclusive manner. In other words, mutual exclusion is crucial for the
design of distributed system. Many problems involving replicated data,
distributed shared memory, and others require that a resource be allo-
cated to a single process at a time. However, solutions to these problems

1

are often vulnerable to site and communication failures. Intersecting
quorums can be used to provide fault-tolerant solutions to mutual ex-
clusion problems. A lot of researches on distributed algorithm with
fault-tolerance can be found in the literature.

Both fault-tolerance and security �eld try to stop bad e�ects from
spreading out throughout the system and corrupting the system. These
bad e�ects are obviously di�erent in the two cases: fault tolerance is
looking at just trying to contain crashes, whereas security is looking
towards trying to stop bad people from doing bad things. However, in
a distributed system, several replicas may be maintained at di�erent
sites to improve fault tolerance. Maintaining replicas may also a�ect
the integrity and secrecy of the data. Thus, it is natural to consider
security issues together with fault tolerance.

1.2 Our Contributions

In this thesis, we present a quorum based e�cient distributed algorithm.
We also propose a secure distributed algorithm through adapting cryp-
tographic primitive to our new algorithm. We summarize our contribu-
tions as follows:

Quorum-based distributed algorithm : We give a new quorum-
based distributed group mutual exclusion algorithm. In the group mu-
tual exclusion problem, multiple processes can enter critical section at
the same time if they belong to the same group. The former quorum-
based group mutual exclusion algorithm has a case when two processes
cannot enter critical section at the same time even if they can do so.
We call the above situation as unnecessary blocking. We give a new al-
gorithm which prevents unnecessary blocking and prove its correctness.

2

Secure Quorum-based distributed algorithm : Usually, researches
on distributed algorithm don't deal with security aspects except for
fault-tolerance since their goal is consistency with competing processes
in distributed system and low complexity. Approaches on designing
secure distributed algorithm can be valuable. We specify a secure dis-
tributed algorithm by using both group mutual exclusion algorithm and
secret sharing scheme. Moreover, even though we add cryptographic
technique to distributed algorithm, communication complexity is not
changed. Our algorithm not only guarantees the requirements of mu-
tual exclusion algorithm but also users' privacy and authentication.

1.3 Organization

The organization of this thesis is as follows:

� Chapter II: Basic concepts that are fundamentally used for the
construction of our distributed algorithm are briey introduced.
The goal is to unify these concepts into rationale of our algorithm
designing.

� Chapter III: Problem in former group mutual exclusion algorithm
is introduced. We propose new algorithm without unnecessary
blocking problem and show correctness proof. Then, secure dis-
tributed algorithm is presented by using SSS.

� Chapter IV: To analyze our algorithm, security and performance
comparisons are presented.

� Chapter V: A summary of the results and open problems are pre-
sented.

3

II. Preliminaries

In this chapter, we introduce basic concepts which would be employed
in our algorithm and were presented in previous related works.

2.1 Background

We �rst present the fundamental concept for understanding our new
distributed algorithm. In order to make e�cient distributed algorithm,
Mutual exclusion and group mutual exclusion problem should be solved.
In this chapter, we describe major concept and techniques frequently
used in designing secure distributed algorithm.

2.1.1 Distributed Systems
A set of computers connected by a set of communication links is called a
distributed system. We characterize distributed systems by the absence
of shared memory. In a distributed system, processes on a computer do
their tasks with other processes on remote computers. To achieve co-
operative tasks, processes must communicate with other processes via
communication links since there is no shared memory. The following
motivates distributed systems.

High Performance Since the system consists of several computers,
independent tasks can be processed in parallel. Load balancing is easy.

Distribution of users When users of the system are geometrically
distributed, it is natural to process tasks distributedly.

4

Extensiveness In general, addition of computers and communication
links can be done easily with small modi�cation of the current system.
Replacement of computers and communication links is also easy. This
property naturally comes from the fact that distributed systems are
loosely coupled.

Fault-tolerance A centralized system cannot provide services when
the central machine stops by failure. Distributed systems may provide
services if there are several alive components.

Distributed systems have many advantages compared with central-
ized systems. However, designing distributed algorithms to control
distributed systems is by no means easy because of the following rea-
sons: Computers must send/receive messages to other computers to get
enough information to do their tasks. Messages are delivered with delay
and therefore in principle there is no way to capture the global state of
the system. In addition, there is no process which controls the entire
distributed system. Therefore, to achieve fault-tolerance, algorithms
must consider failures such as process stops and message loss.

2.1.2 Mutual Exclusion Problem
Mutual exclusion is one of the fundamental problems in distributed sys-
tems. The mutual exclusion problem �rst arised when the concept of
concurrent processes were introduced in operating systems. When more
than one process shares memory cells, undesirable situations may hap-
pen: Suppose that two processes P1 and P2 that share a variable, say
x, wish to increment x by one. To increase the value of x, a process
loads the value of x into a register in CPU, increase the value of the
register by one, and then stores it back into x. If P2 starts executing

5

the above procedure after P1 �nishes its execution, the result is correct,
i.e., the value of x is incremented by two. However, what if their execu-
tions are interleaved? Consider, for example, the following interleaved
execution sequence. P1 loads x, P1 increments the register, P2 loads x,
P2 increments the register, P2 stores the register into x, and then P1
stores the register into x. x is incremented by only one. To guarantee
such an undesirable situation does not happen, the concept of critical
section is introduced. A program text can be partitioned into two kinds
of sections : sections in which there are no accesses to shared resources
(e.g., shared variables) and sections in which shared resources are ac-
cessed. The latter sections are called critical sections or critical regions.
When some resource (for example, a �le, a communication channel, a
printer) is shared among processes, no two processes are allowed enter
the critical section(CS) to use it at the same time. To enter a CS, a
process must assure that there is no process which is being in CS in the
distributed system. Many algorithms have been proposed to solve the
distributed mutual exclusion problem. Also, such algorithms follow one
of these three types.

Permission based principle A process P wishing to enter a CS re-
quests some other processes' permission. If the permission is given from
the process P is asking, P can then enter the CS.

Token based principle There is an object called a token in a dis-
tributed system and it travels among processes. A process can enter a
CS while it is holding the token. The mutual exclusion is guaranteed
because there is only one token in the system and there are no two pro-
cesses having a token at the same time.

Quorum based principle A process can enter a CS when it receives

6

permission from a set of processes. The set of processes is called a quo-
rum.

In this thesis, we use quorum based principle to solve mutual exclu-
sion problem.

2.1.3 Quorum System
Quorum system is a basic tool providing a uniform and reliable way to
achieve coordination in a distributed system. They are useful for dis-
tributed and replicated databases, name servers, mutual exclusion, and
distributed access control and signatures. Quorum systems have impor-
tant intersection property. Set systems with the intersection property
are known as quorum systems, and the sets in such a system are called
quorums.

A protocol template based on quorum systems works as follows. In
order to perform some action (update the database, say), the user selects
a quorum and accesses all its elements. The intersection property then
guarantees that the user will have a consistent view of the current state
of the system.

For example, if all the members of a certain quorum give the user
permission to enter the critical section, then any other user trying to
enter the critical section before the �rst user has exited (and released the
permission-granting quorum from its lock) will be refused permission by
at least one member of any quorum it chooses to access.

2.1.4 Group Mutual Exclusion Problem
Recently, the concept of group mutual exclusion [39] has been proposed.
There are multiple groups of processes. The processes in the same group
can enter CS at the same time. This problem corresponds to the follow-

7

ing situation. There is a CD jukebox and each process wants to read
some data on the CDs. If CD A is loaded, multiple processes which want
to read data on the CD A can access it at the same time. These pro-
cesses are in the same group. On the other hand, the processes which
want to read data on CD B cannot do so when A is loaded. These
processes forms a di�erent group. In addition, the same data might be
copied on multiple CDs. Thus, some processes might be a member of
multiple groups.

2.1.5 Secret Sharing
Secret sharing was originally suggested for threshold access structures
by Shamir and Blakley [30, 1]. The idea of secret sharing is to start with
a secret, and divides it into pieces called shares which are distributed
among users such that the pooled shares of speci�c subsets of users allow
reconstruction of the original secret. It was extended to arbitrary access
structures in [10]. In other words, The idea of a threshold scheme may
be broadened to a generalized secret sharing scheme as follows: Given a
set P of uses, � (the access structure) to be a set of subsets, called the
authorized subsets of P . Shares are computed and distributed such that
the pooling of shares corresponding to any authorized subset A 2 � al-
lows recovery of the secret S, but the pooling of shares corresponding to
any unauthorized subset B � P ,B * � does not. In this thesis, we can
apply any secret sharing to build our new secure distributed algorithm.
However, we use secret sharing scheme realizing the access structures
of quorum systems by presented [24]. De�nition of their scheme is as
follows:

De�nition 2.1.1 (Secret sharing) Let U = f1; :::; ng and let S be a �-
nite set of secrets. A secret-sharing scheme is a mapping � : S�R !

8

S1 � S2 � � � � � Sn , where R is a set of random strings, and for each
i 2 U; Si is a set of secret shares. � is said to realize an access structure
� if it satis�es the following conditions:

1. The secret can be reconstructed by any subset in �. That is, asso-
ciated with every set A 2 � (A = fi1; :::; ijAjg) there is a function
hA : Si1 � � � � � SijAj ! S such that for every (s; r) 2 S � R,if
�(s; r) = fs1; :::; sng then hA(si1 ; :::; sijAj) = s:

2. No subset, unless it is a member of �, can reveal any partial in-
formation about the secret (in the information theoretic sense).
Formally, for any subset Z * �, for every two secrets a; b 2 S,
and for every possible collection of shares fsig where i 2 Z

P (fsigi2Z ja) = P (fsigi2Z jb);

where the probability is taken over the random string r.

2.2 Related works

2.2.1 Distributed Algorithm
Mutual exclusion is one of the fundamental problems in distributed
systems. The �rst distributed mutual exclusion algorithm is proposed
by Lamport [16]. To guarantee mutual exclusion, no deadlock, and
no starvation, distributed mutual exclusion algorithms must have some
arbitration mechanism. To this end, he proposed a logical clock.

After that, many distributed mutual exclusion algorithms have been
proposed [34, 33]. Quorum-based algorithm [18] is one of the solutions
with fault-tolerance. Some extensions, such as there are multiple units
of the same resource [13, 22] and the set of resources each process can

9

access di�ers from process to process [14, 36], have been discussed. Re-
cently, group mutual exclusion [39] has been proposed. There are mul-
tiple groups of processes. The processes in the same group can enter
CS at the same time. For group mutual exclusion, shared memory sys-
tem algorithm [7, 15], a token-based algorithm [4], and a quorum-based
algorithm [40] have been proposed. We found problem of [40] and such
problem leads a poor e�ciency. This thesis proposes a new algorithm
which avoids this problem.

2.2.2 Quorum-based Secure Protocol
A quorum system is a collection of sets (quorums) every two of which
have a nonempty intersection. Quorum systems have been used in the
study of distributed control and management problems such as mutual
exclusion [18, 28], data replication protocols [5, 11], name servers [19]
and selective dissemination of information [41].

Herlihy and Tygar [8] have suggested a scheme to protect quorum
based replicated databases. However, their scheme has several draw-
backs: access is controlled over the whole database and not at record
granularity, there is no way to revoke a user's access once it is obtained,
and the scheme uses a k-of-n threshold access structure, which implies
a large communication overhead and high load since the threshold must
be k > n=2 for the structure to be a quorum system.

Reiter and Birman [29] considered a database protection scheme
against servers being corrupted. In their scheme it is the responsibility
of the users to verify that the data sent by the servers is genuine. They
rely on a k-of-n threshold scheme heavily, and do not separate between
the data servers and the access servers.

Beaver and Wool [3] have suggested a secure multi-party protocol
which respects any arbitrary quorum system. Also, they showed several

10

multi-party protocols which are based on speci�c quorum systems.
This proposed schemes use quorum system under secure protocol

based on cryptographic primitives. Our algorithm adapt security to
quorum based distributed algorithm.

11

III. Proposed Scheme

3.1 GroupMutual Exclusion Algorithm with-
out Unnecessary Blocking

The distributed system consists of processes and channels. The pro-
cesses are asynchronous and fail by fail-stop model. The process failure
can be detected. The communication between processes are done by
message passing through FIFO(First-In, First-Out), asynchronous, and
reliable(no message loss occurs) channels.

This thesis assumes that the processes are divided into requesting
processes and access server processes for the simplicity of discussion.
The access server processes manages mutual exclusion and the request-
ing processes just make requests to enter CS. In actual systems, one
process can act as a access server process and a requesting process at
the same time. This thesis' discussion can also be applied to such sys-
tems. Let us denote U = fq1; q2; :::; qng be the set of access server
processes and V = fp1; p2; :::; pmg be the set of requesting processes.

C� = fg1; g2; :::; glg is the set of groups, gi � V and gi 6= � for every
i(1 � i � l). The processes in gi can use the shared resource at the
same time. Each process belongs to at least one group in C� . The set
of groups pi belongs to is called as pi's group set and denoted as G(pi).
That is, G(pi) = fg 2 C� jpi 2 gg. Note that G(pi) 6= �.

According to the example of CD jukebox, the following is assumed
about group selection, which is not explicitly stated but written in the
algorithm in [40]. When process pi enters CS, it selects one group
g 2 G(pi), which corresponds to the selection of CD. This group is called

12

as pi's group selection and denoted as gs(pi). Though this assumption
is not explicitly stated, the de�nition of group mutual exclusion is as
follows:

De�nition 3.1.1 If two conditions are satis�ed, we call it Group Mutual
Exclusion.

mutual exclusion Processes pi and pj cannot be in CS at the same
time if gs(pi) 6= gs(pj).

starvation freedom Every process which wants to enter CS must be
eventually able to do so.

3.1.1 Problem in Former Algorithm
This section shows the outline of algorithm in [40] and its unnecessary
blocking. M-group quorum system C = fC1; ::; Cmg is de�ned as fol-
lows. Ci is set of quorums, where each quorum Q 2 Ci(Q � U;Q 6= �)
satis�es the following two properties.

Intersection Property 8 1 � i; j � m; i 6= j; 8 Q1 2 Ci; 8 Q2 2 Cj
7! Q1T Q2 6= �

Minimality 81 � i � m; 8 Q1; Q2 2 Ci; Q1 6= Q2 7! Q1 * Q2

Each access server process has one vote to send \Ok". It can send
\Ok" to requesting processes in at most one group at the same time.
The intersection property means that for any two requesting processes
in di�erent groups, the quorums intersects, thus these two processes
cannot enter CS at the same time, because of the above access server
processes' rule of sending \Ok". The outline of their mutual exclusion
algorithm is as follows:

13

When requesting process p wants to enter CS
1. p selects one group gi from G(p), selects one quorum Q from Ci,

and sends \Request(gi)" to every member of Q.
2. When p receives \Ok" from every member in Q, p enters CS.
When access server process q receives \Request(gi)" from p
q sends \Ok" to p if
1. q sends no \Ok" to any other processes, or
2. q has sent \Ok" to a request p0 such that gs(p0) = gi.
The actual algorithm is more complicated to avoid starvation and

achieve e�ciency. The above algorithm has problem which leads unnec-
essary blocking. Consider the following example. p1,whose group set
G(p1) = fg1g sends request and receives \Ok" from every member in
Q 2 C1. p2, whose group set G(p2) = fg1; g2g, then appears. The algo-
rithm requires p2 to select one group from G(p2) before making request.
Suppose that p2 selects g2 as gs(p2). Then, p2 cannot enter CS because
gs(p2) 6= g1. This blocking is unnecessary because p2 could enter CS if
p2 would set g1 as gs(p2).

This unnecessary blocking comes from the condition that p2 must set
gs(p2) when there is no information about the other requests. If p2 can
set gs(p2) after current status is obtained (for example, some process
whose group selection is g1 is currently entering CS), p2 can set a better
group as gs(p2) and this type of unnecessary blocking is avoided.

In the next section, we show the outline of our algorithm to avoid
this unnecessary blocking.

3.1.2 Avoiding unnecessary blocking
In order to avoid bad group selection, each requesting process must be
able to set its group selection after it receives some replies from access

14

server processes. We introduce two-phase mutual exclusion algorithm.
It was �rstly used in [14] to solve the generalized mutual exclusion
problem and then improved in [35]. In the generalized mutual exclu-
sion problem, there are multiple shared resources and each process may
have di�erent accessible resources. In the two-phase algorithm, each
requesting process makes its decision after it receives \Ok" from every
process in a quorum. It then informs its decision to the processes in
the quorum. In the generalized mutual exclusion, the decision is which
resource it uses. In the group mutual exclusion, the decision is which
group it selects as gs(p).

Firstly, requesting process p sends \Request" to the processes in q
quorum Q before it sets gs(p). Each process q in Q, which received
the request, replies \Ok" or the information that q has sent \Ok" to
another process. Using the replies, p enters CS if (1) every process in
Q replies \Ok" or (2) some process in Q reports that some process p0
in entering CS and gs(p0) 2 G(p).

In case (1), p can set any group in G(p) as gs(p), since there is no
other processes which blocks p. p informs gs(p) to the processes in Q.
In case (2), p selects gs(p) = gs(p0) and enters CS. By the rule (2),
unnecessary blocking is avoided.

3.1.3 New Group Mutual Exclusion Algorithm
This subsection shows our new group mutual exclusion algorithm. We
provide overall algorithm in Appendix.

Algorithm for requesting process
The outline of procedure for requesting process is as follows:

1. When p whose group set isG(p) wants to enter CS, p selects a quorum
Q 2 C and sends \Request(G)" to every process in Q.

15

2. There are two cases to enter CS.
(a) When p receives \Ok" from every process in Q, p arbitrary
selects one group g 2 G(p) as gs(p), sends \Lock(g)" to every
process in Q, and enters CS.
(b) When p receives \Enter(g)" from some process in Q, p sets g
as gs(p) enters CS.

3. When exiting from CS, execute the following:
(a) (entered CS by \Ok") p sends \Release" to every process in
Q. When p receives \Enter(g)" from every process in Q, it sends
\Over" to every process in Q
(b) (entered CS by \Enter") p sends \NoNeed" to the process
\Enter" is arrived.

The exiting procedure when entered by \Ok" is a little complicated.
When \Release" is arrived at a access server process, the process must
not send \Ok" to a waiting request immediately. Let us consider the
following example. p1, whose group set G(p1) = fg1g, uses Q1 = fq1; q2g
and sends \Request". q1 and q2 send \Ok" to p1 and p1 enters CS. After
that, p2 sends \Request" to Q2 = fq2; q3g and G(p2) = fg2g(g2 6= g1). q3
sends \Ok" to p2. However, since q2 has sent \Ok" to p1, p2 receives no
reply from q2. Then, p3, whose group set G(p3) = fg1g, sends \Request"
to Q3 = fq1; q3g. q1 replies \Enter(g1)" to p3, since it has sent \Ok"
to a request whose group selection is g1. Thus, p3 can enter CS. Now,
suppose that p1 exits from CS. p1 sends \Release" to q1 and q2. If q2
sends \Ok" to p2 immediately, p2 enters CS, although p3 is currently
entering CS. Thus, group mutual exclusion is not achieved. Therefore,
each process must not send \Ok" to a waiting request until exiting of
every process which entered CS by receiving \Enter".

Two-phase release procedure is used to achieve it. When \Release"
is arrived, each process sends no more \Enter" to any other requests,

16

waits for exiting of every process to which \Enter" is sent, and then
replies \Finished". When the requesting process p receives \Finished"
from every process in Q, it means all request which entered CS by
receiving \Enter" has exited. Then p sends \Over" to every member
of Q. When \Over" is arrived, each access server process sends \Ok"
to the highest priority waiting request.

Algorithm for access server process
The outline of procedure for access server process is thus as follows:
Variable status stores the current status of the process. Status =
vacant means there is no request, waitlock means that it has sent \Ok"
to some process but \Lock" is not arrived, and locked means \Lock"
is received. Variable group stores current group when some process is
entering CS.

In order to avoid starvation, each request has Lamport's logical clock
[16]. A request with smaller logical clock has a higher priority. Thus the
oldest request will eventually be the highest priority and it can enter
CS. The procedure to update the logical clock and assign the logical
clock to each request is omitted in this procedure for simplicity.

The following is outline of the procedure for access server processes.

1. When q receives Request(G) from p, q inserts it to the queue Que.
(a) If status = vacant, q sends \Ok" to p.
(b) If status = locked and group 2 G, q sends \Enter(group)" to
p.

2. When q receives \Lock(g)" from p, q sets group = g and status =
locked. q then sends \Enter(g)" to every waiting request in Que
whose group set G satis�es g 2 G.

17

3. When q receives \Release", q stops further sending of \Enter" (by
changing status). And if there is no process to which \Enter" is
sent, q replies \Finished".

4. When q receives \NoNeed" from p, q sends \Finished" to the
process \Release" is arrived, if there is currently no process q has
sent \Enter" or \Ok".

5. When q receives \Over", q sets status = vacant and tries to send
\Ok" to highest priority request in Que.

In order to avoid deadlock, an additional mechanism is necessary.
Assume that the priority of p2 is higher than that of p1. At q1, \Request"
arrives in the order of p1, p2 and at q2, arrives in the order of p2,p1. In
this a case, the \Ok" sent from q1 to p1 must be cancelled to avoid
deadlock. The cancel procedure is just the same as the one for simple
mutual exclusion in [32].

1. When process q receives \Request(G)" from p2, if q has sent \Ok"
to p1 but \Lock" has not been arrived, and p2's priority is higher
than that of p1, then q sends \Cancel" to p1.

2. When p1 receives \Cancel" from q, if it has not entered CS, it
replies \Cancelled" to q (and waits for next arrival of \Ok").

3. When q receives \Cancelled", q sends \Ok" to the highest priority
request in Que.

The meaning of variables used in two Algorithm are as follows: As
for each requesting process, Rstatus stores the status of the request.
RStatus = wait means it is waiting for \Ok" or \Enter". In means
that it is in the CS, out means that it has exited from CS. The quorum
currently using is stored in Q. The set of processes from which \Ok" has

18

been arrived (when making a request) or \Finished" has been arrived
(when releasing) is stored in K. Thus, if K = Q, the requesting pro-
cess can enter CS (when making a request) or can send \Over" (when
releasing).

Next, the meaning of variables for each access server process are
described. Que is the priority queue of requests. Each entry Que[i] has
entry \Que[i]:pr" (the requesting process), Que[i]:G(the set of groups),
and Que[i]:status (status of the request). Que[i]:status = wait when it
is blocked by a higher priority request. waitlock when \Ok" is sent and
waiting for \Lock" from the process. enter when the process is entering
CS. releasing when the process is releasing. waitcancel when \Cancel"
is sent and waiting for the reply.

Each access server process sends \Ok" to at most one request at any
time. The requesting process to which \Ok" is sent is stored in variable
sentok. Variable status stores Que[i]:status of the request of sentok.
When there is no such request, status = vacant. Variable using is the
set of processes currently entering CS.

Note that when p exits from CS and makes another request, p might
receive replies to the older request. p can ignore such old replies easily
if the logical clock of each request is attached to every reply message.
The procedure to ignore such replies is omitted in Algo.1 in Appendix
for simplicity.

3.1.4 Correctness of the Algorithm
This subsection shows the correctness of the algorithm. Firstly, it is
shown that group mutual exclusion is achieved.

Theorem 3.1.1 p1 and p2 never enter CS at the same time by our
Algo.1 if gs(p1) 6= gs(p2).

19

Proof: Suppose that the above situation occurs. Let g1 = gs(p1),
g2 = gs(p2), and Q1(Q2) be the quorum p1(p2) uses. p1(and p2) enter
CS by (1) receiving \Ok" from every member of Q1(Q2) or (2) receiving
\Enter" from some process in Q1(Q2). In case (2), there is another
process p01(and p02) whose group selection is g1(and g2) and p01(and p02)
enters CS before p1(and p2). p01(and p02) receives \Ok" from every mem-
ber of some quorum, say Q01(and Q02). Though p01(and p02) might have
exited from CS before p1(and p2) exits from CS, the processes in Q01(and
Q02) cannot send \Ok" to any other process until p1 (and p2) exits from
CS and sends \NoNeed".

In case(1), let p01 = p1 (p02=p2) and Q01= Q1(Q02= Q2).
p01 6= p02 holds in any cases since gs(p01) 6= gs(p02).
Now, every process in Q01(Q02) has sent \Ok" to p01(p02) at the same

time. Since Q01 \ Q02 6= � and each process sends \Ok" to at most one
process at the same time, this situation cannot occur. �

Theorem 3.1.2 No starvation occurs by the algorithm in Algo.1

Proof: Assume that starvation occurs. Let p1 be the highest prior-
ity request which cannot enter CS forever. Let Q1 be the quorum p1
selects. From the assumption, p1 is the highest priority request that is
not entering CS from some time t. Let t0 be the time when \Request"
from p1 arrives at every member of Q1. Let us consider the system
state after time T = max(t; t0). Each process q 2 Q1 must try to send
\Ok" to p1 because p1 is the highest priority. If q has not sent \Ok"
to any process, obviously it sends \Ok" to p1. If q has sent \Ok" to
another process, say p2, q sends \Cancel" p2. If p2 has not entered CS,
it replies \Cancelled" and thus, q will be able to send \Ok" to p1. If p2
has entered CS before arrival of \Cancel", p2 eventually exits from CS.
After that, q does not send \Enter" to any other requests. In addition,

20

every process which entered CS by receiving \Enter" from q (before
exiting of p2) also eventually exits from CS. Thus, q eventually sends
\Finished" to p2 and thus, p2 eventually sends \Over" to q. Therefore,
q will be able to send \Ok" to p1 and no starvation occurs. �

3.2 Toward Secure Group Mutual Exclu-
sion Algorithm

Through the previous researches, we have designed e�cient group mu-
tual exclusion algorithm without unnecessary blocking. As already ex-
plained, researches on distributed algorithm don't focus on security as-
pects because their goal is to avoid conict between each process and
to keep e�ciency at the same time. Through studying on both secu-
rity and distributed algorithm area, we have identi�ed the relationship
between them. Two areas both deal with fault-tolerance of each party.

Usually, many distributed systems manage some forms of data, such
as �les or databases. The performance and fault-tolerance of such sys-
tems may be enhanced if the repositories for the data are physically
distributed. Nevertheless, distribution makes security more di�cult,
since it may be di�cult to ensure that each repository is physically
secure. Approach on designing secure distributed algorithm based on
group mutual exclusion algorithm can be valuable. We specify secure
distributed algorithm by using both group mutual exclusion algorithm
and secret sharing scheme.

3.2.1 Requirements
We formulate the requirements in order to satisfy secure distributed
algorithm. Until now, there are no clear requirements de�ned for secure

21

distributed algorithm since our challenge is performed for the �rst time.
We classify security and general requirement as follows:

General Requirement
� Group Mutual Exclusion At any given time, no two processes
of di�erent groups are in CS simultaneously.

� Deadlock freeness Non-existence of blocking states, i.e.states
without successor, should be guaranteed.

� Starvation-freeness A process wishing to enter CS will eventu-
ally succeed.

� Consistency At least one correct process should know whether
other request is legitimate or not.

Security Requirement
� Privacy Only authorized user can see secret information through
keeping information secret.

� Authentication Identity of each user should be checked.

� Unforgeability Only authorized user can issue valid secret key.

� Availability Fault-tolerance. Even though some fault happen,
service for users should be kept continuously.

3.2.2 Our Model and Assumptions
We can consider the following general scenario for secure access control
to a database. The photography company has a large digitized pictures
database of various parts of the local area. This database is updated
periodically, as new photographs are added. Company customers buy

22

the license to access a set of photographs, say of some geographic area.
When the license expires, the customer is not allowed access any more.
Furthermore, the company would like to be able to quickly revoke the
customers privileges at any time due to unauthorized transfer of in-
formation. The company needs a distributed protocol to enforce this
permission policy. The protocol should run using a widespread col-
lection of access servers, which may be completely separate from the
actual data servers. A basic part of this protocol is just maintaining a
consistent view of the permission status of every customer, which is a
classical question concerning replicated data. Note that servers may be
unavailable due to crashes or communication failures, so the protocol
needs to overcome this and allow high availability of the service. The
information in the database is highly sensitive so it must be protected.
The protection should be against cheating users, rather than against
dishonest access server personnel. In this example, through using se-
cret sharing scheme, we can make safe protocol for access control. In
distributed network, many users have permission of data they want to
listen but they can not access data at the same time since shared data
can be used one by one. Mutual exclusion guarantees an exclusive ac-
cess to a common resource among a set of competing processes. So, it is
worth to considering both mutual exclusion for consistency of competing
processes and security of each process at the same time.

Attack.
Before we explain our model, we must consider all the possible attacks.
In group mutual exclusion algorithm, processes who want same data
can access to �le, even though process is a malicious actor. In other
words, he can eavesdrop or modify secret data easily without any in-
terruption mechanism if he just wants to access the same data. The
aim of the distributed algorithm is to improve e�ciency of algorithm

23

with guaranteeing deadlock-freeness and starvation-freeness. However,
for the consideration of practical use, the proper security of algorithm
should be guaranteed.

We de�ne potential attackers in our model in order to help practi-
cal use of distributed algorithm. Potential attackers can be classi�ed
two groups : general attacker who gets data without any action due
to failure of processes and cryptographic attacker who eavesdrops and
modi�es data through corrupted server. Before proceeding any further,
we need to clarify the scope of fault-tolerance both in distributed algo-
rithm and in security area.

De�nition 3.2.1 Fault-tolerance in distributed algorithm means that
even though crashes or communication failures happen, service can be
kept safely since inuence of faults can be localized. Fault-tolerance of
security aspect means that attacker can not eavesdrop and modify data
using corrupted server.

When communication failures happen, a legitimate user can get con-
tinuous service from servers of correct one quorum at least using in-
tersection property of quorum system against general attacker. Also,
cryptographic attacker can not get partial secret value from corrupted
server. Our algorithm is focused on providing strong fault-tolerance
against both general attacker and cryptographic attacker.

Assumptions
Our scheme can be regarded as an improvement of the our proposed
scheme. We assume two elements. First, we assume that there are no
coordination between the servers in distributed system. Each server
replies to a request based only on information it holds locally. Second,
each user has a secure and authenticated channel of communication

24

with the servers. So, Alice cannot masquerade as Bob and obtain access
permission by this.

We make use of three components in our whole algorithm. There are
access servers(AS) who grant access, data server(DS) that maintains
database and users who want to access data. Since we use SSS, recon-
struction function, hA, for secret information and polynomial function,Q

i(SK; r) are necessary. Q is denoted as requested quorum set. D(x)
is denoted as decrypted function. We will stands SK is a secret key for
accessing DB for the user. We will use X as requested data item from
user.

3.2.3 Modi�ed Algorithm
Registration Phase
To get the permission for accessing data, registration phase is necessary.
Customers should buy the e-ticket to access a set of music data. So,
customers go to registration o�ce and buy the e-ticket. The o�ce for
access server gives the e-ticket to customer. After registration, each
access server has customers' list which store their ID, e-ticket period,
and permission of data X. When customers request to access data,
access server checks their list and give authorization to them.

Commitment Phase
The algorithm is shown in Figure 3.1.We describe the whole phase in
brief. User who wants to access data requests to AS. AS check whether
User is authorized person or not through looking up customers' list
directory. After that, AS generate SK; r and calculate si using SSS.
AS send \Ok(si)" or \Enter(g; si)" message to User. After collecting
all si from each AS in a set of quorum, User can get key SK. User
send \Lock" message to each AS to inform that User will access data.

25

DS User AS
\Request" -

�generate si, \Ok(si)"
\Lock" -

Access DS and Decrypt�
-\Release"

Figure 3.1: Sketch of our Algorithm

User can decrypt an encrypted data and show data content. Also, User
who wants to access the same data can access data.

Proposed Algorithm
Our algorithm consists of two parts. AccessServer is for the behavior of
AS that as a quorum member. RequestingProcess is for the behavior
of a user that acts as a group member. We modi�ed our algorithm in
order to adapt secret sharing schemes for access structure to our group
mutual exclusion algorithm.

Modi�ed RequestingProcess Procedure
2var Rstatus = wait : status of request;

p : request process; q : server process;
Q = � : set of process within one quorum;
K : set of process; =� reply is received �=
G : set of group; =� current group set �=
X : data part that user wants;
T : set of partial secret value;
SK : secret key value;

26

2When p (group set is G) wants to enter CS
begin

Rstatus := wait;
Select arbitrary Q from coterie;
K := �; T := �;
send \Request(G;X)" to all q 2 Q;

end; =�end of request initiation�=

2At arrival of \Ok(si)" from q
begin

if Rstatus = wait then begin
K := K [fqg; T := T [fsig =�collect si from Q �=
if K = Q then begin

select arbitrary g 2 G;
send \Lock(g)" to all q 2 Q;
SK = hA(fsigi2A);
Rstatus := in;
y(x) = D(x)� SK;
Rstatus := out;
send \Release" to all q 2 Q;
K := �;

end =� end of K = Q �=
end =� end of Rstatus = wait �=

end =� end of arrival \Ok(si)" �=

The outline of modi�ed requesting processes as important procedure
part is as follows:
1. When user p whose group set is G(p) wants to enter CS, p selects

a quorum Q 2 C and sends \Request(G;X)" to every process in
Q.

27

2. There are two cases to enter CS.
(a) When user p receives \Ok(si)" from every process in Q, p
arbitrary selects one group g 2 G(p) as gs(p) and get secret key
using reconstruction function, SK = hA(fsigi2A). After that,
he sends \Lock(g)" to every process in Q, and enters CS with the
key he can decrypt data, y(x) = D(x)� SK.
(b) When p receives \Enter(g; si)" from some process in Q, he
waits until he receives \Ok(si)" from other processes in Q. After
that, p sets g as gs(p). Then get secret key using reconstruction
function, SK = hA(fsigi2A). After that, he sends \Lock(g)" to
every process in Q, and enters CS with the key he can decrypt
data, y(x) = D(x)� SK.

Modi�ed AccessServer Procedure
2var status = vacant :status;

group : current group;
Que = null :priority queue of requests;
waiting = null :process;
sentok = null :process;
using = null :set of processes;

2At arrival of \Request(G;X)" from p
begin
=�check authorization�=
if (p;X) 2 Registration List then begin
Insert \Request(G;X)" to Que;
=�assume Que[i] be the position�=
Que[i]:status := wait;
Que[i]:pr := p ; Que[i]:G := G;

28

if status = vacant then begin
=� generate SK with encryption random function Key�(X) �=
SK = Key�(X);
=� generate pseudo random string with a private seed �=
r = R(X � p);
=� compute si using the SSS�=
si =Qi(SK; r);
send \Ok(si)" to p ;
sentok := p;
Que[i]:status := waitlock;
status := waitlock;

end =�end of status = vacant �=
end =�end of (p;X) 2 Registration List �=

end =�end of arrival \Request(G;X)" �=

The outline of modi�ed access server processes as important proce-
dure part is as follows:
1. When q receives \Request(G;X)" from p, q inserts it to the queue

Que. Using identity of p and X, it checks the authorization. If
the request is from an authorized user
(a) If status = vacant, AS doesn't give the permission to other
processes, and the server q generates SK = Key�(X) and a
pseudo-random string r = R(X�p). Server qi then computes its
share of the key, si =Qi(SK; r) using the SSS, and send \Ok(si)"
to p.
(b) If status = locked and group 2 G, q sends \Enter(group; si)"
to p.

2. When q receives \Lock(g)"from p, q sends \Enter(g; si)" to every
waiting request in Que whose group set G satis�es g 2 G.

29

3.2.4 Comparison
Our Algo.1 and Joung [40] proposed distributed algorithm satisfying
requirement of group mutual exclusion. However, two algorithms focus
on the consistency with competing processes which are the issue of dis-
tributed computing area. Protocol by presented Naor and Wool [24] also
uses quorum system for fault-tolerance of each server. However, they
consider only the security of the distributed protocol. We presented
an algorithm keeping both the property of group mutual exclusion and
secure algorithm satisfying con�dentiality and authentication.

Security Comparison
� Group mutual exclusion By theorem 3.1.1, group mutual exclu-
sion is satis�ed. In other words, customers who request di�erent
data cannot access data, but customers that have requested the
same data can. Therefore, at any given time, no two customers of
di�erent groups can be in CS at the same time.

� Deadlock-freeness By theorem 3.1.1, each customer who wants
to access di�erent data does not be waiting for other data perma-
nently.

� Starvation-freeness By theorem 3.1.2,the customers who want
access di�erent data are able to access data eventually.

� Consistency The intersection property of a quorum system en-
sures that in any set which can collectively grant the permission
to the customer, at least one server is informed that the request is
not legitimate. So, the consistency is guaranteed by the fact that
obtaining replies from less than a quorum of servers does not leak
information to the user.

30

Table 3.1: Comparison of Algorithms
[40] [24] Alg1. Alg2.

Mutual exclusion O X O O
Deadlock-freeness O X O O
Starvation-freeness O X O O
Consistency O O O O
Privacy X O X O
Authentication X O X O
Unforgeability X O X O
Availability O O O O

� Privacy Through SSS and intersection property, even though
cryptographic attacker gets the permission from the corrupted
server, he cannot get partial information.

� Authentication After customer grants by a quorum of servers
using authorization check, he can access data.

� Unforgeability Using SSS, customer can obtain partial informa-
tion from k of the n servers. That means any malicious actor can
not forge a complete secret information by corrupted servers fewer
than k servers.

� Availability Due to fault-tolerance property of our algorithm,
service for users can be kept continuously.

Performance Comparison
Table 3.2 shows the performance comparison of main communication
overhead of algorithms. Let jQj be the size of the smallest quorum in a
coterie.

31

Table 3.2: Communication Comparison
Communication

[40] 8jQj
Our Algo1. 9jQj
Our Algo2. 9jQj

The no-exclusion case is that there is only one request at any time.
The case is considered to the best case in the discussion of simple mutual
exclusion.

1. Process p sends \Request(G;X)" to every member of Q.

2. p receives \Ok(si)" from every member of Q.

3. p sends \Lock(g)" to every member of Q and enters CS.

4. p exits from CS and sends \Release" to every member of Q.

5. p receives \Finished" from every member of Q.

6. p sends \Over" to every member of Q.

In case of, the total number of messages is 6jQj.
Next, consider the worst case, when the highest priority request

arrives later.

1. p sends \Request(G;X)" to every member of Q.

2. Each process qi 2 Q has sent \Ok(si)" to another process pi,
whose priority is lower than that of p. qi sends \Cancel" to pi.

3. pi sends \Cancelled" to qi.

4. qi receives \Cancelled" and sends \Ok(si)" to p.

32

5. p receives "Ok" from every member of Q. Thus, it sends \Lock"
to every member of Q and enters CS.

6. p exits from CS and sends \Release" to every member of Q.

7. p receives \Finished" from every member of Q.

8. p sends \Over" to every member of Q.

9. qi receives \Over" and sends \Ok" again to the process to which
\Cancel" is sent. (The messages for pi to enter and exit from CS
is counted as the messages for pi)

The total number of messages per request is 9jQj. The worst case
number of messages is larger than 8jQj in [40]. Additional cryptographic
technique does not a�ect the total number of messages. So, the com-
munication complexity of our algorithm is 9jQj.

33

IV. Conclusion

Throughout this thesis, we have studied on secure group mutual ex-
clusion algorithm design in the distributed system environment. For
the concrete design, we reviewed previous related works and pointed
out their problems. And then we have suggested the improved algo-
rithm without unnecessary blocking. Also, we have proposed a secure
algorithm based on our proposed distributed algorithm.

Firstly, we have presented new quorum based distributed group mu-
tual exclusion algorithm. The Joung's quorum-based algorithm has a
case when two processes cannot enter critical section at the same time
even though they can do so. We proposed a new algorithm which pre-
vents unnecessary blocking and show its correctness proof.

Secondly, we have proposed a secure quorum-based distributed al-
gorithm. Generally, researches on distributed algorithm don't deal with
security aspects. However, challenge on designing secure algorithm can
be valuable. So, we proposed secure distributed algorithm by using both
group mutual exclusion algorithm and secret sharing scheme. Also, our
algorithm guarantees the requirements of mutual exclusion algorithm
but also users' privacy and authentication.

As further works, real estimation from implementation is meaningful
to consolidate our e�ciency. Also, it is necessary to prove that our
quorum system is SDR or not. In the context of designing decentralized
economic mechanisms such as distributed algorithm, it turned out to
be important to know when one can construct an SDR for a collection
of sets that cover the parameter space characterizing a �nite number
of economic agents. We already introduced m group quorum system
that satis�ed non-dominated, non empty, and intersection property of

34

each element. Such property would be used for proof of SDR. And it is
valuable to do research more secure practical distributed algorithm not
just pure distributed algorithm without security.

Appendix: Algo1. Overall Program

Program RequestingProcess(p:process)
2var Rstatus = wait : status of request;

Q = � : set of process; =� quorum �=;
K : set of process; =� reply is received �=
G : set of group; =� current group set �=

2When p (group set is G) wants to enter CS
begin

Rstatus := wait;
Select arbitrary Q from coterie;
K := �;
send \Request(G)" to all q 2 Q;

end; =�end of request initiation�=

2At arrival of \Ok" from q
begin

if Rstatus = wait then begin

K := K [fqg;
if K = Q then begin

select arbitrary g 2 G;
send \Lock(g)" to all q 2 Q;
Rstatus := in;
...=� in the CS �=
Rstatus := out;

35

send \Release" to all q 2 Q;
K := �; =� waits for \Finished" �=

end =� end of K = Q �=
end =� end of Rstatus = wait �=

end =� end of arrival \Ok" �=

2At arrival of \Enter(g)" from q
begin

if Rstatus = wait then begin

send \NoNeed" to all r 2 Q� fqg;
Rstatus := in;
...=� in the CS �=
Rstatus := out;
send \NoNeed" to q;

end =� end of Rstatus = wait �=
end =� end of arrival \Enter" �=

2At arrival of \Cancel" from q
begin

if Rstatus = wait then begin

K := K � fqg;
send \Cancelled" to q;

end =� end of Rstatus = wait �=
end =� end of arrival \Cancel" �=

2At arrival of \Finished" from q
begin

K := K [fqg;
if K = Q then send \Over" to all q 2 Q;

end =� end of arrival \Finished" �=

36

Program AccessServer Procedure(q:process)
2var status = vacant :status;

group : group; =� current group �=
Que = null :priority queue of requests;
waiting = null :process; =� waits \Lock" � =
sentok = null :process; =� \Ok" is sent �=
using = null :set of processes;

2At arrival of \Request(G)" from p
begin

Insert the request to Que;
=�assume Que[i] be the position�=
Que[i]:status := wait;
Que[i]:pr := p ; Que[i]:G := G;
if status = vacant then begin

send \Ok" to p ;
sentok := p;
Que[i]:status := waitlock;
status := waitlock;

end =�end of status = vacant �=
else if status = locked then begin

if group 2 G and Que[1]:status = enter
=� Que[1] :highest priority request �=
then begin

send \Enter(group)" to p;
using := using + fpg;
Que[i]:status := enter;

37

end

end =� end of locked �=
else if status = waitlock then begin
if Que[i] is highest priority then begin

send \Cancel" to process sentok;
=� assume Que[k]:pr = sentok �=
Que[k]:status := waitcancel;
status := waitcancel;

end

end =� end of waitlock �=
end =�end of \Request" arrival �=

2At arrival of \Lock(g)" from p(p = Que[i]:pr)
begin

using := fpg;
Que[i]:status := enter;
status := locked;
group := g;
if Que[1]:status = enter or g 2 Que[1]:G

then begin = � Que[1] can enter CS �=
for every request Que[k](k 6= i) such that
g 2 Que[k]:G do begin
send \Enter(g)" to Que[k]:pr;
Que[k]:status := enter;
using := using + fQue[k]:prg;

end; =� end of do �=
end;

end; =�end of arrival \Lock" �=

2At arrival of \Release" from p(p = Que[i]:pr)

38

begin

status := releasing;
remove entry Que[i];
using := using � fpg;
if using = � then send \Finished" to p;

end;

2At arrival of \NoNeed" from p(p = Que[i]:pr)
begin

remove entry Que[i];
if p = sentok then NewChance
else if p 2 using then begin

using := using � fpg;
if using = � then send \Finished" to sentok;

end

end;

2At arrival of \Cancelled" from p(p = Que[i]:pr)
begin

Que[i]:status := wait;
SendOk;

end;

2At arrival of \Over" from p(p = Que[i]:pr)
SendOk;

2procedure SendOk; =� permission released. �=
begin

if Que is not empty then begin

= � Que[1] :highest priority request �=

39

Send \Ok" to Que[1]:pr;
sentok := Que[1]:pr;
Que[1]:status := waitlock;
status := waitlock;

end =� end of Que is not empty �=
else status ; = vacant;

end;

40

îß����ô�Ç ÕªÒ�̈ �©� ñC�]j ·ú��¦o�7£§\� �'aô�Ç ���½̈

~ÃÌF�+À:

(��ÉÓ'� l�Õüt_� µ1Ï²ú�õ� ���'��Å	 �Ð/åL_� SX�íß��Ér ���:�x&h���� ×�æ�©�|9�×�æ

&h� W1àÔ0>ß¼ �'ao�8̈��â
\�"f ì�ríß� (��ÉÓh�A 8̈��â
Ü¼�Ð ����o\�¦ s�=åJ�¦ e��

��. ì�ríß� r�Û¼%7��Ér áÔ�Ð[j"f�� Bj�̧o� !sq, !QÛ¼, áÔ�2;'�1pxõ� °ú �Ér ú́§
�Ér��{9�_�o��èÛ¼\�¦/BNÄ»���HáÔ�Ð[jÛ¼|9�½+Ë[þt�Ð ½̈$í
�)a��.ì�ríß�r�Û¼
%7�_� ì�ríß�·ú��¦o�7£§�Ér ú́§�Ér ì�ríß��)a (��ÉÓ'�[þts� #Qb�G>� ���� a�?§4�&h�Ü¼

�Ð ���\O��̀¦ Ãº'��½+É Ãº e����Ht�\�¦ 3lq³ð�Ð ��¦ e����. �&³�>r���H ú́§�Ér ì�r
íß�·ú��¦o�7£§�Ér o��èÛ¼\�¦ /BNÄ»���H áÔ�Ð[jÛ¼çß�_� "f�Ð Ø�æ[�ts� s�ÀÒ#Q

t���H�©� ñC�]jë�H]j\�¦K�������HX<�í&h��̀¦ ú́�ÆÒ�¦e����.:£¤y�þj��H\���H
ÕªÒ�̈éß�0A_��©� ñC�]jë�H]j_����½̈�� s�ÀÒ#Qt��¦e����.ÕªÒ�̈�©� ñC�]j
��H���_�o��èÛ¼\�¦°ú �ÉrÕªÒ�̈?/_� �̧��HáÔ�Ð[jÛ¼\�_�K�"f/BNÄ»÷&�̧

2�¤ ½+É Ãº e����H �©� ñC�]j_� {9�ìøÍ�os���. �t�ëß�, ���Ér ÕªÒ�̈_� áÔ�Ð[jÛ¼
[þt�Ér�©� ñC���&h����~½ÓZO�Ü¼�Ð���_�o��èÛ¼\�¦��6 x.��õA�)a'¹כ2�¤̧��
7£¤, ���Ér ÕªÒ�̈_� áÔ�Ð[jÛ¼[þt�Ér s�p� e��>�%ò
%i�\� e����H áÔ�Ð[jÛ¼�� Õª
o��èÛ¼\� @/ô�Ç ��6 xs� =åQèß� Êê e��>�%ò
%i�\� [þt#Q°ú� Ãº e����. ÕªÒ�̈�©� ñ
C�]j\�¦ :�xK� ò́Ö�¦$í
�̀¦ 7£x��r�~�́ Ãº e����H �©�&h�s� e����.
ì�ríß��)a 8̈��â
\�"f áÔ�Ð[jÛ¼çß�_� Ø�æ[�t�̀¦ }���¦ ò́Ö�¦&h�Ü¼�Ð (��ÉÓh�As�

��0px��̧2�¤���H�¹כs�×�æ	כ���,l��:r&h�������'��Å	_�>h~½Ó$í
õ�ì�ríß��)a
8̈��â
�Ér ���5Åx÷&��H &ñ
�Ð\� @/ô�Ç îß����$í
\� 	�H 2[���$í
�̀¦ �̧Ø�¦ô�Ç��. ����
"f,ì�ríß�·ú��¦o�7£§_�[O�>�r��©� ñC�]j\�¦:�xô�ÇáÔ�Ð[jÛ¼çß�_� ò́Ö�¦$í
õ�
�<Êa� îß����$í
�̀¦ �Ð�©����H ��Ér	כ ��u� e����H {9�s���.
s��Qô�Ç 3lq&h��̀¦ ²ú�$í
�l� 0Aô�Ç ~½ÓZO��:rÜ¼�Ð �:r �7Hë�H\�"f��H, Äº��� l�

�>r_�]jîß��)aÕªÒ�̈�©� ñC�]j·ú��¦o�7£§_�ë�H]j&h��̀¦�è>h��¦,Õª���ë�H]j
&h��̀¦ K�������H Dh�Ðî�r ·ú��¦o�7£§�̀¦]jîß�ô�Ç��. ¿º���P:�Ð,]jîß��)a ·ú��¦

41

o�7£§�̀¦l�ìøÍÜ¼�Ð�#��Ðîß�$í
�̀¦�¦�9ô�Çîß����ô�Ç3$!3�l�ìøÍ_�ì�ríß�·ú��¦

o�7£§�̀¦]jîß�ô�Ç��.]jîß�÷&��H ·ú��¦o�7£§�Ér ì�ríß�·ú��¦o�7£§�̀¦ l�ìøÍÜ¼�Ð �
l�M:ë�H\� l��:r&h���� ¦Ó�̀½���̈½¹כ ëß�7á¤� 9, ¢̧ô�Ç �Ðîß¹כ�½̈���½Ó�̀¦ 1lxr�
\� ëß�7á¤ô�Ç��.

42

References

1. G.R.Blakley, Safeguarding cryptographic keys. Proc. AFIPS,
NCC, pp.313-317, 1979.

2. J.Benaloh and J.Leichter, Generalized secret sharing and
monotone functions. In Advances in Cryptology-CRYPTO'88,
LNCS403, pp.27-36, Springer-Verlag, 1988.

3. D.Beaver and A.Wool, Quorum based secure multi-party
computation, Advance in Cryptology-EUROCRYPT'98, LNCS
1403,pp.375-390, Springer-Verlag, 1998.

4. S.Cantareli, A.K. Datta, F.Perit, V.Villain, Token Based
Group Mutual Exclusion for Asynchronous Rings, Proc. of 21st
ICDCS, pp.691-694, 2001.

5. S.B.Davidson, H.Garcia-Molina, and D.Skeen, Consis-
tency in partitioned networks. ACM Computing Surveys, Vol.17,
No.3, pp.341-370, 1985.

6. S.Fujita, M.Yamashita, and T.Ae, Distributed k-Mutual Ex-
clusion Problem and k-Coteries, Proc.Symp. Algorithms, pp.22-
31,1991.

7. V.Hadzlilacos, A Note on Group Mutual Exclusion,Proc. 20th
PODC, pp.100-106, 2001.

8. M.P.Herlihy and J.D.Tygar, How to make replicated data
secure, CRYPTO'87, LNCS298, pp.379-391, Springer-Verlag, 1988.

43

9. S.Ichiro and K.Tadao, A Distributed Mutual Exclusion Algo-
rithm, ACM, Vol.3, No.4, pp.344-349, 1985.

10. M.Ito, A.Saito, and T.Nishizeki, Secret Sharing schemes re-
alizing general access structure. Proc. IEEE Global Telecommuni-
cation Conf.(Globecom'87), pp.99-102, 1987.

11. S.Jajodia and D.Mutchler, Dynamic voting algorithms for
maintaining the consistency of a replicated database. ACM Trans.
Database Sys., Vol.15, No.2, pp.230-280, 1990.

12. H.Kakugawa, S.Fujita, and M.Yamashita, Availability of k-
Coteries,IEEE Trans.Computerss, Vol.42, No.5, pp.553-558, 1993.

13. H.Kakugawa, S.Fujita, and M.Yamashita, A Distributed k-
Mutual Exclusion Algorithm using k-Coterie, Information Process-
ing Letters, 1994.

14. H.Kakugawa, M.Yamashita, Local Coteries and a Distributed
Resource Allocation Algorithm, Information Processing Society of
Japan, Vol.37, No.8, 1996.

15. P.Keane and M.Moir, A Simple Local-Spin Group Mutual Ex-
clusion Algorithm. IEEE Trans.Parallel and Distributed Systems,
Vol.12,No.7, pp.673-685, 2001.

16. L.Lamport, Time, clocks, and the ordering of events in a dis-
tributed system, Communication of ACM, Vol.21, No.7, pp.558-
565, 1978.

17. M.Maekawa, A pN Algorithm for Mutual Exclusion in Decen-
tralized Systems, ACM Trans.on Computer Systems, Vol.3, No.2,
pp.145-159, 1985.

44

18. H.Molina and D.Barbara, How to Assign Votes in a Dis-
tributed Systems, Journal of the ACM, Vol.32, No.4, pp.841-860,
1985.

19. S.J.Mullender and P.M.B.Vitanyi, Distributed match-
making. Algorithmica, No.3, pp.367-391, 1988.

20. Y.Manabe and S.Aoyagi, A distributed k-mutual exclusion al-
gorithm using k-coterie, COMP, 1993.

21. Y.Manabe, R.Baldoni, M.Raynal, S.Aoyagi, k-Arbiter : A
safe and general scheme for h-out-of-k mutual exclusion, Theoretical
Computer Science, pp97-112, 1998.

22. Y.Manabe, N.Tajima,(h; k)-arbiters for h-out of-k mutual ex-
clusion problem, Proc.of 19th ICDCS,pp.216-223, 1999.

23. M.L.Neilsen, Properties of nondominated K-coteries, The J. of
Systems and Software, pp.91-96, 1997.

24. M.Naor and A.Wool, Access Control and Signatures via Quo-
rum Secret Sharing,In Proc. 3rd ACM Conf. Comp. and Comm.
Security, pp.157-168, 1998.

25. Geraint Price, Broadening the Scope of Fault Tolerance within
Secure Services, Security Protocols Workshop2000, LNCS 2133,
pp.155-169, 2000.

26. J.Park, K.Kim, and Y.Manabe, Group Mutual Exclusion using
Group Choice,CISC02, 2002.

27. G.Ricart and A.K.Agrawala, An optimal algorithm for mu-
tual exclusion in computer networks, Communication of ACM,
pp.9-17, 1981.

45

28. M.Raynal, Algorithms for Mutual Exclusion. MIT press, 1986.

29. M.K.Reiter and K.P.Birman, How to securely replicate ser-
vices, ACM Trans. Prog. Lang. Sys., Vol.16, No.3, pp.986-1009,
1994.

30. A.Shamir, How to share a secret. Communications of the ACM,
Vol.22, No.11, pp.612-613, 1979.

31. I.Suzuki and T.Kasami, A Distributed Mutual Exclusion Al-
gorithm, ACM Trans.Computer Systems, Vol.3, No.4, pp.344-349,
1985.

32. B.A.Sanders, The Information Structure of Distributed Mutual
Exclusion Algorithms, ACM TOCS, Vol.4, No.4, pp.284-299, 1987.

33. R.K.Srimani, S.R.Das,Distributed Mutual Exclusion Algo-
rithms, IEEE Computer Society Press, 1992.

34. M.Singhal,A taxonomy of distributed mutual exclusion, Jour-
nal of Parallel and Distributed Computing,Vo1.18, No.1, pp.94-101,
1993.

35. S.-C.Sung, Y.Manabe, Coterie for Generalized Mutual Exclu-
sion Problem, Trans.IEICE Vol.E82-D, No.5,pp.968-972, 1999.

36. K.Vidyasankar, A Highly Concurrent Group Mutual l-exclusion
Algorithm, Proc.of 21th PODC,2002.

37. Y.-J.Joung, Asychronous group mutual exclusion (extended ab-
stract). In Proc. 17th PODC,pp.51-60, 1998.

38. Y.-J.Joung, The congenial talking philosophers problem in com-
puter networks(extended abstract). In Proc, 13th DISC, LNCS
1693, pp.195-209, 1999.

46

39. Y.-J.Joung, Asynchronous Group Mutual Exclusion, Distributed
Computing, Vol.13, No.4, pp.189-206, 2000.

40. Y.-J.Joung, Quorum-based Algorithms for Group Mutual Exclu-
sion, Proc. of DISC, LNCS 2180, pp.16-32, 2001.

41. T.W.Yan and H.Garcia-Molina, Distributed selective dissem-
ination of information, In Proc. 3rd Inter. Conf. Par. Dist. Info.
Sys., pp.89-98, 1994.

42. L.Zhou, F.Schneider and R.Van Renesse, COCA: A Secure
Distributed Online Certi�cation Authority, ACM Trans. Computer
Systems, Vol.20, No.4, pp.329-368, 2002.

47

Acknowledgement

First, I would like to express my sincere gratitude to Prof. Kwangjo
Kim, my academic advisor, for his constant direction and support. He
always has shown his consistent a�ection and encouragement for me to
carry out my research and life in ICU. Special thanks also goes to Prof.
Jae Choon Cha and Prof. C.Pandu Rangan for their generosity and
agreeing to serve as committee members of my thesis.

I also would like to thanks to all members of cryptology and infor-
mation security laboratory: Jeongkyu Yang, Kyusuk Han, and Seokkyu
Kang, Vo Duc Lim from Vietnam, Yan Xie, Xiaofeng Chen, Kui Ren,
Jiqiang Iv,and Ping Wang from China, for giving me lots of interests
and good advices during the course of my study.

In addition, I appreciate to the graduates, Wooseok Ham, Jongseong
Kim, Hyunrok Lee, and Hyungki Choi, for their everlasting guidance in
life and study of ICU.

Most of all, I should mention my father and mother for their end-
less concerns and devotional a�ection. I cannot forget their trust and
encouragement on me. My sister and her husband also have given me
warmhearted concerns. I hope God bless my family and to be happy.

Finally, I will always remember the life of ICU. It �lled up my poor
knowledge and made me a grown-up person.

Curriculum Vitae

Name : Jaehyrk Park
Date of Birth : Jul. 29. 1975
Sex : Male
Nationality : Korean

Education

1994.3{2002.2 Computer Science
Inha University (B.A.)

2002.2{2004.2 Cryptology and Information Security, Engineering
Information and Communications University (M.S.)

Career

2003.8{ Graduate Research Assistant
Ubiquitous System Security Technique
Next Information Technology Zone(NITZ)

2003.1{2003.12 Graduate Research Assistant
Research on Link Security Algorithm and Standardiza-
tion
Electronics and Telecommunication Research Institute(ETRI)

2002.4{2002.12 Graduate Research Assistant
Research on Easy Security Technology
Electronics and Telecommunications Research Institute(ETRI)

2002.2{2002.7 Graduate Research Assistant
Development of Electronic Voting System for World-
Cup 2002
Information Research center for Information Security,
ICU

2002.7{2002.8 Apprentice Researcher
Communication Science Laboratories(CSL), NTT, Japan

2002.2{2004.2 Graduate Research Assistant
Cultivation of Top Level IT Security Manpower
The Ministry of Information and Communications(MIC)

Academic Experience

2002.4{ KIISC student member

Publications

(1) 2003.11 Jaehyrk Park, Seokkyu Kang, and Kwangjo Kim, Group
Mutual Exclusion based Secure Distributed Protocol,
The 1st Computer Security Symposium 2003, Kokura,
Japan.

(2) 2003.7 Jaehyrk Park and Kwangjo Kim, ÕªÒ�̈�©� ñC�]j l�ìøÍ
_� îß����ô�Ç áÔ�Ð�Ðc+t, 2003�̧��̧ ô�Ç²DG&ñ
�Ð�Ð ñ�<Æ�r �<Æ
Õüt@/�r, pp283-288, C�F�@/�<Æ�§, ô�Ç²DG

(3) 2003.8 ~ÃÌF�+À:, �̂�F�g�̧,Ä»I�8̈�,ô�Ç�â
Ãº, EPON_��Ðîß¹כ�½̈��
�½Óõ� QoSS_� &h�6 x, 2003�̧��̧ ô�Ç²DG&ñ
�Ð�Ð ñ�<Æ�r Ø�æ'õA
t�ÂÒ �<ÆÕüt@/�r, pp.251-259, Ø�æ·¡¤@/�<Æ�§, ô�Ç²DG

(4) 2002.11 Jaehyrk Park, Yoshifumi Manabe, and Kwangjo Kim,
Mutual Exclusion algorithm using Group Choice, 2002�̧�
�̧ ô�Ç²DG&ñ
�Ð�Ð ñ�<Æ�r �<ÆÕüt@/�r, pp.53-56, �½Ó/BN@/�<Æ
�§, ô�Ç²DG

(5) 2002.11 �<ÊÄº$3�,~ÃÌF�+À:,s�5Åx"é¶, �̂�7áx5px,þjÃºU�́, �̂�F�g�̧, �̂�ņq
���, z��×þ�6 x, QoSS_� ���½̈ 1lx�¾Óõ� &h�6 x, 2002�̧��̧ ô�Ç²DG
&ñ
�Ð�Ð ñ�<Æ�r �<ÆÕüt@/�r, pp.352-355, �½Ó/BN@/�<Æ�§, ô�Ç
²DG

