
A Thesis for the Degree of Master of Science

Intrusion-Resilient Key-Evolving

Protocol under the Discrete

Logarithm Problem

Joong Man Kim

School of Engineering

Information and Communications University

2004

Intrusion-Resilient Key-Evolving

Protocol under the Discrete

Logarithm Problem

Intrusion-Resilient Key-Evolving

Protocol under the Discrete

Logarithm Problem

Advisor : Professor Kwangjo Kim

by

Joong Man Kim

School of Engineering

Information and Communications University

A thesis submitted to the faculty of Information and Commu-

nications University in partial fulfillment of the requirements for

the degree of Master of Science in the School of Engineering

Daejeon, Korea

Dec. 26. 2003

Approved by

(signed)

Professor Kwangjo Kim

Major Advisor

Intrusion-Resilient Key-Evolving

Protocol under the Discrete

Logarithm Problem

Joong Man Kim

We certify that this work has passed the scholastic standards

required by Information and Communications University as a

thesis for the degree of Master of Science

Dec. 26. 2003

Approved:

Chairman of the Committee
Kwangjo Kim, Professor
School of Engineering

Committee Member
Jae Choon Cha, Assistant Professor
School of Engineering

Committee Member
Dae Sung Kwon, Ph.D
NSRI

M.S.

20022036

Joong Man Kim

Intrusion-Resilient Key-Evolving Protocol under the Discrete

Logarithm Problem

School of Engineering, 2004, 39p.

Major Advisor : Prof. Kwangjo Kim.

Text in English

Abstract

These days, with the advancement and propagation of the Internet and

Information Technology, many security issues have emerged. One of keys

enabling to deal with such issues is to adopt Cryptography. Unfortunately,

cryptography will not work well if a piece of critical information (e.g. secret

key) is not kept secret from unauthorized entities. When the secret key is

revealed, all cryptographic systems will be compromised. Actually, exposing

secret keys seems to be unavoidable. And we call this the key exposure prob-

lem.

Recently, the notion of key-evolving paradigm (or key-evolving protocol)

was proposed as a means of mitigating the harmful effects that key exposure

can cause. In this model, the whole lifetime is divided into distinct periods

such that at time period j, the signer holds the secret key SKj and updates

it periodically, while the public key PK is fixed during its lifetime.

In this thesis, we investigate the key exposure problem in a key-evolving

protocol. We then present the concept of intrusion-resilience, one of alterna-

tive concepts such as forward-security, key-insulated security, etc., standing

i

against the key exposure problem. Our intrusion-resilience has the following

property: If secret keys of all periods are not compromised, it is impossible

to forge signatures relating to non-exposed secret keys. In the next stage, we

propose a key-evolving protocol which guarantees intrusion-resilience. Our

scheme is constructed from the unforgeably secure Schnorr signature scheme,

one of the schemes based on the discrete logarithm problem (DLP). Applying

for a threshold scheme is also enabling to make our scheme robust. Finally, we

can show equivalence between existence of a forger and feasibility of solving

the DLP under the random oracle model.

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Abbreviations vi

List of Notations vii

1 Introduction 1

1.1 The Key Exposure Problem 1

1.2 Key-Evolving Paradigm . 2

1.3 Related Works . 3

1.4 Our Contribution . 6

1.5 Outline of the thesis . 7

2 Preliminaries 8

2.1 Random Oracle Model . 8

2.2 Schnorr Type Signature Schemes 9

2.3 Threshold Cryptosystem . 9

2.4 Number Theoretic Hard Problem 10

3 Models and Definitions 11

3.1 System Models . 11

3.1.1 Communication Model 11

3.1.2 Types of Adversaries 12

3.2 Functional Definitions . 13

iii

3.3 Security Requirements . 14

3.4 Intrusion-Resilience . 15

3.4.1 Comparison with the previous concept 16

4 Proposed Scheme 17

4.1 Intrusion-Resilient Key-Evolving Protocol 17

4.1.1 Key Generation Algorithm 17

4.1.2 Key Update Algorithm 19

4.2 Application to Schnorr Signature Scheme 21

4.2.1 Signature Generation Algorithm 21

4.2.2 Signature Verification Algorithm 22

5 Security Analysis 23

5.1 Correctness . 23

5.2 Complexity and Efficiency . 24

5.3 Security Proof . 25

5.3.1 Robustness . 25

5.3.2 Key-Independence . 26

5.3.3 Intrusion-Resilience . 27

5.3.4 Unforgeability . 29

6 Conclusions 32

�±�%K�³À»ÈÐ 34

References 36

Acknowledgements 40

Curriculum Vitae 42

iv

List of Figures

1.1 Key-Evolving Protocol Paradigm 2

4.1 Key Generation algorithm . 18

4.2 Key Update algorithm . 20

4.3 Signing algorithm . 22

4.4 Verifying algorithm . 22

v

List of Abbreviations

DLP Discrete Logarithm Problem

IRKE Intrusion-Resilient Key-Evolving

IRKE-SIG Intrusion-Resilient Key-Evolving Signature Scheme

KE-SIG Key-Evolving Signature Scheme

SIG Ordinary Signature Scheme

UF-CMA Unforgeable Against Chosen Message Attack

vi

List of Notations

Agent a kind of server executing simple computation

Gq a cyclic group of a prime order q

g the order of Gq

N a security parameter

Osig an oracle that given a message returns a signature on that message

PK a public key

S a secret information

T a total time period

x
R← X an element x randomly selected according to a probability space X

x ← y x is replaced by y

Z∗p a group under multiplication modulo p

∈R chosen at random

· a product operation

• an inner product operation

◦ a binary operation

vii

Chapter 1

Introduction

1.1 The Key Exposure Problem

In practice the greatest threat against the security of all cryptographic schemes

such as public key cryptosystem and a digital signature scheme, etc., is ex-

posure of the secret (encrypting or signing) key, due to compromise of the

security of the underlying system or machine storing the key. The danger of

successful cryptanalysis of the cryptographic scheme itself is hardly as great

as the danger of key exposure, as long as we stick to well-known schemes and

use large security parameters.

In the key exposure problem, the secret key is assumed to be slowly com-

promised over time, so that more and more information about a secret key is

eventually leaked. This models the general situation in the real world where

memory, storage systems and device cannot perfectly hide all information

for long time (due to physical and operational leakages). In this setting, in

order to protect against exposure threats, the secret key is represented in an

“exposure-resilient” form, which is periodically refreshed with the following

guarantee: as long as the adversary does not learn “too much” information

about the current representation of the secret between successive refreshes,

the system should remain secure.

1

Figure 1.1: Key-Evolving Protocol Paradigm

1.2 Key-Evolving Paradigm

Tzeng et al. [28] proposed a key-evolving paradigm (or key-evolving protocol),

like the one used in forward-secure digital signature schemes. They deal with

the key exposure problem of public-key encryption schemes, but signature

scheme also will have similar paradigm. Let the whole lifetime be divided

into periods, starting with 0. The public key PK of the signer is fixed for the

whole lifetime. The signer’s secret key at time period i is SKi, i ≥ 0. When

time runs from period i to period i+1, the signer applies a hash function h to

SKi to get SKi+1 and then deletes SKi immediately, possibly with the help

of a trusted agent TA. The key-evolving paradigm is illustrated in Figure

1.1.

A signature always includes the value i of the time period during which

it was produced, so that it is viewed as a pair < i, σ >, where i and σ mean

the time period and the signature value respectively. The verifying algorithm

takes the (fixed) public key PK, a message and candidate signature, and

verifies that the signature is valid in a sense that it was produced by the

legitimate user in the period indicated in the signature. We stress that al-

though the user’s secret key evolves with time, the public key remains fixed

throughout a total time period, so that the signature verification process is

unchanged, as are the public key certification and management processes.

The number of periods and the length of each period depends on your

2

choice. For example, we want to use the scheme under a certain public key

for one year, with daily updates, in which case T = 365 and each period has

length one day.

1.3 Related Works

Key exposures appear to be inevitable. Especially, a method to prevent key

exposure entirely (e.g., by using tamper-resistant devices) is to be expensive

and impractical for most common applications. Thus minimizing their neg-

ative impacts is extremely important. A long line of researches for dealing

with this issue has been proposed.

Forward Security. In forward-secure schemes [1, 3], the secret key is

stored by a single signer and this key is updated by the signer at the be-

ginning of every time period. This security preserves the security of past

signatures even after the secret signing key has been exposed: time is divided

into predefined time periods, with the signer updating his secret at the end of

each time period; the adversary is unable to forge signatures for past periods

even if she learns the key for the current one. In this model, nothing can be

done about the future periods: once the adversary exposes the current secret,

she has the same information as the signer.

Threshold Security and Proactive Security. Threshold schemes

[8, 26] distribute secrets among n devices so that exposure of secrets from,

say, t of these devices will not allow an adversary to “break” the scheme.

That is, the adversary, however, cannot generate valid signatures as long as

the number of compromised devices is less than some predetermined security

parameter (smaller than the number of devices needed to generate a valid

signature). Proactive schemes [19, 14] improve upon this model by allowing

multiple corruptions of all signers, limiting only the number of simultaneous

3

corruptions. Proactive forward-secure signatures considered in [2] combine

this with the advantages of forward-security.

Key-Insulated Security. Key-insulated scheme [9] presented by Dodis et

al. addresses the limitation of forward security: the adversary cannot gener-

ate signatures for the future (as well as past) time periods even after learning

the current signing key. This is accomplished via the use of two modules : a

(possibly mobile) signer, and a (generally stationary) home base. The signer

has the secret signing key, and can generate signatures on its own. At the end

of each time period, the signing key expires and the signer needs to update

his keys by communicating with the home base and performing some local

computations (the communication with the base is, in fact, limited to a single

message from the base to the signer). Thus, although the signer’s keys are

vulnerable (because they are frequently accessed, and, moreover, because the

signer may be mobile), key exposure is less valuable to the adversary, as it re-

veals only short-term keys. Perhaps the most compelling application of such

a model is the example of a frequently traveling user, whose laptop (or hand-

held) is the signer, and office computer is the home base. This model enables

security that is not possible in ordinary or even forward-secure schemes: even

if the signing key is compromised (for up to k time periods, for predetermined

security parameter k), the adversary will be unable to forge signature for any

other time periods. (Notice that in forward-secure schemes model, signatures

for any time period following a compromise are necessarily forgeable.)

Intrusion-Resilience. Recently presented intrusion-resilient scheme [15]

combines some benefits from the key-insulated [9], forward-secure [1, 3], and

proactive [19, 14] security notions. A detailed discussion of relationships

among all these notions is included in [15], and we therefore omit it here.

Intuitively, intrusion-resilient model divides into time periods, and aug-

ments each signature with a “time-stamp” (the time period number, during

4

which the signature was generated). Verification is essentially similar to the

ordinary signature schemes, except it includes the time period as input —

if the time period is changed, the signature becomes invalid. These exten-

sions to ordinary signatures are the same as for forward-secure [1, 3] and

key-insulated models [9].

In addition, the ordinary signer is replaced in intrusion-resilient model —

similarly to the key-insulated model of [9] — with two modules: signer and

home base (thus, the name of the model: Signer-Base Intrusion-Resilient, or

SiBIR for short). The signer, using its secret key, can generate signatures,

but only for the current time period (unlike forward-secure signer, which

can also generate signatures for all the future periods). At the end of the

current period, the signer must update its secret key for the next period —

this requires an update message from the base.

Thus, intrusion-resilient scheme, as the key-insulated one [9], preserves

security of both past and future time periods, when the signers compro-

mised. Moreover — unlike in the key-insulated model — for intrusion-resilient

schemes this security is preserved even if both signer and base are compro-

mised, as long as the compromises are not simultaneous. In the case of

simultaneous compromise, the security of past (but not the future) periods is

preserved — this is the best that can be achieved.

To achieve such security, SiBIR model, much as proactive schemes [19, 14],

provides a refresh mechanism: base changes its key and sends a refresh mes-

sage to the signer, which uses it to refresh its key as well. This can be done

at arbitrary times and as many times as desired (unlike update, which is

done only at the pre-arranged times, and typically has a limit on the total

number of updates); refresh is transparent to the verifier (in contrast, update

changes the time period number and is therefore visible to the verifier). Re-

fresh prevents the attacker from learning anything by breaking into the base.

Specifically, learning the base secrets at arbitrary times by itself does not help

attacker in any way. Only if the attacker compromises both signer and base

5

simultaneously, dose she learn all the system’s secrets and can therefore gen-

erate — just as the system itself — valid signatures for all the future periods.

But if the attacker misses at least one refresh message between the compro-

mising of the base and signer secrets, then compromising the base does not

add anything useful to her knowledge. Thus, SiBIR model minimizes the

impact of the key compromises, which explains the Intrusion-Resilient part

of its name.

We note that each of these models may be appropriate in different en-

vironments. Forward-secure schemes are advantageous in that the user is

self-sufficient and need not interact with any other device. On the other

hand, the security provided by key-insulated and intrusion-resilient schemes

is better and these schemes might therefore be used when interacting with

a server is feasible and does not represent a serious drawback. Finally, al-

though the intrusion-resilient model offers stronger security guarantees than

the key-insulated model, we note that solutions for the latter are (thus far)

much more efficient. The choice of which type of scheme to use therefore

depends heavily on an assumption about the (physical) security of the server.

1.4 Our Contribution

In this thesis, we define the different notion of intrusion-resilience from one

which Itkis et al. [15] have proposed. Our intrusion-resilience will be derived

from the resilience which Tzeng et al. [28] have defined and will be achieved

using the properties of a linear system of equations and the threshold cryptog-

raphy [6]. Also, we study key-evolving protocol under the discrete logarithm

problem and present an intrusion-resilient key-evolving protocol applicable

for schemes based on the discrete logarithm problem. Our scheme exhibits

an efficient key update algorithm and introduces no more significant overhead

than the underlying scheme.

6

1.5 Outline of the thesis

The thesis is organized as follows: We review background knowledge related

to our scheme in Chapter 2. We then give formal models and definitions of

various terminologies in Chapter 3. The description of our intrusion-resilient

key-evolving protocol under the discrete logarithm problem called a “IRKE”

is made in Chapter 4. In Chapter 5, we analyze correctness, efficiency and

security proofs of our scheme. Finally, we will make conclusions in Chapter

6.

7

Chapter 2

Preliminaries

2.1 Random Oracle Model

In many signature schemes, a cryptographic hash function, such as MD5 [23]

or SHA-1 [27], is used, namely to reduce the size of the message. Such a

cryptographic hash function has the property that it is collision-resistant,

and therefore one-way.

Many recent proofs [5, 20, 22] make the assumption that this crypto-

graphic hash function is an ideal random function also known as random

oracle: for any new query, the answer is uniformly distributed in the out-

put set, independently of previous query/answer pairs. This is the so-called

random oracle model [4].

Moreover, in this model, a simulator is allowed to set the output of the

random oracle to specific values (uniformly distributed) for an input that had

not yet been defined. The random oracle model assumes that hash functions

used in a scheme are “truly random” hash functions. Although the security

under the random oracle model is not rigid, it does provide satisfactory se-

curity argument to related schemes in most cases [6]. Also, since proofs in

the random oracle model are just security arguments, but not the strongest

proof of security that one could require, we try to minimize the use of random

oracles.

8

2.2 Schnorr Type Signature Schemes

ElGamal [11] was the first to propose a signature scheme based on the dis-

crete logarithm problem. Then, Schnorr [24, 25] improved the scheme using

the modulo q truncating function, playing in a prime subgroup. This latter

scheme has been formally proven unforgeable in the random oracle model

relative to the discrete logarithm problem [20, 22] and also has become an es-

sential tool for smart card. Thus, we will select this Schnorr signature scheme

as one example among discrete logarithm based schemes for constructing our

scheme. As other schemes, many variants have been defined and standard-

ized by governments: the US-standard DSA [10] and the Korean-standard

KCDSA [16].

2.3 Threshold Cryptosystem

The concept of a threshold scheme was first introduced by Shamir [26]. A

threshold cryptographic protocol involves a set of players together, who each

possesses a secret share, to accomplish a cryptographic task via exchange

of messages among them. Threshold cryptographic protocols provide strong

security assurance and robustness against a number of malicious attackers

under a threshold. For example, in the Shamir’s (k, n) threshold scheme, a

secret s is divided into n pieces s1, s2, . . . , sn such that:

1. Knowledge of any k or more si pieces makes s easily computable;

2. Knowledge of any k − 1 or fewer si pieces leaves s uncomputable.

As mentioned above, the threshold scheme enables possession of secret key

to be distributed in public key cryptosystem. Consequently, only k parties or

more can decrypt a ciphertext encrypted with the corresponding public key

or produce a digital signature on a message. With fewer k parties, the work

9

cannot be done. Shamir’s (k, n) threshold scheme [26], one sort of threshold

cryptosystems, will be adopted in updating signing secret keys in our scheme.

2.4 Number Theoretic Hard Problem

Cryptographic schemes work by trying to relate breaking its security goal to

solving one or more mathematical hard problems. These mathematical prob-

lems should be intractable such that any attempt to solve problems becomes

impractical in terms of time and computational resources. One such famous

mathematical hard problem used in cryptography is the Discrete Logarithm

Problem (DLP). It is defined as follows:

Definition 2.4.1 Given an Abelian group G equipped with a binary operation

◦ and an element h ∈ G. Find an integer x and g ∈ G satisfying gx = h,

where gx = g ◦ g ◦ · · · ◦ g (x times).

Based on this problem, our key-evolving protocol will be constructed. And

we describe it making use of the threshold scheme and Schnorr signature

scheme described before. Therefore, our security proof will be based on the

assumption that the DLP is intractable. We call it the DLP assumption.

10

Chapter 3

Models and Definitions

Here we provide various models and formal definitions for a key-evolving

protocol. We assume that there is an Agent who holds some secret share for

updating secret key of the signer.

3.1 System Models

In this section we introduce our communication model and types of adver-

saries.

3.1.1 Communication Model

In this thesis, we will use the term Agent instead of player like in [12].

An Agent will considered as a kind of server executing simple computation.

These Agents will help the signer completing Shamir’s (k, n) threshold scheme

[26]. The participants in our scheme includes a set of j Agents who are con-

nected by a broadcast channel. Additionally, they are capable of private

point-to-point communication over secure channels. (Such channels might be

implemented on the broadcast channel using cryptographic techniques.) Fur-

thermore, we assume that the signer is trusted during the setup phase and

that the Agents are capable of both broadcast and point-to-point communi-

cation with him. Finally, we work in a synchronous communication model;

that is, all participating Agents including the signer have a common concept

of time and, thus, can send their messages simultaneously in a particular

11

round of a protocol.

3.1.2 Types of Adversaries

We assume that any adversary attacking our scheme can listen to all broad-

casted information and may compromise the shares which Agents hold in

some way to learn their secret information. However, the adversary might

work in a variety of contexts. We categorize the different types of adversaries

here. In both categories described below, the last option listed describes the

most powerful adversary, since it always encompasses the preceding options

in that category.

The first category we consider is the power of an adversary can have more

than a compromised Agent. We list the options, as outlined in [12]. First,

an adversary may be eavesdropping, meaning that she may learn the secret

information of an Agent but may not affect his behavior in any way. A more

powerful adversary is one that not only can eavesdrop but can also stop the

Agent from participating in the protocol. We refer to such an adversary as

a halting adversary. Finally, the most powerful notion in this category is a

malicious adversary, who may cause an Agent to deviate from the protocol

in an unrestricted fashion.

The second category which defines an adversarial model describes the

manner in which an adversary selects the set of Agents to compromise. The

first type is a static adversary, who decides before the protocol begins which

set of Agents to compromise. An adaptive adversary, on the other hand, may

decide “on the fly” which Agent to corrupt based on knowledge gained during

the run of the protocol. Finally, a mobile adversary is traditional one which

is not only adaptive, but also may decide to control different sets of shares

which Agents including the signer hold during different time periods. In this

12

case, there may be no share which has not been compromised throughout the

run of the protocol, but the adversary is limited to controlling some maximum

number of shares at any one time.

3.2 Functional Definitions

We first define a signature scheme and then a key-evolving signature scheme.

Definition 3.2.1 A signature scheme is a triple of probabilistic polynomial-

time algorithms, SIG = (Gen, Sign, Ver):

1. Gen, the key generation algorithm, takes as input a random string and

outputs a pair of keys (X,Y), where X is the private signature key, and

Y is the public verification key.

2. Sign, the signing algorithm, takes as input a message M and the private

signature key X, and produces a signature Sig.

3. Ver, the verifying algorithm, takes as input a message M , a signature

Sig, the public verification key Y , and checks whether Sig is a valid

signature of M .

This definition can be extended in a natural way to capture a key-evolving

protocol of signature schemes as follows:

Definition 3.2.2 A key-evolving signature scheme is a quadruple of proba-

bilistic polynomial-time algorithms, KE-SIG = (Gen, Upd, Sign, Ver):

1. Gen, the key generation algorithm, takes as input a security parameter

N , the total number of time periods T over which the scheme will

operate, and possibly other parameters, to return a base public key PK

and corresponding base secret key SK0. The algorithm is probabilistic.

13

2. Upd, the key update algorithm, takes as input the signing secret key SKi

of the current time period to return the signing secret key SKi+1 of the

next time period. The algorithm is usually deterministic.

3. Sign, the signing algorithm, takes the signing secret key SKi of the

current time period and a message M to return a signature (Sig, i) of

M for the current time period i. The algorithm may be probabilistic.

The signature is always a pair consisting of the value i of the current

time period and a tag Sig.

4. Ver, the verifying algorithm, takes the public key PK, message M and

candidate signature (Sig, i) to return a bit, with 1 meaning valid and

0 meaning invalid. The algorithm is typically deterministic.

We say that (Sig, i) is a valid signature of M for time period i if the

verifying algorithm returns 1. It is required that a signature of M generated

via the signing algorithm be a valid signature of M for time period i. We

assume that the secret key SKi for time period i ∈ {1, . . . , T} always contains

the value i itself and also always contains the value T of the total number of

time periods.

We may assume a single Agent for simplicity in constructing our scheme.

In practice, we distribute trust to multiple Agents such that each Agentj

holds a share sj of the system secret s. The signer with secret key SKi and

the Agents together can compute SKi+1 in a secure way through Shamir’s

(k, n) threshold scheme [26]. Here, Agents do not need to be trusted but

only simple computation execution is required. We discuss this in detail in

Chapter 4.

3.3 Security Requirements

We will say about a key-evolving protocol, which means all processes ex-

cept for the signing and the verifying algorithms in the above scheme. Some

14

desirable properties for a key-evolving protocol are presented as follows [18]:

Definition 3.3.1 A key-evolving protocol is forward-secret if the compromise

of SKi will not compromise SKj for all j < i.

Definition 3.3.2 A key-evolving protocol is backward-secret if the compro-

mise of SKi will not compromise SKj for all j > i.

Definition 3.3.3 A key-evolving protocol is key-independent if it is forward-

secret and backward-secret.

We will propose a key-evolving protocol satisfying key-independence as

well as intrusion-resilience described in the next section.

3.4 Intrusion-Resilience

Tzeng et al. [28] introduced the concept of resilience for public-key encryption

scheme. It will be similar for the signature scheme as follows.

Definition 3.4.1 (Resilience) Assume a security model for signature scheme.

A key evolving signature scheme is z-resilient if the attacker cannot break the

signature scheme under the assumed security model even if he gets z secret

keys SKi1 , SKi2 , ..., SKiz .

Even if the attacker gets z secret keys SKi1 , SKi2 , ..., SKiz of z time

periods, he cannot get another secret key SKi, for i 6= il, 1 ≤ l ≤ z. Actually,

our scheme becomes to be (T − 1)-resilient scheme, where T represents the

total number of time periods. Therefore, we present a main definition about

the concept of resilience.

Definition 3.4.2 (Intrusion-Resilience) A key-evolving signature scheme

is intrusion-resilient if it is (T − 1)-resilient.

15

3.4.1 Comparison with the previous concept

We can see that Itkis et al.’s intrusion-resilience [15] and our intrusion-

resilience are considerably different concepts. The basic difference between

two concepts is that in Itkis et al.’s concept, even if there are only two en-

tities — signer and home base— home base must do heavy computation,

which requires the same computing power as the signer. On the other hand,

in our concept, even if there are several entities — Agents — as well as the

signer, all Agents are required to perform much simpler computation than

the signer. Therefore, we can say that the ability for home base in Itkis et

al.’s scheme is distributed to several Agents performing simple computation

in our scheme. In other word, we can alleviate the danger in which home base

will be compromised, by means of several Agents’ practice.

We also believe that our intrusion-resilience offers much stronger secu-

rity than key-independence, which will be proved later through the security

analysis. In the next chapter, we will propose a key-evolving protocol which

guarantees an intrusion-resilience.

16

Chapter 4

Proposed Scheme

Our key-evolving protocol (denoted IRKE) using the Shamir’s (k, n) thresh-

old scheme [26] to share a secret information used in updating secret key,

where several polynomials are employed, is presented as below. Also, our

key-evolving signature scheme (denoted IRKE-SIG) consists of a key-evolving

protocol (containing key generation algorithm and key update algorithm) and

an application to a signature scheme based on the discrete logarithm problem

such as the Schnorr signature scheme. Thus, we assume that two hash func-

tions h1 : {0, 1}∗ → {0, 1}T and h2 : {0, 1}∗ → Zq are required. h1 is used in

defining a vector function B which is shown in IRKE.Gen. And h2 is used in

IRKE.Sign and IRKE.Ver as in the Schnorr signature scheme.

4.1 Intrusion-Resilient Key-Evolving Protocol

Our key-evolving protocol consists of two algorithms: key generation algo-

rithm and key update algorithm.

4.1.1 Key Generation Algorithm

We first generate a N -bit safe prime p : p = 2q + 1 such that q is odd prime

(such q, satisfying 2q + 1 is prime, is known as Sophie Germain prime[7]).

Then the signer actually selects the secret information S = (s1, s2, ..., sT) at

random, and computes the public key PK = (gs1 , gs2 , ..., gsT) using S.

The signer randomly selects T polynomials used in sharing each element

17

algorithm IRKE.Gen(1N , T)

Parameter :

Generate N -bit prime p ← 2q + 1 with that q is a prime of at least

160-bit long, i.e. q > 2160.

Let Gq denote the subgroup of the quadratic residues modulo p

and g the generator of Gq.

Setting :

S ← (s1, s2, ..., sT) in Gq (secret information)

PK ← (gs1 , gs2 , ..., gsT) in Z∗p
Randomly select T (T − 1)th degree polynomials

f1(x) ≡ s1 +
∑T−1

i=1 α1,ix
i (mod q)

f2(x) ≡ s2 +
∑T−1

i=1 α2,ix
i (mod q)

...

fT (x) ≡ sT +
∑T−1

i=1 αT,ix
i (mod q)

,where each fl is used to share sl, 1 ≤ l ≤ T , in S.

Distributing shares :

Let the signer and Agents hold multiple share (f1(xl), f2(xl), ..., fT (xl)),

for some random xl ∈R Zq, 1 ≤ l ≤ n.

Define :

B(x) := the binary representation of the hash function h1(x)

i.e. B(x) := (e1, e2, ..., eT) → T vector

,where each ei, 1 ≤ i ≤ T , is bit (0 or 1) and h1(x) is a hash

function with T -bit output.

Return (PK)

Figure 4.1: Key Generation algorithm

18

sl, 1 ≤ l ≤ T , of secret information S. Note that after sharing, the signer

discards the secret information S and such T polynomials. The detailed

method how the signer makes and distributes shares will be described at key

update algorithm. Figure 4.1 describes key generation algorithm.

4.1.2 Key Update Algorithm

Key generation is immediately followed by key update. The signer first divides

each element sl of secret information S into n shares fl(x1), fl(x2), ..., fl(xn),

1 ≤ l ≤ T , where each xi, 1 ≤ i ≤ n, is distinct and large enough so that the

maximum time period never reaches them, and then makes n multiple shares

as follows:

(f1(x1), f2(x1), ..., fT (x1))

(f1(x2), f2(x2), ..., fT (x2))
...

(f1(xn), f2(xn), ..., fT (xn))

Assume that there are j Agents, j < k, i.e., Agent1, Agent2,..., Agentj,

and each pair of the signer and Agents share a private channel by which secret

information can be passed between them. Thus, the signer gives j multiple

shares (f1(xm1), f2(xm1), ..., fT (xm1)), 1 ≤ m1 ≤ j, to all j Agents individu-

ally and stores the remaining multiple shares (f1(xm2), f2(xm2), ..., fT (xm2)),

j+1 ≤ m2 ≤ n. At this time, the following two inequalities must be satisfied:

n− j < k and n < 2k − 2

This means that only the signer as well as only Agents cannot update

secret key, i.e., the signer must collude with some Agents. At time period i,

the signer holds SKi. The signer and Agents would like to compute SKi+1,

which shall be known to the signer only.

Figure 4.2 describes key update algorithm where the reason why we use

inner product (•) is that the signer and Agents select some elements ran-

19

domly from all elements of their multiple shares and execute the modular

summation of that elements.

algorithm IRKE.Upd

Assume that j Agents (j < k) (k : threshold value),

i.e., Agent1, Agent2, . . . , Agentj.

1. Agentr1(1 ≤ r1 ≤ j) computes

SKUr1 ← (f1(xr1), f2(xr1), ..., fT (xr1)) •B(i + 1) mod q

,where • means inner product here and is used throughout this paper,

and then sends each SKUr1 to the signer.

2. The signer selects k − j multiple shares randomly and computes,

(d1 ≤ r2 ≤ dk−j),

SKUr2 ← (f1(xr2), f2(xr2), ..., fT (xr2)) •B(i + 1) mod q

3. Finally, the signer computes

SKi+1 ←
∑j

r1=1 SKUr1 · (
∏

t1≤I 6=r1≤tk
xI

xI−xr1
) +

∑dk−j

r2=d1
SKUr2 · (

∏
t1≤I 6=r2≤tk

xI

xI−xr2
) mod q

Return (SKi+1)

Figure 4.2: Key Update algorithm

Each result (SKUr1 , 1 ≤ r1 ≤ j) of that modular summation is sent to

the signer. Finally he calculates the secret key of the next time period by the

Lagrange interpolation method.

20

We can make the computation verifiable by letting each Agentl publish

gf1(xl), gf2(xl), ... , gfT (xl). The signer then verifies whether he receives the right

share from Agentl, 1 ≤ l ≤ j, by checking

gSKUl ≡ g(f1(xl),f2(xl),...,fT (xl))•B(i) (mod p)

,where g(f1(xl),f2(xl),...,fT (xl))•B(i) means the random multiplication of each

Agentl’s published values based on the hash value of time period i.

4.2 Application to Schnorr Signature Scheme

Our key-evolving protocol is applied to the Schnorr signature scheme [24, 25]

which we review here. Let p and q be primes such that p = 2q + 1 and

let G be the subgroup of Z∗q of order q. Fix generator g ∈ G. A public

key is generated by choosing a secret s ∈R Zq and setting I = gs. To sign

message M , a user chooses random k ∈R Zq and computes r = gk. Using a

hash function H (modeled as a random oracle), the user then computes e =

H(M, r), where e is interpreted as an element of Zq. The signature is: (e, z =

k + xe,M). A signature (e, z,M) on message M is verified by computing

r
?
= gzI−e mod p. Our constructions based on the Schnorr signature scheme

are illustrated in Figures 4.3 and 4.4. We stress that the the scheme achieves

strong security without additional modifications, yet the time required for

signing and verifying is essentially the same as in the basic Schnorr scheme.

We describe it in detail in the following subsections.

4.2.1 Signature Generation Algorithm

The signing procedure is straightforward, as defined by the Schnorr signature

scheme [24, 25], shown in Figure 4.3.

21

algorithm IRKE.Sign(M, SKi)

k
r← Z∗q

r ← gk mod p

e ← h2(M, r)

z ← (SKi) · e + k mod q

Return (z, e, i)

Figure 4.3: Signing algorithm

4.2.2 Signature Verification Algorithm

Our verification algorithm, described in Figure 4.4, is also exactly the same

as in the Schnorr signature scheme [24, 25], except it includes the time period

as input — if the time period is changed, the signature becomes invalid.

In Figure 4.4, we also have a pre-computation process, i.e., g(s1,s2,...,sT)•B(i).

g(s1,s2,...,sT)•B(i) means the random multiplication of PK’s elements based on

the hash value of time period i ,i.e., the multiplication of elements with weight

1 among all elements of PK based on the hash value of the time period i.

algorithm IRKE.Ver(M,PK, (z, e, i))

Let PK = (gs1 , gs2 , ..., gsT)

v ← gz · (g(s1,s2,...,sT)•B(i))−e mod p

e′ ← h2(M, v)

If e = e′, then return 1 else 0

Figure 4.4: Verifying algorithm

22

Chapter 5

Security Analysis

We now discuss the correctness, complexity and security proofs of our pro-

posed scheme. Afterwards, T means the total time period.

5.1 Correctness

Theorem 5.1.1 Let IRKE.Upd take output SKi+1 for 1 ≤ i < T . Then,

SKi+1 ≡ (s1, s2, . . . , sT) •B(i + 1) (mod q).

Proof: By the Lagrange interpolation method, the following equations are
satisfied.

SKi+1 ≡
jX

r1=1

SKUr1 ·
0@ Y

t1≤I 6=r1≤tk

xI

xI − xr1

1A+

dk−jX
r2=d1

SKUr2 ·
0@ Y

t1≤I 6=r2≤tk

xI

xI − xr2

1A (mod q)

≡
24 jX

r1=1

{(f1(xr1), f2(xr1), ..., fT (xr1)) •B(i + 1)} ·
0@ Y

t1≤I 6=r1≤tk

xI

xI − xr1

1A35 +24 dk−jX
r2=d1

{(f1(xr2), f2(xr2), ..., fT (xr2)) •B(i + 1)} ·
0@ Y

t1≤I 6=r2≤tk

xI

xI − xr2

1A35 (mod q)

≡
24 tkX

r=t1

{f1(xr), f2(xr), ..., fT (xr)} •B(i + 1)

35 ·0@ Y
t1≤I 6=r≤tk

xI

xI − xr

1A (mod q)

≡
0@ tkX

r=t1

f1(xr) ·
0@ Y

t1≤I 6=r≤tk

xI

xI − xr

1A ,

tkX
r=t1

f2(xr) ·
0@ Y

t1≤I 6=r≤tk

xI

xI − xr

1A ,

. . . ,

tkX
r=t1

fT (xr) ·
0@ Y

t1≤I 6=r≤tk

xI

xI − xr

1A1A •B(i + 1) (mod q)

≡ (s1, s2, ..., sT) •B(i + 1) (mod q)

(Notation : (t1, t2, . . . , tk) = (1, .., j, d1, ..., dk−j))

23

as desired. ¥

We now check that the verification is performed correctly.

Theorem 5.1.2 Let PK = (gs1 , gs2 , ..., gsT) be a public key generated by the

above key generation algorithm. Let (M, (z, e, i)) be an output of IRKE.Sign

(M, SKi). Then IRKE.Ver (M,PK, (z, e, i)) = 1.

Proof: We will show that v ≡ r(= gk) mod q. The process is the same as

one of the Schnorr signature scheme.

v ≡ gz · (g(s1,s2,...,sT)•B(i))−e (mod p)

≡ g(SKi)·e+k · (gSKi)−e (mod p)

≡ g(SKi)·e+k · g−(SKi)·e (mod p)

≡ gk (mod p)

Hence h2(M, v) = h2(M, r), i.e., e = e′, always holds. This means that

the verification succeeds. ¥

5.2 Complexity and Efficiency

Our scheme has public key and secret information of size O(T), where T de-

notes the total time period.

Key Generation. In order to complete the key generation algorithm, we

first have to generate secret information S and calculate the public key PK

using it. It requires T modular exponentiations.

Key Update. Key update algorithm consists of addition and multiplica-

tion. Since we use Shamir’s (k, n) threshold scheme, key update algorithm

24

requires (k · T
2
) modular additions and k modular multiplications. T

2
means

that ideal hash function (h1) generates T
2
’s ‘1’ bits on the average.

Signing and Verifying. Our scheme has the same signature and veri-

fication algorithm as Schnorr one. So it has same efficiency and complex-

ity except for another pre-computation process in our verification algorithm,

which takes only T
2

modular multiplications. Also T
2

has same meaning as

above.

5.3 Security Proof

5.3.1 Robustness

The robustness of our intrusion-resilient key-evolving protocol is shown by

the following theorem:

Theorem 5.3.1 The intrusion-resilient key-evolving protocol (IRKE) is ro-

bust for an adversary who can corrupt k−1 multiple shares among n multiple

shares such that n < 2k − 2.

Proof: There are n multiple shares in IRKE.Upd . Every Agentl(1 ≤ l ≤ j)

contains a multiple share MSl. Also the signer has n − j multiple shares

MSl′(j + 1 ≤ l′ ≤ n). Thus, even if there exists an adversary who can

corrupt up to k − 1 multiple shares among n multiple shares, any subset of

k multiple shares constructs the unique secret key SKi uniformly distributed

in Gq at the time period i. That means IRKE.Upd completes successfully in

event that at most k − 1 multiple shares are corrupted.

In this key update algorithm (IRKE.Upd), each partial secret key SKUl

from every Agentl(1 ≤ l ≤ j) is verified by using the random multiplication

of Agentl’s correspondent published values gf1(xl), gf2(xl), ... , gfT (xl) based on

the hash value of the time period i as follows:

25

gSKUl ≡ g(f1(xl),f2(xl),...,fT (xl))•B(i) (mod p)

Even at most k− 1 multiple shares can be corrupted, the adversary needs

partial secret keys from other multiple shares to form k valid partial secret

keys. With k valid partial secret keys, the secret SKi can be produced by

using the Lagrange interpolation, and its correctness was shown in Section

5.1. Therefore, IRKE.Upd algorithm completes successfully. These show that

IRKE is robust. ¥

5.3.2 Key-Independence

Theorem 5.3.2 In the random oracle model, our key-evolving protocol is

key-independent if the Discrete Logarithm Problem is hard.

Proof: We will show how to solve the Discrete Logarithm Problem (DLP) if

successful attacker breaks the key-independent property. First, we will build

a DL oracle using the successful attacker. Next, we’ll try to solve DLP using

this DL oracle.

Given y in the maximal cyclic group of Z∗p, we will use the successful

attacker to compute x = logg y. First, we will generate a set of random

numbers {ri|i = 1, 2, ..., T + 1}. And we control the random oracle to output

{r1, r2, ..., rk−1} at the first k − 1 queries. Thus, the following relations hold.

r1 = S •B(1) = (s1, s2, ..., sT) •B(1), Q1 = gr1

r2 = S •B(2) = (s1, s2, ..., sT) •B(2), Q2 = gr2

...
...

rk−1 = S •B(k − 1) = (s1, s2, ..., sT) •B(k − 1), Qk−1 = grk−1

At the beginning of the k periods, we force the random oracle to output

y · ga, i.e.

y · ga = Qk = grk = gS•B(k) = gSKk

26

For periods from k + 1 to T + 1, the random oracle proceeds as usual.

Second, we give (Qi, SKi) and the above public key set to the attacker

A. If he succeeds in breaking key-independent, A would return (Qj, SKj) for

some time period j 6= i.

The probability that j = k is 1
T
. If this happens, we have SKj = SKk =

logg(y·ga) = logg y+a. Therefore, the discrete logarithm of y can be computed

as follows :

x = SKj − a

Given this DL oracle, we can solve DLP. Therefore, if solving DLP is hard,

this key-evolving protocol is key-independent in the random oracle model. ¥

5.3.3 Intrusion-Resilience

Theorem 5.3.3 In the random oracle model, our key-evolving protocol is

intrusion-resilient protocol.

Proof: Attacker can consider each element of secret information S as an

unknown variable and each secret key as a linear equation. Since the num-

ber of all elements in secret information S is T , which represents the total

time period, we can consider our key-evolving protocol as a T linear system

of equations with T unknown variables. Thus, attacker must know T se-

cret keys to compromise a secret key of non-exposed (past or future) time

period by the property of a linear system of equations, i.e., he must know

secret keys of all periods. Therefore, if secret keys of all time periods are not

compromised, it is not possible to forge signatures relating to non-exposed

secret keys. This means that our key-evolving protocol is (T − 1)-resilient,

i.e., intrusion-resilient. ¥

Also, we prove that intrusion-resilient property can reduce to key-independent

property in the following theorem.

27

Theorem 5.3.4 In the random oracle model, if our key-evolving protocol is

intrusion-resilient, our key-evolving protocol is key-independent.

Proof: A proof of this theorem will be nearly the same as one of theorem

5.3.2. Let A-KI be an attacker against key-independent property. We build

an attacker A-IR against intrusion-resilient property as follows. A-IR now

runs the attacker A-KI against key-independent property. First, we will

generate a set of random numbers {ri|i = 1, 2, ..., T + 1}. And we control the

random oracle to output {r1, r2, ..., rk−1} at the first k− 1 queries. Thus, the

following relations hold.

r1 = S •B(1) = (s1, s2, ..., sT) •B(1), Q1 = gr1

r2 = S •B(2) = (s1, s2, ..., sT) •B(2), Q2 = gr2

...
...

rk−1 = S •B(k − 1) = (s1, s2, ..., sT) •B(k − 1), Qk−1 = grk−1

At the beginning of the k periods, we force the random oracle to output

SKk, i.e.

SKk = S •B(k) = (s1, s2, ..., sT) •B(k)

For periods from k + 1 to T + 1, the random oracle proceeds as usual.

Second, we give (Qi, SKi) and the above public key set to the attacker A-

KI. If he succeeds in breaking key-independent, A-KI would return (Qj, SKj)

for some time period j 6= i. Then, A-IR outputs the same result as A-KI did.

The probability that j = k is 1
T
. If this happens, we have SKj = SKk.

This means that A-IR has gotten the secret key SKj without the knowledge

of (T − 1) secret keys. In the end, we can build the attacker A-IR which

would break the (T − 1)-resilient property, i.e., intrusion-resilient property.

Therefore, if our key-evolving protocol is intrusion-resilient, our key-evolving

protocol is key-independent in the random oracle model. ¥

28

5.3.4 Unforgeability

The notion of unforgeability that we use for the regular underlying scheme is

the strong notion of security for digital signature as formalized in [13] (secu-

rity against existential forgery under adaptive chosen message attack). This

notion can be extended in a natural way to capture also intrusion-resilience

of signatures. Our proof of the following theorem follows one of Theorem 1

in [17].

Theorem 5.3.5 Let SIG = (Gen, Sign, Ver) be an unforgeable signature

scheme and IRKE-SIG = (IRKE.Gen, IRKE.Upd, IRKE.Sign, IRKE.Ver) be an

intrusion-resilient key-evolving signature scheme, then the scheme IRKE-SIG

constructed above is an unforgeable intrusion-resilient signature scheme.

Proof: Let F-IRKE be a forger against scheme IRKE-SIG that succeeds with

probability ε. We build a forger F against the underlying scheme SIG as fol-

lows. Let (p, s) be a pair of public/private keys for SIG against which we want

to produce forgeries. Forger F is given an oracle Osig that given a message

returns a signature on that message under the pair (p, s). Forger F starts

by generating information corresponding to T periods of a IRKE-SIG scheme.

F first chooses a period number t0 at random 1 and T . Then it chooses a

random seed for IRKE.Gen and generates out of it T − t0 private SIG keys

following the specification of the key generation algorithm IRKE.Gen. These

keys are set as the IRKE-SIG keys for periods t0 +1, t0 +2, . . . , T . In addition,

F generates t0 − 1 random and independent private keys that it sets as the

IRKE-SIG keys for periods 1 to t0 − 1. For period t0 it sets the public key to

be p.

Algorithm F now runs the forger F-IRKE against the IRKE-SIG scheme de-

fined above. We let F-IRKE query for signatures corresponding to any period

of its choice except for the following restriction. Whenever F-IRKE asks for

29

a signature corresponding to a period i, it cannot later ask for a signature

corresponding to any period different from a period i. Each time F-IRKE

requests a signature (on a message of its choice) corresponding to any period

different than t0, then F provides the requested signature using its knowledge

of the signature keys for those periods (these keys were chosen by F). When

F-IRKE asks to issue signatures for period t0, then F goes to its oracle Osig

to get the corresponding signatures under (p, s). When F-IRKE decides to

query the secret information for some t′-th period then F does the following.

If t′ = t0, then it aborts its run (i.e., in this case F fails to forge). Otherwise if

t′ 6= t0, then F provides F-IRKE with the secret information for that period

(F knows it). F keeps running F-IRKE as before and responds to signature

requests as before. If at some point F-IRKE outputs a forgery against a

period t′′ 6= t′ then F acts as follows. If t′′ 6= t0, F aborts its run failing to

forge. Otherwise if t′′ = t0, F outputs the same forgery as F-IRKE did and

stops. (Note that in order for F-IRKE ’s output to be considered a forgery it

must be that F-IRKE did not ask for the forged message to be signed during

period t0, so in particular F did not ask for that signature from Osig meaning

that this is a valid forgery for F too.)

What is the probability of F to succeed in forging? If F-IRKE succeeds

with probability ε then F succeeds at least with probability roughly ε/T .

This argument is outlined as follows. First, the view of IRKE-SIG that F

produces for F-IRKE is computationally indistinguishable from the view of

F-IRKE under a real run of IRKE-SIG (where all keys are produced out of

a single initial seed for IRKE.Gen). Indeed, using standard techniques it is

straightforward to show that if a distinguisher exists for these two views of

IRKE.Gen. Next, conditioned on F choosing the value of t0 as the period for

which F-IRKE will eventually output a forgery, we have that the probability

that F outputs a forgery against (p, s) is the same probability that F-IRKE

succeeds in forging, i.e., probability ε. Since choosing the “right” t0 happens

30

with probability 1/T we get that ε/T is an approximate lower bound on the

forging probability of F. (The “approximate” comes from the negligible prob-

ability with which the above mentioned views of F-IRKE can be successfully

distinguished.) ¥

We show that if a forger for the scheme IRKE-SIG exist then we can con-

struct out of it a forger for the scheme SIG, thus reaching a contradiction. We

note that a basic difference between a forger against SIG and the one against

IRKE-SIG is that the former is never given the signature key, while the latter

is provided with the signature key for a period i and it is considered successful

if it finds a forgery for a signature corresponding to a time period i′ 6= i.

Pointcheval et al. [21] proved that Schnorr signature scheme is UF-CMA

(Unforgeable Against Chosen Message Attack). Therefore, we can reach the

following Proposition.

Proposition 5.3.6 In the random oracle model, our intrusion-resilient key-

evolving signature scheme (IRKE-SIG) is unforgeable.

Proof: The proof of this proposition comes immediately from Theorem 5.3.5.

¥

31

Chapter 6

Conclusions

In this thesis, we have studied the design and the analysis of intrusion-resilient

key-evolving protocol, in particular, running together with Schnorr signature

scheme and Shamir’s (k, n) threshold scheme. We have reviewed previous

works and presented a new construction.

We have proposed a new key-evolving protocol which combines Shamir’s

(k, n) threshold scheme and a discrete logarithm based scheme (e.g. Schnorr

signature scheme). Shamir’s (k, n) threshold scheme distributes possession of

the secret information of the signer to a group of Agents. Our construction

is working on an the discrete logarithm problem over a finite field.

To guarantee sound security of our construction, we have established ap-

propriate security model to prove security of our construction. Especially,

we defined the concept of intrusion-resilience which is different from Itkis et

al.’s intrusion-resilience [15]. In our protocol, even if there are several entities

— Agents — as well as the signer, all Agents are required to execute much

simpler computational capability than the signer is unlike Itkis et al.’s case.

To get intrusion-resilience, we have used the properties of a linear system of

equations. That is, when we consider our key-evolving protocol as a linear

system of equations with T unknown variables and T linear equations, we

have showed that if secret keys of all time periods are not compromised, it is

not possible to forge signatures relating to non-exposed secret keys. We be-

lieve that our intrusion-resilience has the best strength against key exposure

problem.

32

We also have used the random oracle model as a tool to show that any at-

tacker, who breaks the intrusion-resilient key-evolving protocol, can be trans-

formed into an efficient algorithm to solve the underlying problem, namely

“the Discrete Logarithm Problem”. Finally, we have presented the security

proof for all well-defined security requirements.

Our construction has also achieved an efficiency in key-evolving protocol.

Actually our key-evolving protocol requires mainly summation operation as

a simple one.

Our proposed protocol can be applied in any schemes such as the ElGamal

scheme (encryption and signature), the Digital Signature Algorithm (DSA)

and so on based on the discrete logarithm problem and the secret information

should be distributed to enhance security. The typical example for our pro-

tocol is a smart card with secret information which is distributed by several

Agents including the signer for validation purpose.

In future work, since there are no previous formal proofs for the schemes

related to our proposed one in the literature, we can add provably secure

proof to our scheme. This would be very meaningful job. Also the main

drawback of our scheme is that key update needs help from Agents. Thus, it

would be interesting to find a key-evolving protocol in which key update can

be done by the signer alone.

33

îß����ô�Ç q�x9�v� Ìqt���s� ��0pxô�Ç áÔ�Ð�Ðc+t\� @/ô�Ç ���½̈

�̂�×�æëß�

/BN>hv�l�ìøÍ ½̈�̧\�"f>h���v�_�ì�rz�́�Ér���©�d��y��ô�Çë�H]j×�æ���s� 9x�

½+É Ãº \O���H ë�H]j�Ð #��������. s��¦̀�	כ v� �̧Ø�¦ ë�H]j(key exposure problem)��

�¦ ô�Ç��. �&³F� ��6 x÷&�¦ e����H �����"f"î
 l�ZO�\�"f "f"î
��_� >h���v��� �̧Ø�¦

s� ÷&���, s��Qô�Ç ��z�́�̀¦ ���t��t� 3lwô�Ç�� ��8���̧, ��u� "f"î
���� "f"î
ô�Ç

ë�H"f\�¦ 0A�̧ ½+É Ãº e����. s�\�¦ ~½Ót��l� 0A�#� ���~½Ó �Ðîß�(forward-secure)

"f"î
 l�ZO�, ë�H)3� (threshold) "f"î
 l�ZO�, key-insulated "f"î
 l�ZO�, intrusion-

resilient "f"î
 l�ZO� 1px_� ���½̈[þts� s�ÀÒ#Q4R M®o��. ¢̧ô�Ç s�\� ú́�2X v� ���

>h(key-evolving) áÔ�Ð�Ðc+ts� >hµ1Ï ÷&%3���HX<, s� �̧��H l�ZO�[þt�Ér áÔ�Ð�Ðc+t ���

½̈çß��̀¦ ÂÒì�r&h���� r�çß� ½̈çß�Ü¼�Ð ��è�H +' y�� r�çß� ½̈çß�[þts� ���'�� ÷&#Q °ú� M:

���� >h���v��� Ìqt����)a��. ����"f /BN������� #QÖ¼ :£¤&ñ
ô�Ç r�çß� ½̈çß�îß�_� >h

���v�\�¦ S\�1pq��8���̧ ���Ér r�çß� ½̈çß�_� >h���v���H �Ð ñ÷&#Q |9� Ãº e����. Óüt

�:r �Ð ñ�)a >h���v��Ð "f"î
ô�Ç ë�H"f ¢̧ô�Ç 0A�̧ ½+É Ãº \O��̀¦ �.���s	כ s�XO�>� r�

çß� ½̈çß�s� ���>hK� �������"f >h���v� ¢̧ô�Ç Ìqt���÷&�¦ #QÖ¼ r�&h�\�"f�̧ ¾º½̈��

"f"î
 ë�H"f\�¦ ���7£x ½+É Ãº e��#Q�� �Ù¼�Ð, áÔ�Ð�Ðc+t ��� ½̈çß� 1lxîß� ���7£x\� �9�

¹ô�Çכ /BN>hv���H ���_� °úכÜ¼�Ð �¦&ñ
|̈c �.���s	כ s�XO�1pw 0A_� ~½ÓZO��Ér ô�Ç ��6 x

��_� >h���v��� ì�rz�́ ÷&�8���̧ Õª ì�rz�́\�"f �̀¦ Ãº e����H d��y��ô�Ç ë�H]j\�¦ ×�¦{9�

Ãº e����H ~½ÓZO�s����¦ ½+É Ãº e����.

�:r �7Hë�H\�"f��H ��� ñ�<Æ&h�Ü¼�Ð #Q�9î�r ë�H]j��� s�íß��ÐÕª_� #Q�9î�r ë�H]j

(discrete logarithm problem) \� l�ìøÍ ô�Ç v� ���>h áÔ�Ð�Ðc+t�̀¦ [O�>���¦ s��	כ

_� îß����$í
\� @/ô�Ç &ñ
|¾Ó&h� ��H��\�¦]jr�ô�Ç��. v� ���>h áÔ�Ð�Ðc+ts� ��0pxô�Ç /BN

���\�@/K�"fîß���������H��©��Ð¦̀�	כ�l�0AK�v����>háÔ�Ð�Ðc+ts�\O�����îß�

���ô�Ç ��\� @/ô�Ç &ñ
+þA&h�s��¦ %3����ô�Ç Ãº�<Æ&h� 7£x"î
s� ÃºìøÍ÷&#Q�� ½+É �.���s	כ

v� ���>h áÔ�Ð�Ðc+t\� @/ô�Ç îß����$í
s� 7£x"î
÷&��� s�\�¦ "f"î
 l�ZO�\� &h�6 xô�Ç��.

34

v� ���>h áÔ�Ð�Ðc+ts� s�íß��ÐÕª_� #Q�9î�r ë�H]j\� l�ìøÍ��¦ e��l� M:ë�H\� °ú �Ér

ë�H]j\� l�ìøÍô�Ç �̧��H "f"î
 l�ZO�[þt\� &h�6 x|̈c Ãº e����. ����"f �:r �7Hë�H�Ér îß����

ô�Ç q�x9�v� Ìqt���s� ��0pxô�Ç v� ���>h "f"î
 l�ZO��̀¦]jr���¦�� ô�Ç��.

35

References

1. R. Anderson, “Two Remarks on Public-Key Cryptology”,

Invited lecture, Fourth Annual Conference on Computer

and Communications Security, ACM, 1997, Availabe at

http://www.cl.cam.ac.uk/users/rja14/.

2. M. Abdalla, S. Miner, and C. Namprempre, “Forward-Secure Threshold

Singature Schemes”, In David Naccache, editor, Progress in Cryptology-

CT-RSA 2001, LNCS 2020, 2001.

3. M. Bellare and S. Miner, “A Forward-Secure Digital Signature Scheme”,

In Michael Wiener, editor, Advances in Cryptology - Crypto ’99,

Springer-Verlag, 15-19 August 1999. Revised version is avaiable from

http://www.cs.ucsd.edu/∼mihir/.

4. M. Bellare and P. Rogaway, “Random Oracles are Practical: A Paradigm

for Designing Efficient Protocols”, Proceedings of the First ACM Con-

ference on Computer and Communications Security, pp. 62-73, 1993.

5. M. Bellare and P. Rogaway, “The Exact Security of Digital Signatures -

How to Sign with RSA and Rabin”, Advances in Cryptology - Eurocrypt

1996, Springer-Verlag, LNCS 1070, pp 399-416, Berlin, 1996.

6. R. Canetti, O. Goldreich, and S. Halevi, “The Random Oracle Method-

ology Revisited”, Proceedings of the 30th ACM Annual Symposium on

Theory of Computing, pp. 209-218, 1998.

7. R. Cramer and V. Shoup, “Signature Schemes Based on The Strong RSA

Assumption”, ACM Transactions on Information and System Security,

3(3):161-185, 2000.

36

8. Y. Desmedt and Y. Frankel, “Threshold Cryptosystems”, In G.Brassard,

editor, Advances in Cryptology - Crypto ’89, Springer-Verlag, LNCS 435,

pp. 307-315, 1990.

9. Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-Insulated Public-Key

Cryptosystems”, In Lars Knudsen, editor, Advances in Cryptology - Eu-

rocrypt 2002, Springer-Verlag, LNCS, 28 April-2 May 2002.

10. NIST, “Digital Signature Standard (DSS)”, Federal Information Pro-

cessing Standards Publication 186, November 1994.

11. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms”, IEEE Transactions on Information The-

ory, IT-31(4):469-472, 1985.

12. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust Threhold

DSS Signatures”, In Ueli Maurer, editor, Advances in Cryptology - Eu-

rocrypt ’96, Springer-Verlag, LNCS 1070, pp. 354-371, 12-16 May 1996.

13. S. Goldwasser, S. Micali, and R. L. Rivest, “A Digital Signature Scheme

Secure Against Adaptive Chosen-Message Attacks”, SIAM J. Comput-

ing, 17(2):281-308, April 1988.

14. A. Herzberg, M. Jackobsson, S. Jarecki, H. Krawczyk, and M. Yung,

“Proactive Public Key and Signature Systems”, In Fourth ACM Confer-

ence on Computer and Communication Security, pp. 100-110, 1997.

15. G. Itkis and L. Reyzin, “SiBIR: Signer-Base Intrusion-Resilient Sig-

natures”, In Moti Yung, editor, Advances in Cryptology - Crypto

2002, Springer-Verlag, LNCS, 18-22 August 2002, Available from

http://eprint.iacr.org/2002/054/.

16. KCDSA Task Force Team, “The Korean Certificate-based Digital Signa-

ture Algorithm”, IEEE P1363a Submission, August 1998.

37

17. Hugo Krawczyk, “Simple Forward-Secure Singatures from Any Signature

Scheme”, In Seventh ACM Conference on Computer and Communication

Security, November 1-4 2000.

18. C. -F. Lu and S. W. Shieh, “Secure Key-Evolving Protocols for Discrete

Logarithm Schemes”, In Proceedings of The Cryptographer’s Track at

the RSA Conference 2002., Springer-Verlag 2002, LNCS 2271, pp. 300-

310.

19. R. Ostrovsky and M. Yung, “How To Withstand Mobile Virus Attacks”,

In 10-th Annual ACM Symp. on Principles of Distributed Computing,

pp. 51-59, 1991.

20. K. Ohta and T. Okamoto, “On Concrete Security Treatment of Sig-

natures Derived from Identification”, Advances in Cryptology - Crypto

1998, Springer-Verlag, LNCS 1462, pp. 354-369, Berlin, 1998.

21. D. Pointcheval and J. Stern, “Security Proofs for Signature Schemes”,In

Ueli Maurer, editor, Advances in Cryptology - Eurocrypt ’96, Springer-

Verlag, LNCS 1070, pp. 387-398, 12-16 May 1996.

22. D. Pointcheval and J. Stern, “Security Arguments for Digital Signa-

tures and Blind Signatures”, Journal of Cryptlogy, 1999, Available from

http://www.di.ens.fr/∼pointche.

23. R. Rivest, “The MD5 Message-Digest Algorithm”, FRC 1321, The In-

ternet Engineering Task Force, April 1992.

24. C. P. Schnorr, “Efficient Identification and Signatures for Smart Card”,

Advances in Cryptology - Eurocrypt ’89, Springer-Verlag, pp. 235-251.

25. C. P. Schnorr, “Efficient Signature Generation by Smart Cards”, Journal

of Cryptology, 4(3):161-174, 1991.

38

26. A. Shamir, “How To Share A Secret”, Communications of the ACM,

22(11), pp. 612-613, 1979.

27. NIST, “Secure Hash Standard (SHS)”, Federal Information Processing

Standards Publication 180-1, April 1995.

28. W. -G. Tzeng and Z. -J. Tzeng, “Robust Key-Evolving Public-Key En-

cryption Schemes”, Record 2001/009, Cryptology ePrint Archive, 2001.

39

Acknowledgements

First, I would like to express my gratitude to Prof. Kwangjo Kim, my

thesis advisor, for his constant direction and support. Without his guidance,

I could never have carried out my research. Throughout my days in ICU, he

gave me many lessons about how to work and to study. Special thanks are

also due to Prof. Jae Choon Cha and Dr. Dae Sung Kwon for their generosity

and agreeing to serve as advisor committee members.

I also would like to thanks to all members of Cryptology and Information

Security laboratory: Byungkon Kim, Songwon Lee, Hwasun Chang, Chuljoon

Choi, Sungjoon Min, Sangwon Lee, Jaehyrk Park, Soogil Choi, Kyusuk Han,

Zeen Kim, Jeongkyu Yang, Seokkyu Kang, Vo Duc Liem from Vietnam, Yan

Xie, Wang Ping, Xiaofeng Chen, Ren Kui, and Jiqiang Lv from China, and

Divyan from India, for giving me lots of interests and good advice during the

course of my study. I also thanks Jeongmi Choi for her helpful support as a

staff member.

In addition, I appreciate to the graduates, Myungsun Kim, Jongseong

Kim, Hyunrok Lee, and Wooseok Ham, and also give my thanks Jungyeon

Lee, Junbaek Ki, Sangbae Park, and Yunkyoung Jeong of Applied Crypto

laboratory. I want to present my sincere gratitude to my fellow student

Yutaek Lim, hoping to overcome his difficulties as fast as possible.

I always hope God bless my oldest friend, Yeonju Song, and his family.

He has been a best friend to me in adversity or in prosperity.

My love and thanks go to my parents for endless and profound affection

and their devotion. Especially, my mother has devoted her lifetime in sup-

porting me and my brother, and my father has supported me for expanding

wings of my study and has given his whole life to the family. My brother

Joongsun Kim also has given me warmhearted concerns behind me quietly. I

cannot forget their trust and encouragement on me.

Last, but not least, I greatly appreciate my lovely sweetheart, Yunsuk

Kim, for her belief and constant encouragement through very difficult situa-

tion.

Finally, I will always remember my life of ICU. It made me a grown-up

person.

Curriculum Vitae

Name : Joong Man Kim

Date of Birth : May. 11. 1975

Sex : Male

Nationality : Korean

Education

1994.3–2002.2 Mathematics

Korea Advanced Institute of Science and Technology (KAIST)

(B.S.)

2002.3–2004.2 School of Engineering

Information and Communications University (M.S.)

Career

2003.7– Graduate Research Assistant

Research on Secure DRM in Ubiquitous Environment

The Ministry of Science and Technology (MOST)

2003.6–2003.8 Apprentice Researcher

Cooperative Computing Research Group, Nippon Telegraph

and Telephone (NTT)

2003.3–2003.6 Undergraduate Teaching Assistant

ICE 0100 University Mathematics

School of Engineering, ICU

2002.4–2002.12 Graduate Research Assistant

Development of Secure Electronic Trading System for Online

Game Items

Cemtlo Media Corporation

2002.3–2002.11 Graduate Research Assistant

Research on ID-Based Authentication Model and Applica-

tion Service

Electronics and Telecommunications Research Institute (ETRI)

2002.3– Graduate Research Assistant

Research on Cryptographic Primitive using Bilinear Paring

The Ministry of Information and Communications (MIC)

2002.3– Graduate Research Assistant

Cultivation of Top-Level IT Security Manpower

The Ministry of Information and Communications (MIC)

Publications

(1) 2003.12 �̂�×�æëß�, �̂�F�g�̧, ðîß����ô�Ç q�x9�v� Ìqt���s� ��0pxô�Ç Schnorr +þA

"f"î
 l�ZO�”, 2003�̧��̧ ô�Ç²DG&ñ
�Ð�Ð ñ�<Æ�r 1lx>�&ñ
�Ð�Ð ñ�<Æ

Õüt@/�r, pp.422-427, ô�Ç�ª�@/, 2003.12.6

(2) 2003.10 JoongMan Kim and Kwangjo Kim, “Intrusion-Resilient Key-

Evolving Schnorr Signature”, Proc. of CSS2003, pp.379-384,

Oct. 29∼31,2003 Kitakyushu, Japan, IPSJ

(3) 2002.7 J.M. Kim and J. Cheon, “A Cryptographic Protocol for On-

line Test,” Proceedings of KIISC Conference Region Chung-

Cheong, pp.145-152 (2002)

