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Abstract

As group-oriented and collaborative applications is getting popular-

ity, the needs for the secure and reliable group communications increase.

One of its important challenges in the secure and reliable group com-

munications is to design secure and efficient group key management.

There are two kinds of group key managements: group key distri-

bution for the centralized management and group key agreement for

the distributive management. While group key distribution is often ap-

propriate in large multicast-style groups, not a few collaborative group

environments require group key agreement scheme.

Group key agreement scheme is more adaptable than group key dis-

tribution in communication environments such as DPG (Dynamic Peer

Group) in which its membership can be frequently changed and the

communicating party in a group can be dynamically configured.

In this thesis, we focus on the key agreement protocol in DPG envi-

ronment with low communication and computational cost. As far as the

communication and computational cost concerned, the existing group

key management protocols such as STR (Steer) and TGDH (Tree-based

Group Key Agreement) reduce the cost O(n) to O(log2n) by using bi-
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nary tree. In the tree-based mechanism, it is noticed that the compu-

tational cost can be reduced by lowering the depth of the tree. In this

thesis, we propose more efficient key agreement protocols, i.e., skinny

tree-based group key agreement and ternary tree-based group key agree-

ment, by applying the pairing-based cryptography to STR and TGDH

respectively. Through our proposed protocols, we substitute the binary

key tree with the ternary tree and lower the depth of key tree, thus we

reduce the computational cost required in protocols.

Unlike most of the existing group key agreement protocols which

focus on reducing the computational cost, STR is optimized in commu-

nication cost at the expense of the computational cost O(n). However,

our skinny tree-based group key agreement reduces the computational

cost by the aid of pairing while preserving the communication cost.

Thus, it is more profitable in high-delay wide area network. In addi-

tion, our ternary tree-based group key agreement reduces the TGDH’s

computational cost O(log2n) to O(log3n).

We present the protocol for group membership events in our pro-

posed scheme: member join and leave, group merge and partition. Also

we analyze the security of each our proposed schemes based on the hard

problem of DBDH (Decision Bilinear Diffie-Hellman). Finally, we mea-

sure the performance of our proposed protocols in comparison with STR

and TGDH.
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I. Introduction

Secure and reliable communications have become critical in modern

computing. The centralized services like e-mail and file sharing can

be changed into distributed or collaborated system through multiple

systems and networks. Basic cryptographic requirements such as data

confidentiality, data integrity, authentication and access control are re-

quired to build secure collaborative system in the broadcast channel.

When all group members have the shared secret key, these security ser-

vices can be easily implemented.

1.1 Group Key Management

There are different approaches to group key management in peer group.

First, centralized group key distribution is that a single key server gen-

erates keys and distributes them to the group. Essentially, a key server

maintains long-term shared keys with each group member in order to

enable secure two-party communication for the actual key distribution.

This approach has a drawback: Key server must be always available to

every possible subset of a group in order to support continued operation

in the event of network reconfiguration.

Another approach, called decentralized group key distribution, in-

cludes dynamically selecting a group member that generates and dis-

tributes keys to other group members. This approach is more robust

and applicable to many-to-many groups since any partition can continue

operation by electing a key server. But a key server must establish long-

term pair-wise secure channels with all current group members in order

to distribute group keys.
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Contributory group key agreement method is that each group mem-

ber contributes an equal share to the common group key. This method

can avoid the problems with centralized trust. Moreover contributory

method does not require the establishment of pair-wise secure channels

among group members.

1.2 Group Membership Operations

A comprehensive group key agreement must handle adjustments to

group secrets subsequent to all membership operations in the under-

lying group communication system.

We distinguish among single and multiple member operations. Sin-

gle member changes include member addition or deletion. This oc-

curs when a member wants to join(or leave) a group. Multiple member

changes also include addition and deletion: Member Join and Leave .

We refer to the multiple addition operation as Group Merge , in which

case two or more groups merge to form a single group. We refer to the

multiple leave operation as Group Partition , whereby a group is split

into smaller groups. Group Merge and Partition event are common

owing to network misconfiguration and router failures. Hence, dealing

with Group Partition and Merge is a crucial component of group

key agreement.

In addition to the single and multiple membership operations, peri-

odic refreshes of group secrets are advisable so as to limit the amount

of ciphertext generated with the same key and to recover from poten-

tial compromise of member’s contribution or prior session keys. Key

Refresh is one of the most important security requirements of a group

key agreement.

The special member, referred to as sponsor, is responsible for broad-

casting all link values of the current tree to the members. Note that the

2



sponsor is not a privileged member. His task is only to broadcast the

current tree information to the group members. Any current member

could perform this task. We assume that every member can unambigu-

ously determine both the sponsors and the insertion location in the key

tree. Key Refresh operation can be considered to be a special case of

Member Leave without any members actually leaving the group.

Let’s summarize all membership operations as follows:

• Member Join : A new member is added to the group.

• Member Leave : A member is removed from the group.

• Group Merge : A group is merged with the current group.

• Group Partition : A subset of members are split from the

group.

• Key Refresh : The group key is updated.

Group key agreement of dynamic group must provide four security

properties: Group key secrecy is basically supported property in group

communication. Forward secrecy means that any leaving member from

a group can not generate new group key. Backward secrecy means that

any joining member into a group can not discover previously-used group

key. The combination of backward secrecy and forward secrecy forms

key independence.

1.3 Bilinear Pairings and BDH Assump-

tion

Let G1 be an additive group generated by P , whose order is a prime q,

and G2 be a multiplicative group of the same order q. We assume that
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the discrete logarithm problem(DLP) in both G1 and G2 is hard. Let

ê : G1 ×G1 → G2 be a paring which satisfies the following conditions:

1. Bilinear: We say that a map ê : G1 × G1 → G2 is bilinear if

ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈ G1 and all a, b ∈ Z.

2. Non-degenerate : The map does not send all pairs in G1 ×G1 to

the identity in G2. Observe that since G1, G2 are groups of prime

order this implies that if P is a generator of G1 then ê(P, P ) is a

generator of G2.

3. Computability : There is an efficient algorithm to compute ê(P,Q)

for all P, Q ∈ G1

The Weil or Tate pairings associated with supersingular elliptic curves

or Abelian varieties can be modified to create such bilinear maps.

BDH Problem : The Bilinear Diffie-Hellman(BDH) Problem for a

bilinear map e : G1×G1 → G2 is defined as follows: given P, aP, bP, cP ∈
G1, compute e(P, P )abc, where a, b, c are randomly chosen from Z∗

q . An

algorithm A is said to solve the BDH problem with an advantage of ε if

Pr[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ε

BDH Assumption : We assume that the BDH problem is hard,

which means there is no polynomial algorithm to solve BDH problem

with non-negligible probability.

1.4 Our Contribution

Dynamic Peer Group (DPG) belongs to a kind of ad hoc group which its

membership can be frequently changed and the communicating party
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in a group can be dynamically configured. We focus on the group key

agreement scheme in DPG environment.

Recently, Joux[5] presented a three-party key agreement protocol

which requires each entity to make on a single round using pairings on

algebraic curves. This should be contrasted with the obvious extension

of the conventional Diffie-Hellman key distribution protocol to three

parties requiring two interactions per peer entity. We extend this three-

party key agreement protocol to group key agreement protocol using

ternary tree and also use two-party key agreement protocol for some

subtree node.

In the last two decades a lot of research has been conducted with

the aim of minimizing cryptographic overhead in security protocols. It

has been long held as an incontrovertible fact that heavy-weight com-

putation is the greatest burden imposed by security protocols. Network

devices and communication lines have become significantly faster and

cheaper. However, the communication has become both accessible and

affordable which resulted in drastic increase in the demand for network

bandwidth. Consequently, the explosion in the number of users and

their devices often causes network congestion and outages.

STR protocol proposed by Y. Kim et al.[8] is a simple, secure and

communication-efficient protocol. However the computational cost is

proportional to the number of current members. We proposed a new

group key agreement protocol that modifies STR protocol by utilizing

pairing-based cryptography. The resulting protocol reduces computa-

tional cost of STR protocol while preserving the communication cost.

This is the first contribution of the thesis.

Y. Kim et al.[9] also proposed a secure, simple and efficient key

management method, called TGDH(Tree-based Group Diffie-Hellman)

protocol, which uses key tree with Diffie-Hellman key exchange to effi-

ciently compute and update group keys. Since the computation cost of
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tree-based key management is proportional to the height of configured

key tree. We present new group key agreement scheme extending TGDH

to the group by utilizing pairing based cryptographic. Since our pro-

posed protocol use the ternary key tree, we can reduce the computation

cost O(log2n) of TGDH to O(log3n). This is our second contribution.

Lastly we prove the security of our proposed scheme and compare

the performance of our protocols with TGDH and STR.

1.5 Outline of the thesis

In this thesis, we deal with new group key agreement schemes in DPG

by utilizing pairing based cryptographic and the security analysis.

The rest of this thesis is organized as follows. In Chapter 2 we briefly

describe the basic idea of TGDH and STR. We explains the proposed

protocols in Chapter 4. For two kinds of tree we describe protocols of

membership events detail: Join, Leave, Merge and Partition. Security

and performance analysis is described in Chapter 5. we make a com-

parison with our proposed protocols, TGDH and STR. We end with

conclusion in Chapter 5.
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II. Related work

2.1 TGDH

TGDH is an adaptation of key tree in the context of fully distributed,

contributory group key agreement. TGDH computes a group key de-

rived from the contribution of all group members using a binary tree.

The tree is organized in the following manner: each node < l, v >

is associated with a key K<l,v> and the corresponding blinded key

BK<l,v> = gK<l,v> mod p. The key at the root node is the group key

shared by all members, and a key at the leaf node is the random session

contribution by a group member. Each member knows all the keys on

the path from its leaf node to the root as well as blinded keys on the

key tree.

The basic idea here is that every member can compute a group key

when all blinded keys on the key tree when all blinded keys on the

key tree are known. After any group membership event, every member

unambiguously adds or removes some nodes related with the event, and

<2,2> <2,3>

<3,0> <3,1>

<2,0> <2,1>

<3,2> <3,3>

<1,0> <1,1>

<0,0>

M1 M2

M3 M4

M5 M6

Figure 2.1: A key tree of TGDH
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invalidates all keys and blinded keys related with the affected nodes.

A special group member, the sponsor, then takes on a role to compute

keys and blinded keys and to broadcast the key tree to the group. If

a sponsor could not compute the group key, then the next sponsor will

compute comes into play. Eventually, some sponsor will compute the

group key and all blinded keys, and broadcast the entire key tree to

facilitate the computation of the group key by the other members of

the group.

2.2 STR

STR is basically an “extreme” version of TGDH, where the key tree

structure is completely imbalanced or stretched out. Like TGDH, the

STR protocol uses a tree structure that associated the leaves with in-

dividual random session contributions of the group members. Every

internal node has an associated secret key and a public blinded key.

The secret key is the result of a Diffie-Hellman key agreement between

the node’s two children. The group key is the key associated with the

root node.

r2, br2r1/k1, br1/bk1

r3, br3k2, bk2

r4, br4k3, bk3

k4

LN<1> LN<2>

LN<3>

LN<4>

IN<1>

IN<2>

IN<3>

IN<4>

M1 M2

M3

M4

Figure 2.2: A key tree of STR
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III. Our Protocol

In this chapter, we present the protocols for group membership changes

in proposed group key agreement: Join , Leave , Merge and Parti-

tion .

The proposed protocols use the skinny and ternary tree respectively.

We can classify three nodes of a key tree as follows:

• Member node : represent each group member as leaf node.

• Key node : correspond with one key. This key is shared by all

members of the subtree rooted at this key node.

• Root node : represent the shared group key.

3.1 Skinny Tree-based Group Key Agree-

ment

3.1.1 Notation

Key node KN<l> has three child node: another(lower) key node KNl−1

and two member node RN<l−1>, LN<l−1>. Each leaf node is associated

with a specific group member. The exception is KN<1> which is also a

leaf node corresponding to M1.

Each member node RN<i>(LN<i>) has a session random ri chosen

and kept secret by Mi. The blinded information of this session random

is bri(= riP ) called blinded key. Every key node has an associate secret

key kj and blinded key bkj(= kjP ). The secret key kj(j > 1) is the result

of hash value of pairing operation among the node’s three children.

9



r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r5, br5

r6, br6 k3, bk3 r7, br7

k4

M1M2 M3

M4 M5

M6 M7

KN<1>

LN<2>

LN<3>

KN<4>

LN<1>

RN<2>
KN<2>

KN<3>

RN<1>

RN<3>

Figure 3.1: An example of a skinny key tree

The shared group key in Fig. 3.1 is the key associated with root

node:

k4 = H1(ê(P, P )r6r7H1(ê(P,P )r4r5H1(ê(P,P )r1r2r3 )))

The basic key agreement protocol is as follows: We assume that all

members know the structure of the key tree and their initial position

with in the tree. Furthermore, each member knows its session random

and the blinded session random of all other members. The three mem-

ber M1, M2 and M3 can first compute the group key corresponding to

KN<2>. M1 can computes:

k1 = r1

k2 = H1(ê(r2P, r3P )r1) = H1(ê(P, P )r1r2r3)

k3 = H1(ê(br4, br5)
k2) = H1(ê(P, P )k2r4r5)

...

kh = H1(ê(P, P )kn−1r2n−2r2n−1)

Next, M1 broadcasts BT<1> with all blinded key bki (1 ≤ i ≤ N−1
2

)

and brj(1 ≤ j ≤ N). Upon receiving the broadcasted message, every

member can compute the group key kh.

10



In top level, the root node has two or three child nodes due to the

number of members: unbalanced or balanced key tree. In unbalanced

key tree we can not use pairing. Thus we compute the group key using

EC-DH(Elliptic Curve Diffie-Hellman).

3.1.2 Join Protocol

We assume the group has n members ({M1,M2, ...,Mn}). When the

new member Mn+1 join the group, both the new member and the cur-

rent group member receive this notification simultaneously. The new

member Mn+1 broadcasts a join request message that contains its own

blinded key bkn+1.

At this time, we are faced with two types of the current tree. In the

case of the unbalanced tree, each member Mi can compute the group

key by inserting the new member into the blank node. The sponsor

broadcast the blinded key tree BT<n> to Mn+1 without computing bkn.

However in balanced tree, each member Mi promote the new root node

KN<n/2+1> and add the new member. Then sponsor Mn updates his

own session random, computes brn, kn, bkn and broadcasts BT<n> to

the group with all blinded keys and blinded session randoms.

r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r5, br5

r6, br6 k3, bk3 r7, br7

k4

M1M2 M3

M4 M5

M6 M7

KN<1>

LN<2>

LN<3>

KN<4>

LN<1>

RN<2>
KN<2>

KN<3>

RN<1>

RN<3>

r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r5, br5

r6, br6 k3, bk3 r7’ , br7’

k4’ , bk4’

M1M2 M3

M4 M5

M6 M7

KN<1>

LN<2>

LN<3>

KN<4>

LN<1>

RN<2>
KN<2>

KN<3>

RN<1>

RN<3>

r8, br8
r8, br8

k5

M8
M8

LN<4>

New Memeber

New Group Key

Figure 3.2: Join operation in the skinny tree
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All existing members only need the new member’s blinded session

random and the new member needs the blinded group key(bkn) of the

prior group and the blinded session random(brn) of the sponsor. There-

fore all member can compute the group key. In Join , the sponsor is

always topmost leaf node, i.e., the most recent member in the current

group.

Fig. 3.2 shows the example of the new member joining the group.

The sponsor M7 update his own session random r7 and then compute

br7, k4, bk4. The sponsor broadcast BT<7> to the group with all blinded

session randoms and blinded keys. Upon receiving the message, all

members can compute the new group key(k5 = H2(r8k4P )).

3.1.3 Leave Protocol

We assume that a member Md leaves the group of n members. In Leave ,

the sponsor is the top rightmost leaf node. If Md leaves the group,

each remaining member updates his key tree by deleting the member

nodes corresponding to Md and its parent node. The sponsor moves

his position in key tree to the blank node Md of the leaving member,

updates his own session random and computes all keys and blinded keys

up to the root, and then broadcast BT<n>. This information allows all

members to recompute the new group key.

In Fig. 3.3, the member M5 leaves the group. the sponsor M7 move

his position to the leaving point. Then M7 updates his own random

session r′7, computes br′7, k′3, bk′3, and broadcast BT<7′> to the all mem-

bers. Upon receiving the broadcast message, all members can compute

the new group key. Though the leaving member M5 knows all blinded

keys, he can not compute the new group key since his random session

is not the part of the group key.

The Leave protocol provides forward secrecy since a former member
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cannot compute the new key owing to the sponsor ’s changing the session

random. Due to the sponsor refreshing his own random, the protocol

also supports key independence.

3.1.4 Merge Protocol

We assume that, as in the case of Join , the group member can receive

the merge event simultaneously. It is natural to merge the smaller group

onto the higher one.

r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r5, br5

r6, br6 k3, bk3 r7, br7

k4

M1M2 M3

M4 M5

M6 M7

KN<1>

LN<2>

LN<3>

KN<4>

LN<1>

RN<2>
KN<2>

KN<3>

RN<1>

RN<3>

r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r7’ , br7’

r6, br6 k3’ , bk3’

k4’

M1M2 M3

M4 M7

M6

KN<1>

LN<2>

LN<3>

KN<4>

LN<1>

RN<3>
KN<2>

KN<3>

RN<1>

Figure 3.3: Leave operation in the skinny tree

r1/k1, br1/bk1r2, br2 r3, br3

r4, br4 k2, bk2 r5, br5

k3

M1M2 M3

M4 M5
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Figure 3.4: Merge operation in the skinny tree
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If the lower tree is the unbalanced tree, the sponsor of the upper tree

moves M1, M2 to the blank upper node. If there is not the blank node,

the sponsor generates new root node and the blank leaf node, and then

moves them to the blank node. Finally trees are merged by inserting

M3 of the lower tree to the blank node of upper tree. We can merge

trees by using M2(, M3) and key node of lower tree. Also we can merge

many trees by using this method recursively.

In Fig. 3.4, in the first round of the Merge protocol, each sponsor

M5, M9 broadcasts his key tree with all blinded key and blinded session

random. Upon receiving this message, all member in two groups can

updates key tree. Each member moves M6 to the upper blank node and

insert key node KN<3> of lower tree. Note that the upper nodes should

be renumbered. In second round. the sponsor M5 computes all keys

and blinded keys up to the root node, and broadcasts BT<5> with all

blinded keys and blinded session randoms. All member now have the

complete set of blinded keys, which allows them to compute the new

group key.

3.1.5 Partition Protocol

The partition of the group is caused by a network fault. To the remain-

ing members, this actually appears as a concurrent Leave of multiple

members. We can handle multiple leaving members in a single round

by modifying the Leave protocol.

After deleting all leaving nodes, the sponsor Ms fills the topmost

members into the leaving nodes and refreshes his session random, com-

putes keys and blinded keys going up the tree. Then the sponsor broad-

casts BT<s> containing only blinded keys. Each member including Ms

can computes the group key.
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3.2 Ternary Tree-based Group Key Agree-

ment

3.2.1 Notation

Fig. 3.5 shows an example of a key tree. The root is located at the 0-th

level and the lowest leaves are at the h-th level. Since we use ternary

tree, every node can be a leaf or a parent of two nodes or a parent of

three nodes. The node are denoted < l, v >, where 0 ≤ v ≤ 3l− 1 since

each level l hosts at most 3l nodes. Each node < l, v > is associated

with the key K<l,v> and the blinded key (bkey) BK<l,v> = K<l,v>P .

The multiplication kP is obtained by repeating k times addition over

an elliptic curve. We assume that a leaf node < l, v > is associated with

Mi, then the node < l, v > has Mi’s session random key K<l,v>. We

further assume that the member Mi at node < l, v > knows every key

along the path from < l, v > to < 0, 0 >, referred to as the key-path. In

Fig. 3.5, if a member M3 owns the tree T3, then M3 knows every key

{K<2,2>, K<1,0>, K<0,0>} and every bkey BK∗
3 = {BK<2,2>, BK<1,0>,

BK<0,0>} on T3.

The case of subtree having three child node at < l, v >, computing a

key requires the knowledge of the key in one of the three child node and

the bkey of the other child node. We can get a key K<l,v> by computing

pairings. In another case, we need to know the key of one of the two

child node and the bkey of the other child node. We can get a key

K<l,v> by computing a point multiplication on elliptic curve. K<0,0> at

the root node is the group secret shared by all members.

For example, in Fig. 3.5, M3 can compute K<1,0>, K<0,0> using

BK<2,0>, BK<2,1>, BK<1,1> and K<2,2>. The final group key K<0,0> is

:

K<0,0> = H1(ê(H1(ê(P, P )r4r5r6)P, r7P )H1(ê(r1P,r2P )r3 ))
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h = 2
N = 7

Figure 3.5: An example of a ternary key tree

If there are 8 members in group, then the final group key K<0,0> is :

K<0,0> = H1(ê(H1(ê(P, P )r4r5r6)P, H2(r7r8P )P )H1(ê(r1P,r2P )r3 ))

where r7r8P is the shared key between M7 and M8 using ECDH (Ellip-

tic Curve Diffie-Hellman)problem.

Now we describe the group operation: Join , Leave , Partition and

Merge . We modify this operation in TGDH by utilizing the ternary

tree and bilinear map.

3.2.2 Join Protocol

We assume the group has n members: {M1,M2, ...,Mn}. The new mem-

ber Mn+1 initiates the protocol by broadcasting a join request message

that contains its own bkey BK<0,0> (= rn+1P ).

Each current member receives this message and first determines the

insertion point in the tree. The insertion point is the shallowest right-

most node, where the join does not increase the height of the key tree.

Otherwise, if the key tree is fully balanced, the new member joins to

the root node. The sponsor is the rightmost leaf in the subtree rooted

at the insertion point. If the intermediate node in the rightmost has
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Sponsor

New Intermediate Node

New Member

Figure 3.6: Join operation in the ternary tree

two member nodes, the sponsor inserts the new member node under

this intermediate node. The tree becomes fully balanced. Otherwise,

each member creates a new intermediate node and a new member node,

and promotes the new intermediate node to be the parent of both the

insertion node and the new member node. After updating the tree,

all members, except the sponsor, are blocked. The sponsor proceeds

to update his share and computes the new group key; the sponsor can

do this operation since it knows all necessary bkeys. Next, the sponsor

broadcasts the new tree which contains all bkeys. All other members

update their trees accordingly and compute the new group key.

It might appear wasteful to broadcast the entire tree to all members,

since they already know most of the bkeys. However, since the sponsor

needs to send a broadcast the entire tree to the group anyhow, it might

as well include more information which is useful to the new member,

thus saving one unicast message to the new member (which would have

to contain the entire tree).

Fig. 2 illustrates an example of member M8 joining a group where

the sponsor (M7) performs the following actions:

1. Rename node < 1, 2 > to < 2, 6 >.

2. Generate a new intermediate node < 1, 2 > and a new member

node < 2, 7 >.

17



Table 3.1: Join Protocol
Step 1 : The new member broadcasts request for join

Mn+1
BK<0,0>=rn+1P−−−−−−−−−−−−→ C

Step 2 : Every member

– if key tree contains the subtree that has two child

node, add the new member node for updating key

tree. otherwise, add the new member node and

new intermediate node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

The sponsor Ms additionally

– generates new share and computes all [key, bkey]

pairs on the key-path,

– broadcasts updated tree T̂s including only bkeys.

Ms
T̂s(BK∗

s )−−−−−−−−−−−−→ C ∪ {Mn+1}

Step 3 : Every member computes the group key using T̂s.
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3. Update < 1, 2 > as the parent node of < 2, 6 > and < 2, 7 >.

4. Generate new share and compute all [key, bkey] pairs.

5. Broadcast updated tree T̂7.

Since all members know BK<2,7>, BK<1,0> and BK<1,1>, M7 can com-

pute the new group key K<0,0>. Every other member also performs

steps 1 and 2, but cannot compute the group key in the first round.

Upon receiving the broadcasted bkeys, every member can compute the

new group key.

If another member M9 wants to join the group, the new sponsor(M8)

performs the following actions:

1. Generate a new member node < 2, 8 > under the intermediate

node < 1, 2 >.

2. Generate new share and compute all [key, bkey] pairs.

3. Broadcast updated tree T̂8.

Every member also performs step 1, and then can compute the new

group key with the broadcasted messages.

3.2.3 Leave Protocol

Such as Join protocol, we start with n members and assume that mem-

ber Md leaves the group. The sponsor in this case is the rightmost leaf

node of the subtree rooted at leaving member’s sibling node. First, if

the number of leaving member’s sibling node is two, each member up-

dates its key tree by deleting the leaf node corresponding to Md. Then

the former sibling of Md is updated to replace Md’s parent node. Oth-

erwise each member only deleting the leaf node corresponding to Md.

The sponsor generates a new key share, computes all [key, bkey] pairs
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Table 3.2: Leave Protocol
Step 1 : Every member

– update key tree by removing the leaving member

node,

– remove relevant parent node, if this node have only

one member node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

The sponsor Ms additionally

– generates new share and computes all [key, bkey]

pairs on the key-path,

– broadcasts updated tree T̂s including only bkeys.

Ms
T̂s(BK∗

s )−−−−−−−−−−−−→ C − L

Step 2 : Every member computes the group key using T̂s.
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Figure 3.7: Leave operation in the ternary tree

on the key-path up to the root, and broadcasts the new set of bkey. This

allows all members to compute the new group key.

In Fig. 3.7, if member M7 leaves the group, every remaining member

deletes < 1, 2 > and < 2, 6 >. After updating the tree, the sponsor

(M10) picks a new share K<2,8>, recomputes K<1,2>, K<0,0>, BK<2,8>

and BK<1,2>, and broadcasts the updated tree T̂10 with BK∗
10. Upon

receiving the broadcast message, all members compute the group key.

Note that M7 cannot compute the group key, though he knows all the

bkeys, because his share is no longer a part of the group key.

In Fig. 3.7, if member M10 leaves the group, every remaining mem-

bers delete only < 3, 23 >. After updating the tree, the sponsor (M9)

generates new share K<3,22>, recomputes K<2,7>, K<1,2>, K<0,0>, BK<2,7>

and BK<1,2>, and broadcasts the updated tree T̂9 with BK∗
9 . Upon re-

ceiving the broadcast message, all members can compute the group key.

3.2.4 Partition Protocol

We assume that a network failure causes a partition of the n-member

group. From the viewpoint of each remaining member, this event ap-

pears as a simultaneous leaving of multiple members. The Partition
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Figure 3.8: Partition operation in the ternary tree

protocol is involves multiple rounds; it runs until all members compute

the new group key. In the first round, each remaining member updates

its tree by deleting all partitioned members as well as their respective

parent nodes and “compacting” the tree. The procedure is summarized

in Table 3.3.

Fig. 3.8 shows an example. In the first round, all remaining mem-

bers delete all nodes of leaving members and compute keys and bkeys.

Any member can not compute the group key since they lack the bkey in-

formation. However, M5 generates new share and computes and broad-

casts BK<1,0> in the first round, and M13 can thus compute the group

key. After M13 generates new share and broadcasts BK<1,2>, M5 can

compute the group key. Finally every member knows all bkeys and can

compute the group key.

Note that if some member Mi can compute the new group key in

round h′, then all other member can compute the group key, in round

h′ + 1, since Mi’s broadcast message contains every bkey in the key

tree, each member can detect the completion of the partition protocol

independently.
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Table 3.3: Partition Protocol
Step 1 : Every member

– update key tree by removing all the leaving mem-

ber node,

– remove their relevant parent node, if this node

have only one member node,

– remove all keys and bkeys from the leaf node re-

lated to the sponsor to the root node.

Each sponsor Mst

– if Mst is the shallowest rightmost sponsor, generate

new share,

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– broadcast updated tree T̂st including only bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ C − L

Step 2 to h (Until a sponsor Msj
could compute the group key)

: For each sponsor Mst

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– broadcast updated tree T̂st including only bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ C − L

Step h + 1 : Every member computes the group key using T̂s.
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3.2.5 Merge Protocol

After the network failure recovers, subgroup may need to be merged

back into a single group. We now describe the merge protocol for k

merging groups.

In the first round of the merge protocol, each sponsor(the right-

most member of each group) broadcasts its tree with all bkeys to all

other groups after updating the secret share of the sponsor and relevant

[key, bkey] pairs up to the root node. Upon receiving these message,

all members can uniquely and independently determine how to merge

those k trees by tree management policy.

Next, each sponsor computes [key, bkey] pairs on the key-path until

either this computation reaches the root or the sponsor can not compute

a new intermediate key. The sponsor broadcast his view of the tree to

the group. All members then update their tree views with the new

information. If the broadcasting sponsor computed the root key, upon

receiving the broadcast, all other members can compute the root key as

well.

Fig. 3.9 shows an example of merging two groups, where the sponsors

M5 and M14 broadcast their trees (T5 and T14) containing all the bkeys,

along with BK∗
5 and BK∗

14. Upon receiving these broadcast messages,

every member checks whether it belongs to the sponsor in the second

round. Every member in both groups merges two trees, and then the

sponsor(M5) in this example updates the key tree and computes and

broadcasts bkeys.
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Table 3.4: Merge Protocol

Step 1 : All sponsors Msi
in each Tsi

– generate new share and compute all [key, bkey]

pairs on the key-path of Tsi
,

– broadcast updated tree T̂si
including only bkeys.

Msi

T̂si (BK∗
si

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step 2 : Every member

– update key tree by adding new trees and new in-

termediate nodes,

– remove all keys and bkeys from leaf node related

to the sponsor to the root node.

Each Sponsor Mst additionally

– compute all [key, bkey] pairs on the key-path until

it can proceed,

– and broadcast updated tree T̂st including only

bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step 3 to h (Until a sponsor Msj
could compute the group key)

: For each sponsor Mst

– computes all [key, bkey] pairs on the key-path until

it can proceed,

– and broadcasts updated tree T̂st including only

bkeys.

Mst

T̂st (BK∗
st

)−−−−−−−−−−−−→ ⋃k
i=1 Ci

Step h + 1 : Every member computes the group key using T̂s
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Figure 3.9: Merge operation in the ternary tree
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IV. Analysis

We prove the security of the skinny and ternary tree-based group key

agreement protocol. We assume the passive adversary who can obtain

the all of the blinded secrets and the blinded keys. The security of our

protocols is based on the hardness of DBDH(Decision Bilinear Diffie-

Hellman) problem. Also we measure the performance of our proposed

protocols, STR and TGDH. The results show the advantage of reduced

computational costs.

4.1 Security Analysis

4.1.1 Decisional Skinny tree Group Bilinear Diffie-

Hellman Problem

Fig. 4.1 shows the structure and the notation for the balanced skinny

tree.

For (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn) for

R4 K
�

R5

R6 K
� R7

K
�

BR4 BK2 BR5

BR6 BK3 BR7

R2 K1/R1 R3

BR2 BK1 BR3

Figure 4.1: Notation for ballanced skinny tree
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Ri ∈ Z∗
q and a skinny key tree ST with n leaf nodes which correspond

to Ri, we define the following random variables:

• Ki : i-th level key (secret value)

• BKi : i-th level blinded key (public value), i.e., KiP .

• Rj : i-th node’s session random chosen uniformly ∈R G.

• BRj : i-th node’s blinded session random, i.e., RiP .

• Ki is recursively defined as follows:

Ki
j = ê(P, P )Ki−1R2i−1R2i−2 = ê(BR2i−1, BR2i−2)

Ki−1

= ê(BKi−1, BR2i−1)
R2i−2 = ê(BKi−1, BR2i−1)

R2i−1

Ki and Rj are secret, and BKi and BRj are public.

We also define the following random variables:

• view(h,X, ST ) := {KiPandRjP where j and i are defined accord-

ing to ST}

• K(h,X, ST ) := ê(P, P )R2h−1R2h−2Kh

Note that view(h,X, ST ) is exactly the view of the adversary in our

proposed protocol, where the final secret key is K(h,X, ST ). Let the

following two random variables be defined by generating (q,G1, G2, ê) ←
g(1k), choosing X randomly from Z∗

q and choosing a skinny key tree ST

randomly from all ternary trees having n leaf nodes:

• Ah := (view(h,X, ST ), y)

• Dh := (view(h,X, ST ), K(h,X, ST ))
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Definition IV.1 Let (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn)

for Ri ∈ Z∗
q and a skinny key tree ST with n leaf nodes which correspond

to Ri. Ah and Dh defined as above. DSTGBDH algorithm AST is a

probabilistic polynomial time algorithm satisfying, for some fixed k > 0

and sufficiently large m:

|Prob[AST (Ah) = “True”]− Prob[AST (Dh) = “True”]| > 1

mk

Accordingly, DSTGBDH problem is to find an Skinny Tree DBDH

algorithm.

Theorem IV.2 If the three-party DBDH on G1, G2 is hard, then there

is no probabilistic polynomial time algorithm which can distinguish Ah

from Dh.

Proof: Assume that there exists a polynomial algorithm that can dis-

tinguish between Ah and Dh. We will show that this algorithm can be

used to distinguish Ah−1 and Dh−1 or solve the 3-party BDH problem.

Consider the following equations when X1 = (R1, R2, ..., Rn−1) and

ST1 is a subtree rooted the center child of the root node.

Ah := (view(h− 1, X, ST ), BKh−1, BR2h−1, BR2h−2, y)

Bh := (view(h− 1, X, ST ), r′p, BR2h−1, BR2h−2, y)

Ch := (view(h− 1, X, ST ), r′P, BR2h−1, BR2h−2, ê(P, P )r′R2h−1R2h−2)

Dh := (view(h− 1, X, ST ), K(h− 1, X, ST )P,

BR2h−1, BR2h−2, ê(P, P )K(h−1,X,ST )R2h−1R2h−2)
Since we can distinguish Ah and Dh in polynomial time, we can

distinguish at least one of (Ah, Bh),(Bh, Ch) or (Ch, Dh).

Ah and Bh: Suppose we can distinguish Ah and Bh in polynomial time.

We will show that this distinguisher AABh
can be used to solve

DSTGBDH problem with height h − 1. Suppose we want to de-

cide whether P ′
h−1 = (view(h − 1, X ′, ST ′), r1) is an instance of
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DSTGBDH problem or r1 is a random number. To solve this,

we generate random number r2 and r3 and compute r2P and r3P .

Using P ′
h−1 and (r2, r3, r2P, r3P ), we can generate the distribution:

P ′
h = (view(h− 1, X ′, T ′), r1P, r2P, r3P, y)

Now we put P ′
h as input of AABh

. If P ′
h is an instance of Ah(Bh),

then P ′
h−1 is an instance Dh−1(Ah−1).

Bh and Ch: Suppose we can distinguish Bh and Ch in polynomial time.

Note that r′P is an independent variable from view(h−1, X, ST ).

Suppose we want to test whether (aP, bP, cP, ê(P, P )abc) is a BDH

quadruple or not.

To solve this, we generate a key tree ST’ of height h − 1 with

distribution X ′. Now we generate a new distribution:

P ′
h = (view(h− 1, X ′, T ′), aP, bP, cP, ê(P, P )abc)

Now we put P ′
h as input of ABCh

. If P ′
h is an instance of Bh(Ch),

then (aP, bP, cP, ê(P, P )abc) is a valid(invalid) BDH quadruple.

Ch and Dh: Suppose we can distinguish Ch and Dh in polynomial time.

We will show that this distinguisher ACDh
can be used to solve

DSTGBDH problem with height h − 1. Suppose we want to de-

cide whether P ′
h−1 = (view(h − 1, X ′, ST ′), r1) is an instance of

DSTGBDH problem or r1 is a random number. To solve this,

we generate random number r2 and r3 and compute r2P and r3P .

Using P ′
h−1 and (r2, r3, r2P, r3P ), we can generate the distribution:

P ′
h = (view(h− 1, X ′, T ′), r1P, r2P, r3P, ê(P, P )r1r2r3)
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Now we put P ′
h as input of ACDh

. If P ′
h is an instance of Ch(Dh),

then P ′
h−1 is an instance Dh−1(Ah−1).

4.1.2 Decisional Ternary tree Group Bilinear Diffie-

Hellman Problem

In this section we describe Decisional Ternary tree Group Bilinear Diffie-

Hellman (DTGBDH) problem and apply security proof of TGDH in [9]

to the ternary key tree. Fig. 4.2 is an example of a key tree when n = 9.

For (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn) for

Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri, we

define the following random variables:

• K i
j : i-th level of j-th key (secret value), each leaf node is asso-

ciated with a member’s session random, i.e., K0
j = Rk for some

k ∈ [1, n].

• BK i
j : i-th level of j-th blinded key (public value), i.e., K i

jP .

• K i
j is recursively defined as follows:

K1
� K2

� K3
� K4

� K5
� K6

� K7
� K8

�

K1
� K2

�
K3

�

K1
�

BK1
0 BK2

0 BK3
0 BK4

0 BK5
0 BK6

0 BK7
0 BK8

0

BK1
1 BK2

1
BK3

1

K9
�

BK9
0

Figure 4.2: Notation for fully ballanced ternary tree
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K i
j = ê(P, P )Ki−1

3j−2Ki−1
3j−1Ki−1

3j = ê(K i−1
3j−2P,K i−1

3j P )Ki−1
3j−1

= ê(Ki−1
3j−2P, K i−1

3j−1P )Ki−1
3j = ê(Ki−1

3j−1P,K i−1
3j P )Ki−1

3j−2

For (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn) for

Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri, we

can define public and secret values as below:

• view(h,X, T ) := {K i
jP where j and i are defined according to T}

• K(h,X, T ) := ê(P, P )Kh−1
1 Kh−1

2 Kh−1
3

Note that view(h,X, T ) is exactly the view of the adversary in our

proposed protocol, where the final secret key is K(h,X, T ). Let the

following two random variables be defined by generating (q,G1, G2, ê) ←
g(1k), choosing X randomly from Z∗

q and choosing key tree T randomly

from all ternary trees having n leaf nodes:

• Ah := (view(h,X, T ), y)

• Hh := (view(h,X, T ), K(h,X, T ))

Definition IV.3 Let (q,G1, G2, ê) ← g(1k), n ∈ N and X = (R1, R2, ..., Rn)

for Ri ∈ Z∗
q and a key tree T with n leaf nodes which correspond to Ri.

Ah and Hh defined as above. DTGBDH algorithm AT is a proba-

bilistic polynomial time algorithm satisfying, for some fixed k > 0 and

sufficiently large m:

|Prob[AT (Ah) = “True”]− Prob[AT (Hh) = “True”]| > 1

mk

Accordingly, DTGBDH problem is to find an Ternary Tree DBDH

algorithm.

Theorem IV.4 If the three-party DBDH on G1, G2 is hard, then there

is no probabilistic polynomial time algorithm which can distinguish Ah

from Hh.
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Proof: We first note that Ah and Hh can be rewritten as:

If XL = (R1, R2, ..., Rl), XC = (Rl+1, Rl+2, ..., Rm) and XR = (Rm+1, Rm+2, ..., Rn)

where R1 through Rl are associated with leaf node in the left tree TL,

Rl + 1 through Rm are in the center tree TC and Rm + 1 through Rn

are in the right tree TR:

Ah := (view(h,X, T ), y)

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

BKh−1
1 , BKh−1

2 , BKh−1
3 , y)

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, y)

Hh := (view(h,X, T ), K(h,X, T ))

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

BKh−1
1 , BKh−1

2 , BKh−1
3 , ê(P, P )Kh−1

1 Kh−1
2 Kh−1

3 )

= (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P, Kh−1

2 P, Kh−1
3 P, ê(P, P )Kh−1

1 Kh−1
2 Kh−1

3 )

We prove this theorem by induction and contradiction. The 3-party

DBDH problem in G1 and G2 is equivalent to distinguish A1 from H1.

We assume that Ah−1 and Hh−1 are indistinguishable in polynomial time

as the induction hypothesis. We further assume that there exist a poly-

nomial algorithm that can distinguish Ah from Hh for a random ternary

tree. We will show that this algorithm can be used to distinguish Ah−1

from Hh−1 or can be used to solve the 3-party DBDH problem.

We consider the following equations:

Ah = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P, Kh−1

2 P, Kh−1
3 P, y)
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Bh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, Kh−1
2 P, Kh−1

3 P, y)

Ch = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P,Kh−1
3 P, y)

Dh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P, r′′P, y)

Eh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P, r′′P, ê(P, P )rr′r′′)

Fh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, r′P,Kh−1
3 P, ê(P, P )rr′Kh−1

3 )

Gh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

rP, Kh−1
2 P, Kh−1

3 P, ê(P, P )rKh−1
2 Kh−1

3 )

Hh = (view(h− 1, XL, TL), view(h− 1, XC , TC), view(h− 1, XR, TR),

Kh−1
1 P,Kh−1

2 P,Kh−1
3 P, ê(P, P )Kh−1

1 Kh−1
2 Kh−1

3 )

Since we can distinguish Ah and Eh in polynomial time, we can dis-

tinguish at least one of (Ah, Bh),(Bh, Ch),(Ch, Dh),(Dh, Eh),(Eh, Fh),(Fh, Gh)

or (Gh, Hh).

Ah and Bh: Suppose we can distinguish Ah and Bh in polynomial time.

We will show that this distinguisher AABh
can be used to solve

DTGBDH problem with height h − 1. Suppose we want to de-

cide whether P ′
h−1 = (view(h − 1, X1, T1), r1) is an instance of

DTGBDH problem or r1 is a random number. To solve this, we

generate trees T2 and T3 of height h− 1 with distribution X2 and

X3, respectively. Note that we know all secret and public infor-

mation of T2 and T3. Using P ′
h−1 and (T2, X2), (T3, X3) pairs, we

generate the distribution:

P ′
h = (view(h− 1, X1, T1), view(h− 1, X2, T2), view(h− 1, X3, T3),

r1P, K(h− 1, X2, T2)P,K(h− 1, X3, T3)P, y)
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Now we put P ′
h as input of AABh

. If P ′
h is an instance of Ah(Bh),

then P ′
h−1 is an instance Hh−1(Ah−1).

Bh and Ch: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of ABCh

which can distinguish Bh and Ch. If

P ′
h is an instance of Bh(Ch), then P ′

h−1 is an instance Hh−1(Ah−1).

Ch and Dh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of ACDh

which can distinguish Ch and Dh. If

P ′
h is an instance of Ch(Dh), then P ′

h−1 is an instance Hh−1(Ah−1).

Dh and Eh: Suppose we can distinguish Dh and Eh in polynomial time.

Then, this distinguisher ADEh
can be used to solve 3-party BDH

problem in groups G1 and G2. Note that rP , r1P and r2P are

independent random variable from view(h− 1, XL, TL), view(h−
1, XC , TC) and view(h − 1, XR, TR). Suppose we want to decide

whether (aP, bP, cP, e(P, P )abc) is a BDH quadruple or not. To

solve this, we generate three tree T1, T2 and T3 of height h − 1

with distribution X1, X2 and X3 respectively. Now we generate

new distribution:

P ′
h = (view(h− 1, X1, T1), view(h− 1, X2, T2), view(h− 1, X3, T3),

aP, bP, cP, ê(P, P )abc)

Now we put P ′
h as input of ADEh

. If P ′
h is an instance of Dh(Eh),

then (aP, bP, cP, ê(P, P )abc) is an invalid(valid) BDH quadruple.
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Eh and Fh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AEF h

which can distinguish Eh and Fh. If

P ′
h is an instance of Eh(Fh), then P ′

h−1 is an instance Ah−1(Hh−1).

Fh and Gh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AFGh

which can distinguish Fh and Gh. If

P ′
h is an instance of Fh(Gh), then P ′

h−1 is an instance Ah−1(Hh−1).

Gh and Hh: We can generate P ′
h by the similar method in (Ah,Bh) and

then put P ′
h as input of AGHh

which can distinguish Gh and Hh. If

P ′
h is an instance of Gh(Hh), then P ′

h−1 is an instance Ah−1(Hh−1).

4.2 Performance

This section analyzes the communication and computation costs for

Join , Leave , Merge and Partition protocols. We count the number

of rounds, the total number of messages, the serial number of expo-

nentiations, pairings and point multiplications. The serial cost assumes

parallelization within each protocol round and presents the greatest cost

incurred by any participant in a given round(or protocol). The total cost

is simply the sum of all participants’ costs in a given round(or protocol).

Table 4.1 summarizes the communication and computation costs for

the four protocols. The number of current group members, merging

groups and leaving memebers are denoted by n, k and p, respectively.

The overhead of protocol depends on the tree height, the balance of the

key tree, the location of the joining tree and the leaving nodes. In our

analysis, we assume the worst case configuration and list the worst-case

cost for the four protocols.
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As seen from the table, STR and our skinny tree is minimal in com-

munication on every membership event. Since we modified TGDH pro-

tocol, the number of communication is equals to TGDH except the

number of rounds in merge and key length. But our proposed protocol

can reduce the number of computation in each event operation because

of low height of key tree. The number of pairings and point multiplica-

tions for our protocol depends on whether there exists the subtree with

two member nodes or not. We thus compute the cost of average case.

In the case of the skinny tree, we can get the advantage of the number

of computation about 6 times in all event except Join . This result is

caused by the lowered height of the key tree. In all events of the ternary

tree we can reduce the computation cost O(log2n) to O(log3n). We can

get the advantage of the number of computation about 4 times in Join ,

Leave and Merge and 2 times in Partition . The pairings computa-

tion is a critical operation in pairings based cryptosystem. The research

of pairings implementation continuously have been studied. Barreto et

al.[3] proposed an efficient algorithm for pairing-based cryptosystems.

In this research we can get the result that computing pairings is about

3 times slower than the modular exponentiation. Therefore our proto-

col requires less the number of communication and computation than

TGDH. However, since involving the pairings computation, our protocol

admits of improvement in computational efficiency.
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V. Conclusion and further work

In secure and reliable communication, to manage the conference key

is critical problem. Several key management methods have been pro-

posed for secure communication. However we focus on the group key

agreement scheme in DPG environment.

This thesis propose new group key agreement protocol and present

dynamic group event operation in the skinny tree and ternary tree us-

ing bilinear map. We modify STR and TGDH protocol by utilizing

pairing-based cryptography. Our protocols support dynamic member-

ship group events with forward and backward secrecy. Our protocols

involve pairings operation whose computation is computationally slower

than modular exponentiation. However, fast implementation of pairings

has been studied actively recently. Since we use ternary key tree, our

protocol can use any two-party and three-party key agreement proto-

col. In this paper, because we use the two-party key agreement protocol

using ECDH and the three-party key agreement protocol using bilinear

map, the security of our protocol relies on this two protocol. Finally our

protocol can reduce the number of computation in group events while

preserving the communication and the security property.

As the future work, it remains as an open problem to efficiently

implement and integrate the proposed protocols. The other problem

is to support the additional functions such as authentication in lower

complexity of communication and computation.
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�¦ :�x��� �©�@/�� 1lx&h�Ü¼�Ð [O�&ñ
|̈c Ãº e����H E�×¼

<�Ê ÕªÒ�̈\� 5Åq
���H DPG(Dynamic Peer Group)\�"f_� ÕªÒ�̈v� �'ao�\�

�'ad���̀¦ °ú���H��. ÕªÒ�̈v� �'ao�~½ÓZO�\���H ��6£§õ� °ú �Ér ¿º ��t��� e����: Õª
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�Ér ì�ríß��)a v� ½+Ë_�\�¦ .��ô�Ç̈½¹כ ÕªÒ�̈v� ½+Ë_� >h¥Æ��Ér ÕªÒ�̈v� ì�rC�

�Ð�� W1àÔ0>ß¼�� ������
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½+Ë
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\�"f ÕªÒ�̈v� �'ao�~½ÓZO�Ü¼�Ð+� ÕªÒ�̈v� ½+Ë_� áÔ

�Ð�Ðc+t\� ×�æ&h��̀¦ é�H��. :�x���|¾Óõ� >�íß�|¾Ó�Ér DPG\�"f ÕªÒ�̈v� ½+Ë_� >h
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>� �)a��.
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\�@/
�#�ì�r$3�ô�Ç
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0px\� @/
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ô�Ç��.
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