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Abstract

We interact and transact by directing flocks of digital packets towards

each other through cyberspace, carrying love notes, digital cash, and secret

corporate documents. However, the technical wizardry enabling remote col-

laborations is founded on broadcasting everything as sequences of zeros and

ones that one’s own dog wouldn’t recognize. How should you know that it

really is me requesting from a laptop in Fiji a transfer of $100,000,000 to

a bank. Fortunately, the magical mathematics of cryptography can help.

That is, we need to have techniques that play a role of allowing one party

to gain assurance that the identity of another is as declared. Names for such

techniques include identification or identity verification.

To guarantee that an identification protocol withstands the attacks, the

designed identification protocol should be strictly proven to be secure. How-

ever, the design of provably secure identification protocol has been regarded

as a difficult task, but a fundamental task. As in the design of other crypto-

graphic protocols, in provable security for identification schemes, first precise

definitions of various attacks is given and then, using complexity theoreti-

cal techniques such as cryptographic reductions, their security is analyzed in

mathematical way.
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In this thesis, we deal with an interactive identification scheme based on

the bilinear Diffie-Hellman problem and analyze its security. The scheme is

more efficient than the Schnorr scheme and the Okamoto scheme with respect

to preprocessing of prover and on-line processing overhead of both parties

(prover and verifier). At the same time, security of our scheme is higher than

or equal to previous schemes. We prove that this scheme is secure against

active attacks as well as passive attacks if the bilinear Diffie-Hellman problem

is intractable. Our proof is based on the fact that the computational Diffie-

Hellman problem is hard in the additive group of points of an elliptic curve

over a finite field, on the other hand, the decisional Diffie-Hellman problem is

easy in the multiplicative group of the finite field mapped by a bilinear map.

Finally, this scheme is compared with other identification schemes.
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Chapter 1

Introduction

1.1 Interactive identification protocol

Today’s computer networks lead our personal and economic lives to rely more

and more on our ability to let such ethereal carrier pigeons mediate at a dis-

tance what we used to do with face-to-face meetings, paper documents, and

a firm handshake. Unfortunately, the technical wizardry enabling remote col-

laborations is founded on broadcasting everything as sequences of zeros and

ones that one’s own dog wouldn’t recognize. In other words, for interactions

through cyberspace to appropriately proceed, there must be techniques to

prove one to another that he is really himself. This thesis deals with a tech-

nique, called an identification protocol or entity authentication protocol, which

allows one party to gain assurances that the identity of another is as declared,

thereby preventing impersonation.

An identification protocol is considered to be as an interactive protocol

and the general setting for the protocol involves a prover or claimant P and

a verifier V . In general, P tries to convince the verifier V of his identity. The

verifier is presented with, or presumes beforehand, the purported identity

of the prover. The goal is to corroborate that the identity of the prover is

indeed P , i.e., to provide entity authentication. Only P knows the secret

value corresponding to his public one, and the secret value allows to convince

V of his identity.

One of the primary purposes of identification is to facilitate access con-
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trol to a resource, when an access privilege is linked to a particular identity.

Examples of these cases are local or remote access to computer accounts,

withdrawals from automated cash dispensers, or physical entry to restricted

area or border crossings. In many applications such as cellular telephony the

motivation for identification is to allow resource usage to be tracked to iden-

tified entities, to facilitate appropriate billing. Identification is also typically

an inherent requirement in authenticated key establishment protocols.

1.2 Objectives of identification protocols

From the point of view of the verifier, the outcome of an identification protocol

is either acceptance of the prover’s identity as authentic, or rejection. More

specifically, the objectives of an identification protocol include the following.

1. In the case of honest parties P and V , P is able to successfully authen-

ticate himself to V , i.e., V will complete the protocol having accepted

P ’s identity.

2. (transferability) V cannot reuse an identification exchange with P so as

to successfully impersonate P to a third party A.

3. (impersonation) The probability is negligible1 that any party A distinct

from P , carrying out the protocol and playing the role of P , can cause

V to complete and accept P ’s identity.

4. The previous points hold even if: a polynomially large number of previ-

ous authentication between P and V have been observed; the adversary

A has participated in previous protocol executions with either or both

P and V ; and multiple instances of the protocol, possibly initiated by

A, may be run simultaneously.

1It typically means “is so small that it is not of practical significance”; the precise

definition is given in Chapter 4.
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The precise definition of goals for an identification protocol is given with

respect to provable security against the attacks in later chapter. Informally

speaking, the objectives derive the idea of zero-knowledge-based protocols

whose executions do not reveal any partial information which makes A’s task

any easier whatsoever.

1.3 Our contributions

In this thesis, we present a formal model for secure identification protocol

based on the bilinear Diffie-Hellman problem and make the precise definition

of security for this model. To the best of our knowledge, no formal treatment

for this cryptographic problem has ever been suggested. This is our first

contribution.

We construct a new identification scheme base on the given hard problem,

which is a typical instance of the gap Diffie-Hellman problem. In the security

model, we prove that the identification scheme is secure against passive and

even active attacks if the bilinear Diffie-Hellman problem is intractable. This

is the second contribution of the thesis.

1.4 Outline of the thesis

In this thesis, we deal with security concerns regarding identification schemes

that guarantee provable security against various attacks.

The rest of this thsis is organized as follows. In Chapter 2, several iden-

tification schemes are reviewed and types of attacks are presented in detail.

Chapter 3 contains cryptographic primitives and model where our scheme is

constructed. We formally state our definition of security as well as basic tools

used in our scheme in Chapter 4. Our basic identification scheme is presented

based on the bilinear Diffie-Hellman problem and then we transform it into a

generalized scheme in Chapter 5. In Chapter 6 we give a proof of security for
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our scheme. In Chapter 7 we make a comparison with several existing identi-

fication schemes and present an exact quantification of resource requirement.

In what follows, we compare with other schemes in the light of performance,

and end with concluding remarks in Chapter 8.
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Chapter 2

Related work

2.1 Relation between identification and sig-

nature

Identification schemes are closely related to, but simpler than, digital signa-

ture schemes [26], which involves a variable message and typically provide a

non-repudiation feature allowing disputes to be resolved by judges after the

fact. For identification schemes, the semantics of the message are essentially

fixed – a claimed identity at the current instant in time. The claim is either

corroborated or rejected immediately, with associated privileges or access ei-

ther granted or denied in real time. Identifications do not have “lifetimes” as

signatures do – disputes need not typically be resolved afterwards regarding

a prior identification, and attacks which may become feasible in the future

do not affect the validity of a prior identification.

Hence, if we replace “identity” by “authenticity” of messages, identifica-

tion schemes are nearly equivalent to signature schemes. As mentioned by

Fiat and Shamir [15] and Shoup [37], the distinction between identification

and signature schemes is very subtle. Therefore, two types of schemes can

be used interchangeably [15, 21, 28, 29]. With a little additional process, in

general we can convert an identification scheme involving a witness-challenge-

response sequence to a signature scheme.

Now let’s turn to the underlying hard problem. Since Okamoto and

Pointcheval [30] initiated the concept of the Gap-problems and proposed that
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a gap Diffie-Hellman (G-DH) problem offers a signature scheme, several cryp-

tographic schemes based on such variants of Diffie-Hellman (DH) assumption

have been studied. Using the bilinear Diffie-Hellman (B-DH) problem as an

instance of the (G-DH) problem, Boneh and Franklin [5] and Boneh et al.

[6] suggested an efficient ID-based encryption (IBE) scheme and a short sig-

nature scheme, respectively. These imply that the B-DH problem provides

identification schemes.

2.2 Types of attacks

In general, an identification scheme is said to be broken if an adversary

succeeds in an impersonation attempt (making the verifier accept with non-

negligible probability). The methods an adversary may employ in an attempt

to defeat identification protocol are summarized in Table 2.1 [26]. We can

divide them into two types–passive attack and active attack–according to the

interaction allowed to the adversary before an impersonation attempt [37, 26].

The weakest form of attack is a passive attack, where the adversary is not

allowed to interact with the system at all before attempting an impersonation;

the only available information to the adversary is the public key of the prover.

Other attacks of intermediate level such as eavesdropping attack or honest-

verifier attack are essentially equivalent to the passive attack.

The strongest form of attack is an active attack, in which the adversary

is allowed to interact with P several times, posing as V . We may consider

active attacks as adaptive chosen ciphertext attacks. We should note that

active attacks are quite feasible in practice.

2.3 Fiat-Shamir (FS) scheme

Fiat and Shamir [15] proposed the identification scheme based on the fac-

torization problem. A key generation algorithm constructs a modulus n by

6



Table 2.1: Types of attacks on identification protocols

Types of attacks Descriptions

impersonation a deception whereby one entity purports to be an-

other.

replay attack an impersonation or other deception involving use of

information from a single previous protocol execu-

tion, on the same time or a different verifier.

interleaving attack an impersonation or other deception involving selec-

tive combination of information from one or more pre-

vious or simultaneously ongoing protocol executions,

including possible origination of one or more protocol

executions by an adversary itself.

reflection attack an interleaving attack involving sending information

from an ongoing protocol execution back to the orig-

inator of such information

forced delay a forced delay occurs when an adversary intercepts a

message, and relays it at some later point in time.

chosen-text attack an attack on a challenge-response protocol wherein

an adversary strategically chooses challenges in an at-

tempt to extract information about the prover’s long-

term key.
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multiplying two distinct random primes, chooses randomly an element a ∈ Z∗n,

and sets b = a2. The public key is 〈b, n〉, and the secret key is a.

The protocol repeats the following steps t times:

1. P chooses r ∈ Z∗n at random, computes x = r2, and sends x to V .

2. V chooses ε ∈ {0, 1} at random, and sends ε to P .

3. P computes y = r · aε and sends y to V ; V accepts if y2 = x · bε, and

rejects otherwise.

The FS scheme is secure against active attacks if factorization is hard. The

FS scheme works as depicted on Figure 2.1.

P V

-

¾

-

x = r2 mod n

ε ∈R {0, 1}

y = r · aε mod n

y2 ?
== x · bε mod n

Figure 2.1: The Fiat-Shamir identification protocol

2.4 Feige-Fiat-Shamir (FFS) scheme

This scheme is also based on the factorization problem. A key generation

algorithm chooses a modulus n as in the FS scheme. A secret key consists

of a list a1, . . . , al ∈ Z∗n chosen randomly, where l is a given constant, and

the corresponding public key consists of b1, . . . , bl ∈ Z∗n, where bi = a2
i for

1 ≤ i ≤ l.
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The protocol executes the followings t times in parallel:

1. P chooses r ∈ Z∗n at random, computes x = r2, and sends x to V .

2. V randomly chooses ε1, . . . , εl ∈ {0, 1}, sends ε1, . . . , εl to P .

3. P computes y = r
∏l

j=1 a
εj

j and sends y to V ; V accepts if x = y2
∏l

j=1 b
εj

j ,

and rejects otherwise.

This scheme is also secure against active attacks if factorization is hard [14].

Figure 2.2 show how the FFS protocol works.

P V

-

¾

-

x = r2 mod n

ε1, . . . , εl ∈R {0, 1}

y = r ·∏l
j=1 a

εj

j mod n

x
?

== y2 ·∏l
j=1 b

εj

j mod n

Figure 2.2: The Feige-Fiat-Shamir identification protocol

2.5 Other schemes

2.5.1 Variants of the FS scheme

The Guillou-Quisquater (GQ) scheme [21] is an extension of the FS protocol.

It allows a reduction in both the number of messages exchanged and memory

requirements for user secrets and, like Fiat-Shamir, is suitable for applications

on which the prover has limited power and memory. A modification of FS

identification by Ong and Schnorr [31] decreases computational complexity,
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signature size, and the number of communication required, condensing t Fiat-

Shamir iterations into one iteration while leaving each user with k private key

sizes. The Ohta-Okamoto (OO) version of the extended FS scheme differs

from the GQ versions as follows1: (1) in OO, rather than TTP computing

SP from identity IP , P chooses its own secret SP ∈ Zn and publishes IP =

Sv
P mod n; and (2) the verification relation x = J ε

P · yv mod n becomes yv ≡
x · Iε

P . A further subsequent version of extended FS scheme by Okamoto [29]

is provably as secure as factoring, only slightly less efficient, and amenable to

an identity-based variation. proposed in [29].

2.5.2 The Schnorr scheme and its variants

The Schnorr protocol [35] is an alternative of the FS and GQ protocols

whose security is based on the intractability of DLP. The design allows pre-

computation, reducing the real-time computation for the prover to one mul-

tiplication modulo a prime q; it is particularly suitable for provers of limited

computational ability. A further important computational efficiency results

from the use of a subgroup of order q of the multiplicative group of integers

modulo p, where q|(p − 1); this also reduces the required number of trans-

mitted bits. Finally, the protocol was designed to require only three passes.

The Schnorr protocol is depicted on Figure 2.3. Brickell and McCurley [8]

propose a modification of Schnorr’s identification scheme, in which q is kept

secret and exponent computations are reduced modulo p − 1 rather than q.

A major drawback is that almost 4 times as much computation is required

by the prover. Another variant of Schnorr’s scheme by Girault [16] was the

first identity-based identification scheme based on DLP. A further variation of

Schnorr’s identification protocol by Okamoto [29] is provably secure; it does,

however, involve some additional computation. Popescu [33] shows how the

interactive identification scheme based on the elliptic curve discrete logarithm

1The notations of the OO and GQ schemes follows those of [26]
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problem (ECDLP) is constructed.

P V

-

¾

-

certP , x = βr mod p

ε, 1 ≤ ε < q

y = ae + r mod q

x
?

== βy · vε mod p

Figure 2.3: The Schnorr identification protocol

Aside from the above protocols based on the computational intractability

of the standard number-theoretic problems, a number of very efficient identi-

fication protocols have more recently been proposed based on NP-hard prob-

lems. Stern [39] proposed a practical zero-knowledge identification scheme

based on the NP hard syndrome decoding problem. Stern [40] proposed

another practical identification scheme based on an NP hard combinatorial

constrained linear equations problem, offering a very short key length, which

is of particular interest in specific applications. Pointcheval [32] proposed

another such scheme based on the NP-hard perceptrons problem: given an

m × n matrix M with entries ±1, find an n-vector y with entries ±1 such

that My ≥ 0.

11



Chapter 3

Preliminaries

3.1 Concrete security

In this thesis, we develop proofs in the frame work of concrete provable secu-

rity. We provide an exact analysis of the security of the schemes rather than

asymptotic approach. That is, we explicitly quantify the reduction from the

security of a scheme to the security of the underlying “hard” problem on which

is based. This enables us to know exactly how much security is maintained

by the reduction and thus to determine the strength of the reduction.

In order to quantify the reduction, we define the advantage Adv(I) that

a computationally bounded adversary I will defeat the security goal of an

identification protocol. The advantage is twice the probability that I will

defeat the security goal of the protocol minus one.

3.2 Random oracle model vs. Standard model

In general, to show a cryptosystem is secure cryptographers choose a method

for analyzing the security of the cryptosystem. Methods for cryptographers

to pick out are divided into three as follows: the ad hoc model, the random

oracle model, and the standard model.

12



3.2.1 The ad hoc model

Throw in some random padding here, some hash functions there, until one

starts feel good about it. See if it withstands a few obvious attacks. Then

deploy the system, wait for it to get broken, and add some more padding and

hashes. Repeat.

Clearly, this approach leaves much to be desired. Even if the cryptosystem

is built out of “cryptographically strong” components, these components may

interact in some hard-to-predict ways that allow an attacker to break the

cryptosystem.

3.2.2 The random oracle model (ROM)

As aforementioned, designing cryptosystems and proving them secure is no

easy task, in particular if one wants to have a practical cryptosystem.

To make this task more manageable, Bellare and Rogaway [2] use the

notion of a random oracle model (ROM). The result of this approach is a

reductionist proof, however the proof is only valid in a “parallel universe”

where a “magic hash functions” exist—they do not exist in the “real world”

of computation. We stress that the existence of magic hash functions is not a

“hardness assumption,” like IFP and DLP; they simply do not exist. Rather,

they are a rough-and-ready heuristic, much like assuming the earth is flat,

and that there is no wind resistance.

To analyze a protocol using ROM one replaces a real-world cryptographic

hash function by a black-box that when queried outputs a random bit string,

subject to the restriction that it always outputs the same value on the same

input. Having made this replacement, one then gives a reductionist security

argument. The right way to view a proof of security in ROM is as a proof

of security against a restricted class of adversaries that do not care if the

hash function really is a black box. Canetti [9, 10, 11] also pointed out

these problems, however many cryptographers including [3, 5, 6] give provable

13



security against the attacks in ROM.

3.2.3 The standard model

This is the preferred approach of modern, mathematical cryptography. Here,

one shows with mathematical rigor that any attacker who can break the

cryptosystem can be transformed into an efficient algorithm to solve the un-

derlying well-studied problem that is widely believed to be very hard. Turing

this logic around: if the “hardness assumption” is correct as presumed, the

cryptosystem is secure [36, 23].

This approach is about the best we can do. If we can prove security in

this way, then we essentially rule out all possible shortcuts, even ones “we

have not yet even imagined.” The only way to attack the cryptosystem is a

full-frontal attack on the underlying hard problem. This approach is taken

in [13, 12, 37, 11]. With this approach, we analyze the adversary to a tightly

bounded quantity and quantify the precise resource for him.

3.3 The Weil paring

We can make use of any bilinear map on an elliptic curve to construct a

group G in which the C-DH problem is intractable, but the D-DH problem is

tractable [22, 5, 6]. In particular, we make use of bilinear maps, in particular

the Weil-pairing.

Let E be an elliptic curve over a base field K and let G1 and G2 be

two cyclic groups of order m for some large prime m. The Weil pairing

[38, 24, 4, 5, 6] is defined by a bilinear map e between these groups,

em : E[m]× E[m] −→ µm,

where E[m] corresponds to the additive group of points of E/K, and µm

corresponds to the multiplicative group of an extension field K of K. We can

14



define the Weil pairing as follows. Let S, T ∈ E[m] and choose a function g

on E whose divisor satisfies

div(g) =
∑

R∈E[m]

(T ′ + R)− (R),

with T ′ ∈ E(K) such that [m]T ′ = T . Then

em =





E[m]× E[m] −→ µm

G1 ×G1 −→ G2

(S, T ) 7−→ g(X+S)
g(X)

for any point X ∈ E(K) for which g is both defined and non-zero at X

and X + S. It can then be shown that the following properties hold. Let

P, Q ∈ G1.

(i) Identity : For all P ∈ E[m], em(P, P ) = 1.

(ii) Alternation: For all P, Q ∈ E[m], em(P, Q) = em(Q,P )−1.

(iii) Bilinearity : For all P,Q, R ∈ E[m], em(P +Q,R) = em(P, R)·em(Q,R)

and em(P, Q + R) = em(P,Q) · em(P, R).

(iv) Non-degeneracy : If em(P, Q) = 1 for all Q ∈ G1, then P = O, where O
is a point at infinity.

(v) If E[m] ⊂ E(K), then em(P, Q) ∈ K for all P,Q ∈ E[m] (that is

µm ⊂ K∗).

(vi) Compatible: If P ∈ E[m] and Q ∈ E[mm′], then emm′(P,Q) = em(P, m′Q).

In addition to these properties, we have an efficient algorithm to compute

em(P, Q) for all P,Q ∈ E[m] by [27]. In practice, in our basic scheme, we

employ the modified Weil pairing êm(P, Q) = em(P, φ(Q)), where φ is an

automorphism on the group of points of E [5, 6]. For more details, we can

refer to [4], [5], and [24].
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Throughout this thesis, the group E[m] is written by G1, the group µm

is written by G2. For the sake of convenience, we write the Weil pairing and

the modified Weil pairing as e and ê in the place of em and êm respectively.

As noted in [5], the existence of the bilinear map ê : G1 × G1 → G2 as

above has two direct implications to these groups.

The MOV reduction: Menezes, Okamoto, and Vanstone[25] show that DLP

in G1 is no harder than DLP in G2. To see this, let P, Q ∈ G1 be an

instance of DLP in G1 where both P,Q have order m. We wish to find

an α ∈ Zm such that Q = αP . Let g = ê(P, P ) and h = ê(Q,P ). Then,

by bilinearity of ê we know that h = gα. By non-degeneracy of ê both

g and h have order m in G2. Hence, we reduced DLP in G1 to DLP in

G2. It follows that for discrete log to be hard in G1 we must choose our

security parameter so that discrete log hard in G2.

Decision DH is easy: The D-DH problem [7] inG1 is to distinguish between

the distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉 where a, b, and c

are random in Zm and P is random in G1. Joux and Nguyen [22]

point out that D-DH in G1 is easy. To see this, observe that given

{P, aP, bP, cP} ∈ G∗1 we have

c = ab mod m ⇐⇒ ê(P, cP ) = ê(aP, bP ).

The C-DH problem in G1 can still be hard. Joux and Nguyen [22] give

examples of mappings ê : G1 ×G1 → G2 where C-DH in G1 is believed

to be hard even though D-DH in G1 is easy.

3.4 The bilinear Diffie-Hellman problem

3.4.1 Gap-problems

The computational assumptions when constructing cryptographic schemes

can mainly be classified into two types. One is the intractability of an invert-
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ing problem such as inverting the RSA function, and computing the Diffie-

Hellman (DH) problem. The other is the intractability of a decision problem

such as the decisional Diffie-Hellman problem.

In addition to these problems, Okamoto and Pointcheval [30] define a new

class of problems, called the Gap-problems. Let f : {0, 1}∗×{0, 1}∗ → {0, 1}
be any relation. The inverting problem of f is the classical computational

version, and we can define a generalization of the decision problem, by the

R-decision problem of f , for any relation

R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ → {0, 1},

- The inverting problem of f is, given x, to compute any y such as

f(x, y) = 1 if it exists, or to answer Fail.

- The R-decision problem of f is, given (x, y), to decide whether R(f, x, y) =

1 or not. Here y may be the null string, ⊥.

Let us see some examples for the relation, R1, R2, R3, and R4:

- R1(f, x, y) = 1 iff f(x, y) = 1, which formalizes the classical version of

decision problems [7].

- R2(f, x,⊥) = 1 iff there exists any z such that f(x, z) = 1, which simply

answers whether the inverting problem has a solution or not.

- R3(f, x,⊥) = 1 iff z is even, when z such that f(x, z) = 1 is uniquely

defined. This latter example models the least-significant bit of the pre-

image, which is used in many hard-core bit problems.

- R4(f, x,⊥) = 1 iff all the z such that f(x, z) = 1 are even.

It is often the case that the inverting problem is strictly stronger than

the R-decision problem, namely for all the classical examples we have cryp-

tographic purpose. However, it is not always the case, and the R-decision
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problem can even be strictly stronger than the inverting one. Informally the

Gap-problem deals with the gap of difficulty between these problems. The

Gap-problem can be defined as follows:

Definition 3.1 The R-gap problem of f is to solve the inverting problem of

f with the help of the oracle of the R-decision problem of f .

Okamoto and Pointcheval [30] claimed that the DH problems are the typi-

cal instance of the Gap-problem. Since the inverting problem can be viewed as

the computational problem, the computational Diffie-Hellman (C-DH) prob-

lem corresponds to the inverting one, and the decisional Diffie-Hellman (D-

DH) problem does to the R-decision one. Here, we describe the gap Diffie-

Hellman (G-DH) problem. Let G be any group of prime order m.

- The C-DH problem: given a triple of G elements (g, ga, gb), find the

element C = gab.

- The D-DH problem: given a quadruple of G elements (g, ga, gb, gc), de-

cide whether c = ab (mod q) or not.

- The G-DH problem: given a triple of G elements (g, ga, gb), find the

element C = gab with the help of a D-DH oracle (which answers whether

a given quadruple is a DH quadruple or not).

The Tate-pairing is given as a specific example that satisfies the property

of the G-DH problem [30]. For example [30], with an elliptic curve E = J(Fq)

of trace t = 2 and m = #E = q + 1 − t = q − 1, we have Jm(Fq) =

J(Fq)/mJ(Fq) = E and µm(Fq) = F∗q. Then

e : E × E → F∗q,

which is called officially a bilinear map. We will discuss the bilinear map in

the next section. Let us consider a DH quadruple, P , A = a · P , B = b · P
and C = c · P ,

e(A,B) = e(a · P, b · P ) = e(P, P )ab = e(P, ab · P ) = e(P,C).
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And the latter equality only holds with the correct candidate C.

3.4.2 The bilinear Diffie-Hellman problem

Since the D-DH problem in G1 is easy, we cannot use the D-DH problem to

build cryptosystems in the group G1. Instead, the security of our protocol

is based on a variant of the C-DH problem called the bilinear Diffie-Hellman

(B-DH) problem.

Let G1 and G2 be two cyclic groups of prime order m and let P be a

generator of G1. Let ê : G1 ×G1 → G2 be a bilinear map.

Definition 3.2 The B-DH problem in (G1,G2, ê) is the following: given

(P, aP, bP, cP ) for some a, b, c ∈ Z∗m, compute v ∈ G2 such that v = ê(P, P )abc.

B-DH parameter generator: We say that a randomized algorithm IG is

a B-DH parameter generator if

(1) IG takes a security parameter 0 < k ∈ Z,

(2) IG runs in polynomial time in k, and

(3) IG outputs the description of two groups G1,G2 and the description of

a bilinear map ê : G1 ×G1 → G2.

We require that the groups have the same prime order m = |G1| = |G2|.
We denote the output of IG by IG(1k). A concrete example of the B-DH

parameter generator is given in [5] as follows. Given a security parameter

k the B-DH parameter generator picks a random k-bit prime n such that

n = 2 mod 3 and n = 6m − 1 for some prime m. The group G1 is the

subgroup of order m of the group of points on the elliptic curve y2 = x3 + 1

over Fn. The group of G2 is the subgroup of order m of F∗n2 . The bilinear

map ê : G1 ×G1 → G2 is the modified Weil paring defined in Section 3.3.
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Note that the isomorphisms from G1 to G2 induced by the Weil pairing

are one-way functions [5, 6]. For a point Q ∈ G∗1 defines the isomorphism

fQ : G1 → G2 by fQ(P ) = ê(P,Q). It is well known that an efficient algorithm

for inverting fQ would imply an efficient algorithm for deciding D-DH in the

group G2. Throughout this thesis the D-DH problem is believed to be hard

in the group G2. Hence, all the isomorphisms fQ : G1 → G2 are believed to

be one-way functions.
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Chapter 4

Definitions of security

A general approach of proving that an identification scheme is secure is to

show that the scheme exhibits a zero-knowledge proof of knowledge. However,

the results of Goldreich and Krawczyk [19], together with the argument of

Shoup [37] say that any efficient black box simulator for a three round, public

coin system can be turned into a prover that succeeds with non-negligible

probability.

In this thesis, we make use of a computational reduction from solving a

well-established problem to break the cryptosystem rather than zero-knowledge

proof techniques. That is to say, the proving method is to use an adversary

that breaks the cryptosystem to solve the computational Diffie-Hellman prob-

lem.

4.1 Notions of security

We formally define a secure identification scheme, using the same notations

as in [34, 17, 18, 37].

If A(·) is a probabilistic algorithm, then for any input x, the notation Ax

refers to the probability space that assigns to the string σ the probability

space that A, on input x, outputs σ.

If S is a probability space, then [S] denotes the set of elements in this

space that occur with non-zero probability, and PrS [x] denotes the probability

that S associates with the element x. If S is any probability space, then
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x ← S denotes the algorithm which assigns to x an element randomly selected

according to S.

The notation Pr[p(x1, x2 . . .)|x1 ← S1; x2 ← S2; . . .] denotes the probabil-

ity that the predicate p(x1, x2, . . .) will be true after the ordered execution of

the algorithms x1 ← S1, x2 ← S2, . . ..

In addition, we use the same conventions in [14]:

1. P̄ represents an honest prover who follows its designated protocol, P̃
does a polynomial-time cheater, and P acts as P̄ or P̃ .

2. V̄ represents a valid verifier who follows the designated protocol, P̃
does an arbitrary polynomial-time algorithm which may try to extract

additional information from P , and V acts as V̄ or Ṽ .

3. (P ,V) represents the execution of the two party protocol where P is

the prover and V is the verifier.

4.2 The bilinear Diffie-Hellman assumption

Let G1 and G2 be two cyclic groups of prime order m and let P be a generator

of G1. Let ê : G1 ×G1 → G2 be a modified bilinear map.

Definition 4.1 An algorithm A has an advantage AdvB-DH(A) = ε in solving

B-DH in 〈G1,G2, ê〉 if

AdvB-DH(A) , Pr
[
A(P, aP, bP, cP ) = ê(P, P )abc

]
≥ ε,

where the probability is over the random choice of 〈a, b, c〉 ∈ Z∗m, the random

choice of P ∈ G∗1, and the random bits of A.

The security of our identification scheme is intrinsically based on the in-

tractability of the B-DH problem. We formally describe this assumption as
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follows, called as it the bilinear Diffie-Hellman intractability assumption (B-

DHIA).

An (τ, ε)-B-DH-attacker for the groups is a PPT algorithm ∆ running in

time τ that given a B-DH parameter generator IG stated in Section 3.4 solves

the B-DH problem if for sufficiently large k:

Pr


 ∆(G1,G2, ê, P, aP, bP, cP ) = ê(P, P )abc

∣∣∣∣∣∣∣∣

〈G1,G2, ê ← IG(1k);

P ← G∗1;
〈a, b, c〉 ← Z∗m


 ≥ ε.

We denote this probability as SuccB-DH
IG (∆).

Definition 4.2 (B-DHIA) Given a B-DH parameter generator IG the B-

DH problem is (τ, ε)-intractable if there is no (τ, ε)-attacker ∆ for the groups.

4.3 Secure identification schemes against ac-

tive attacks

In general, an identification scheme (G,P ,V) consists of a PPT algorithm G,

and two PPT interactive algorithms P and V . An identification scheme is

defined by the following [14, 37]:

1. The algorithm G is a key generation algorithm. It takes a string of the

form 1k as input, and outputs a pair of string (IP , SP). k is called a

security parameter, IP is called a public key, and SP is called a secret

key.

2. As input, P receives the pair (IP , SP) and V does I. After an interactive

execution of P and V , V outputs either 1 (indicating "accept") or

0 (indicating "reject"). For given IP and SP , the output of V at

the end of this interaction is a probability space which is denoted by

〈P(IP , SP),V(IP)〉.
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3. A valid prover should always be able to succeed in convincing the

verifier. Formally speaking, for all k and for all (IP , SP) ∈ [G(1k)],

〈P(IP , SP),V(IP)〉 = 1 with probability 1.

An adversary (P̃ , Ṽ) is a pair of probabilistic polynomial-time interactive

algorithms. For given key pair (IP , SP), we denote by 〈P̄(IP , SP), Ṽ(IP)〉 the

string h output by Ṽ after interacting with P̄ several times. For given IP and

SP , yet again 〈P̄(IP , SP), Ṽ(IP)〉 is a probability space. The string h (called

a "help string") is used as input to P̃ who attempts to convince V̄ . We

denote by 〈P̃(h), V̄(IP)〉 the output of V̄ after interacting with P̃(h).

We adopt the definition of security against active attacks (SAA) with re-

spect to such adversaries from [37] as follows.

Definition 4.3 The advantage in breaking an identification scheme of an

adversary I = (P̃ , Ṽ) is

AdvSAA(I) , Pr


 σ = 1

∣∣∣∣∣∣∣∣

(I, S) ← G(1k);

h ← 〈P̄(IP , SP), Ṽ(IP)〉;
σ ← 〈P̃(h), V̄(IP)〉


 .

The probability is taken oven the coin tosses of the key generation algorithm

G, and of the adversary.

Definition 4.4 An adversary I (τ, ε)-breaks an identification scheme if I =

(P̃ , Ṽ) runs in time τ and the advantage AdvSAA(I) ≥ ε.

Now we can make a secure definition for an identification scheme against

active adversaries.

Definition 4.5 An identification scheme (G,P ,V) is secure against active

attacks if for all adversaries I = (P̃ , Ṽ), for all constants c > 0, and for all

sufficiently large k, there is no adversary which can get a probability than ε

in mounting an active attack within time τ .

We denote this probability ε as SuccSAA(I).
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4.4 Adversary’s resources

The security is formulated as a function of the amount of resources the ad-

versary I = (P̃ , Ṽ) expends. The resource are:

• TV(k): a time bound required for Ṽ to run the protocol once with P̄
including P̄ ’s computing time.

• NV(k): an iteration bound for Ṽ to run the protocol with P̄ .

• Toff(k): an off-line time bound for Ṽ to spend other than running the

protocol with P̄ .

• TP(k): a time bound for P̃ to run the protocol with V̄ .

By notation Adv(τ, . . .) or Succ(τ, . . .), we mean the maximum values of

Adv(I) or Succ(I) respectively, over all adversaries I = (P̃ , Ṽ) expends at

most the specified amount of resources.
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Chapter 5

The protocol

5.1 Basic identification scheme

For a security parameter k, a pair of secret and public parameters is gener-

ated as follows:

Key generation.

On input k, the key generation algorithm G works as follows:

1. Generate two cyclic groups G1 and G2 of order m for some large prime

m and a bilinear map ê : G1 ×G1 → G2.

2. Generate an arbitrary generator P ∈ G1.

3. Choose randomly a, b, c ∈ Z∗m and compute v = ê(P, P )abc.

4. The public parameter is Pub = 〈G1,G2, P, aP, bP, cP, ê, v〉, and the se-

cret parameter is Sec = 〈a, b, c〉. And then publish them.

Protocol actions between P and V .

As is the case for other identification schemes, this scheme consists of several

rounds. The protocol executes just once the following:

1. P chooses r1, r2, r3 ∈ Z∗m at random, computes x = ê(P, P )r1r2r3 , Q =

r1r2r3P , and sends 〈x, Q〉 to V .
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2. V picks ω ∈ Z∗m at random, and sends R = ωP to P .

3. On receiving R, P sets S = r1r2r3R, computes Y ∈ G1 such that

Y = abcP + (a + b + c)S,

and sends it to V ; V accepts P ’s proof of identity if both x = ê(P, Q)

and ê(Y, P ) = v · ê(aP + bP + cP,Q)ω, and rejects otherwise.

This protocol is represented graphically in Figure 5.1. Once after this

protocol can be proved to be secure against active adversaries, it can be

extended to a generalized protocol.

P V

-

¾

-

x = ê(P, P )r1r2r3 , Q = r1r2r3P

R = ωP ,where ω ∈ Z∗m

Y = abcP + (a + b + c)S, where S = r1r2r3R

ê(Y, P )
?

== v · ê(aP + bP + cP,Q)ω

Figure 5.1: The SAA identification protocol

5.2 Generalized scheme

We now describe a generalized model of the basic identification scheme. The

generalized identification scheme extends the basic scheme in Section 5.1 us-

ing k random numbers. The key generation algorithm G is similar to that of

the basic scheme except generating k random numbers.
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Key generation.

On input k, the key generation algorithm G works as follows:

1. Generates two cyclic groups G1 and G2 of order m for some large prime

m and a bilinear map ê : G1 ×G1 → G2.

2. Generates an arbitrary generator P ∈ G1.

3. Chooses randomly a1, . . . , a3k ∈ Z∗m and computes v1 = ê(P, P )a1a2a3 , · · · , vk =

ê(P, P )a3k−2a3k−1a3k .

4. The public parameter is Pub = 〈G1,G2, P, a1P, . . . , a3kP, ê, v1, · · · , vk〉,
and the secret parameter is Sec = 〈a1, . . . , a3k〉. And then publishes

them.

Protocol actions between P and V .

The generalized scheme is similar to the basic scheme, however, each round

is performed in parallel as follows:

1. P chooses r1, r2, r3 ∈ Z∗m at random, computes x = ê(P, P )r1r2r3 , Q1 =

r1r2r3P , and sends 〈x, Q〉 to B.

2. V picks ω1, . . . , ωk ∈ Z∗m at random, and sends R1 = ω1P, . . . , Rk = ωkP

to P .

3. On receiving k random values, P sets

S1 = r1r2r3R1, S2 = r1r2r3R2, . . . , Sk = r1r2r3Rk,

computes Y such that

Y =
k∑

i=1

a3i−2a3i−1a3iP +
k∑

i=1

(a3i−2 + a3i−1 + a3i)Si

and sends it to V ; V accepts if both x = ê(P, Q) and ê(Y, P ) =
∏k

i=1 vi ·
ê(a3i−2P + a3i−1P + a3iP, Q)ωi , and rejects otherwise.
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Chapter 6

Security analysis

Let (G,P ,V be the identification scheme, where a PPT algorithm G is a key

generation algorithm, and P and V are two PPT interactive algorithms. One

can state the following security result:

Theorem 6.1 Under B-DHIA, the basic identification scheme is secure against

active adversaries whose running time is defined by τ ′, and the success prob-

ability ε′ is bounded by Π−1
1 .

As mentioned before, the basic way of proving this theorem is just to

show that any adversary I who succeeds in impersonating with non-negligible

probability can be reduced into a polynomial-time probabilistic algorithm A
that (τ, t, ε)-breaks C-DH problem with non-negligible probability. This will

be proved in Lemma 6.3.

For a given public parameter Pub and "help string" h, let

Pr[(P̃(h), V̄(Pub) = 1] = ε(h, Pub),

where the probability is taken over the coin tosses of P̃ and V̄ . Since we

assume that the adversary succeeds in breaking the protocol, there must

exist polynomial Π1(k) and Π2(k) such that, for sufficiently large k,

Pr

[
ε(h, Pub) ≥ 1

Π2(k)

∣∣∣∣∣
(Sec, Pub) ← G(1k);

h ← (P̄(Sec, Pub), Ṽ(Pub))

]
≥ 1

Π1(k)
.
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Then we can say the adversary I = (P̃ , Ṽ) can breaks the B-DH problem at

least with probability

SuccSAA(I) =
1

Π1

.

Lemma 6.2 Let ê be the modified Weil pairing as defined in Section 3.3.

The sample space is the set of all triples S = {(P, Q)|P, Q ∈ E(K)}, where

E is an elliptic curve over K, and the distribution on the sample points is

uniform, i.e., P, Q ∈U S. Let a, b, and c be indeterminates and consider the

polynomial

ea,b,c(P, Q) = ê(P,Q)abc.

For all a, b, c ∈ Z∗m, define random variable

Xi(a, b, c) = eai,bi,ci
(P,Q).

Then 〈X0, . . . , X`(m)−1〉, where `(m) is the order of the extension field K of

K, are uniformly distributed in K and pairwise independent.

Proof: For any pair i, j in positive integers, i 6= j, and for any pair of points

P, Q ∈ E(K), there is a unique solution a, b, c ∈ Z∗m to the pair of equations:

eai,bi,ci
(P, Q) = α,

eaj ,bj ,cj
(P, Q) = β.

Thus, Pr
[
(Xi(P,Q) = α)∧(Xj(P, Q) = β)

]
= Pr[Xi(P,Q) = α]·Pr[Xj(P,Q) =

β] = 1/`(m)2. ¥

Lemma 6.3 Assume that there exists an adversary I as above. Let IG be a

B-DH parameter generator. Then there exists a polynomial-time probabilistic

algorithm A that (t, ε)-breaks C-DH problem, whose running time τ is defined

by

O((NV(k)TV(k) + TP(k))Π2(k) + Toff(k))
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and for a valid C-DH value C, the success probability ε is bounded by

SuccB-DH
IG (A) ≥ Π1(k)−1

16
.

Proof: First let E denote an elliptic curve over a field K, with E[m] its

group of m-torsion points. From the definition of the Weil pairing, we know

that if p = 0 or p does not divides m then E[m] ∼= (Z/mZ) × (Z/mZ),

where p is the characteristic of the field. Let Φ be a natural map in the

modified Weil pairing. Note that, for random P ∈ E(K), revealing ê(P, P )

gives no information on Φ(P ); i.e. the distributions of ê(P, P ) and Φ(P ) are

independent from Lemma 6.2.

Throughout this thesis, the underlying probability space consists of the

random choice of input x, y, z ∈ Z∗m and P∈RE(K) including the coin tosses

of the algorithm.

As a proving method, rather than constructing the algorithmA in toto, we

will increasingly construct A in series of “phases”. The algorithm runs in five

phases. In the first phase, we generate a public parameter Pub = 〈P, aP, bP 〉
with the corresponding secret parameter Sec = 〈a, b〉.

In this phase we simulate the view that the adversary I would have if it

interacted with a proving holding a “real” witness. In the second phase we

make the adversary try to convince a honest verifier. In the third phase we

use the approximate witness to solve the C-DH problem, ê(P, P )ab. In the

fourth phase, we rerun the adversary I with the public parameter Pub =

〈P, aP, bP, cP 〉 with additional value cP and its corresponding secret param-

eter Sec = 〈a, b, c〉. In practice, this phase simply executes the above three

phases repeatedly. In the last phase, the final algorithm A is constructed,

which solves the C-DH problem, ê(P, P )abc.

Phase 1. This phase takes as input P , aP , and bP , runs in the expected

time

O(NV(k)TV(k)Π2(k) + Toff(k)),
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and outputs (ã, γi
f , v, h), where v = ê(P, P )ãγi

f
, and h is a "help string".

In addition, we know that

i. Pr[ε(h, Pub) ≥ Π2(k)−1] ≥ Π1(k)−1,

ii. The distribution of Φ(c̃) is uniform and independent of that of (h, Pub).

This stage runs as follows: We choose ã, γi
f ∈ Z∗m, at random and compute

v = ê(P, P )ãγi
f

and X̂i ≡ ãγi
f (mod m), where f 6≡ (m− 1) (mod m). With

the help of D-DH oracle, we can easily verify that (P, ãP, γi
fP, abP ) is a valid

DH value. We then simulate the interaction (P̄(·, Pub), Ṽ(Pub)).

To simulate the interaction, we employ a zero-knowledge simulation tech-

nique [20, 37]. We then modify the identification protocol as the following:

I. P̄ chooses ω′0, r1, r2 ∈ Z∗m at random, computes x = ê(P, P )ω′0r1r2 , Q =

ω′0r1r2P , and sends 〈x,Q〉 to Ṽ .

II. Ṽ chooses ω ∈ Z∗m at random, sets R = ωP , and sends R to P̄ .

III. On receiving R, P̄ checks ê(R,P ) = ê
(

ã+γi
f−ω1

(ã+γi
f )ω0

P, P
)
. If ω′0 6= ω0,

we go back to step I. Otherwise, P̄ sets S = r1r2P , computes Y =

ãγi
fP + (ã + γi

f − ω1)S, and sends it to Ṽ .

When the adversary completes the protocol, we outputs the "help string"

h that Ṽ outputs, along with X̂i.

In this step, the distribution of C is uniformly distributed in G2, and its

distribution is independent of every variable other than in the adversary’s

view up to that point, and is also independent of the hidden variable ω′.

Therefore, up to this point, this simulation is perfectly correct, and further-

more, the probability that ω0 = ω′0 is 1/|Z∗m|. If ω0 = ω′0, then

v · ê(ãP + b̃P, Q)ω = v · ê(ãP + γi
fP, ω′0r1r2P )ω

= ê(P, P )ãγi
f · ê(P, P )(ã+γi

f )ω′0r1r2ω

= ê(P, P )ãγi
f+(ã+γi

f )ω′0r1r2ω,
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and

ê(Y, P ) = ê(ãγi
fP + (ã + γi

f − ω1)r1r2P, P )

= ê(P, P )ãγi
f+(ã+γi

f−ω1)r1r2 .

Since ω0 = ω′0 and

ãγi
f + (ã + γi

f )ω′0r1r2ω ≡ ãγi
f + (ã + γi

f )ω′0r1r2
ã + γi

f − ω1

(ã + γi
f )ω0

≡ ãγi
f + (ã + γi

f − ω1)r1r2,

we have ê(Y, P ) = v · ê(ãP + b̃P,Q)ω.

Moreover, C reveals no information of Φ(Q1), Φ(Q2), and Φ(Sec), and

the distribution of Φ(Y ) is uniform and independent of Φ(Sec). From the

above result, the expected value of the total number of iteration rounds is

(|Z∗m| ·NV(k)). This completes Phase 1.

Phase 2. This phase takes as input h, Pub, and output from Phase 1, and

runs in time O(TP(k)Π2(k)). It outputs Fail or Success according to success

outputs u such that u ≡ ãγi
f ≡ ab (mod m), since ê(P, P )u = ê(P, P )ãγi

f
=

ê(P, P )ab. The probability of success, given that ε(h, Pub) ≥ Π2(k)−1, is at

least 1/2.

For the sake of convenience, let ε = ε(h, Pub), and assume ε ≥ Π2(k)−1.

This stage runs as follows: First run (P̃(h), V̄(Pub)) up to dΠ2(k)e times,

or until V̄ accepts. If V̄ accepts, let

ê(Y, P ) = ê(ãb̃P + (ã + γi
f − ω1)S

= ê(ωP, P )ãb̃+(ã+γi
f−ω1)r1r2

= v · ê(ãP + γi
fP, Q)ω

be the accepting conversation. Fixing the coin tosses of P̃ , run the in-

teraction again up to d4Π2(k)e, or until V̄ accepts again with a challenge
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ω′′ 6≡ ω (mod m). In this case, let X̂j ≡ ãγj
f (mod m). If V̄ accepts this

challenge, then we have another accepting conversation

ê(Y ′, P ) = ê(ãγj
fP + (ã + γj

f − ω′1)S

= ê(ωP, P )ãγj
f+(ã+γj

f−ω′1)r1r2

= v · ê(ãP + γj
fP,Q)ω′′

where u ≡ aγi
f (mod m), u ≡ aγj

f (mod m), and ωaγi
f ≡ ω′′aγj

f (mod m).

Therefore, we can easily calculate f = log γj
γi

ω − log γj
γi

ω′′.

To show that there is another solution with non-negligible probability,

we make use of the same method as employed in [14, 28, 37]. Let M be a

Boolean matrix of which rows are indexed by the coin tosses ω′ of P̃ and of

which columns are indexed by the challenge ω of V̄ . Let M(ω′, ω) = 1 if and

only if the pair of (ω′, ω) makes V̄ be convinced by P̃ .

Just the same as in [14, 28, 37], we call a row ω′ in M “heavy” if the

fraction of 1’s in this row is at least 3ε/4. Then the fraction of 1’s in M

that lies in heavy rows is at least 1/4. The reason comes from the following

equations: let r be the number of rows in M and c be the number of columns

in M , and r̄ be the number of non-heavy rows, then the total number of 1’s

in M is rcε. Then the total number of 1’s that lies in non-heavy rows is

r̄c3ε
4
≤ (

3
4

)
rcε. Therefore, the fraction of 1’s in heavy rows is induced by

rcε− r̄c
3ε

4
≥ rcε− rc

3ε

4

=
1

4
(rcε).

Now consider an accepting conversations by (ω′, ω) such that M(ω′, ω) =

1. Since we have another accepting conversation by (ω′′, ω) satisfying that

M(ω′′, ω) = 1. Then the fraction of ω′′ which satisfies

M(ω′′, ω) = 1 ω′′ 6≡ ω (mod m)

34



is at least

∣∣∣∣
3ε

4
− 1

|Z∗m| − 2

∣∣∣∣ ≥
∣∣∣∣∣
3(Π2(k)−1)

4
− 1

Π2(k)

∣∣∣∣∣

=
1

4

1

Π2(k)
=

Π2(k)−1

4
.

To complete the construction of this phase, we use the simple fact that if ε

is a small real number, then (1−ε) ≤ e−ε [41]. Let ε be a success probability.

When an experiment is repeated at least t times, the probability that all of

experiments fail is at most (1 − ε)t ≤ e−tε. Thus, if t ≥ 1/ε, the probability

that at least one experiment succeeds is at least 1 − e−1. Therefore, for two

accepting conversations, the probability that the above procedure succeeds is

at least

(1− e−1) · 1

4
· (1− e−1) =

(
1− e−1

)2

4
.

Thus, by a simple calculation, we can obtain the fact that one of fourteen

experiments must succeed, thus the probability that one of seven experiments

succeeds is at least 1/2.

Phase 3. This phase takes as input, the output X̂i from Phase 1, and the

value u from Phase 2. Its running time is O(Π2(k) · log(Π2)
2). When Phase

2 succeeds, the probability that it solves the C-DH problem is 1/2.

Recall that ω ≡ ã+γi
f−ω1

(ã+γi
f )ω0

(mod m), if ω′ = ω0 then

ãγi
f ≡ X̂i (mod m), (6.1)

f 6≡ (m− 1) (mod m) and f = log γj
γi

ω − log γj
γi

ω′′, (6.2)

u ≡ ãγi
f (mod m) or u ≡ ãγj

f (mod m), (6.3)
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and

u ≡ ãb̃ ≡ ab (mod m).

Now consider only the case where Phase 2 succeeds at least with the

probability 1/2. First from Eq. (6.1), we have ê(aP, γiP ) = ê(P, P )aγi , and

from Eqs. (6.2) and (6.3), we have

ê(P, P )u = ê(P, P )ãγi
f

= ê(ãP, γi
fP )

= ê(ãP, b̃P )

= ê(P, P )ãb̃ = ê(P, P )ab.

Then with the probability 1/2, we can solve the C-DH problem from the

following equations: This completes Phase 3.

It follows that, for sufficiently large k, the overall success probability of

the algorithm A is at least

ε(h, Pub)× 1

2
× 1

2
= Π1(k)−1 × 1

2
× 1

2
=

Π1(k)−1

4
.

Phase 4. This phase repeatedly executes Phase 1 to Phase 3 to solve the

C-DH problem, ê(P, P )xc, where x ≡ ab (mod m). If phases from 1 to 3

succeed, it is straightforward that this phase must succeed with the above

probability.

Phase 5. If Phase 4 succeeds with given probability, it is equivalent to

solving the C-DH problem

ê(P, P )xc = ê(P, P )abc

with probability

SuccB-DH
IG (A) =

Π1(k)−1

16
.
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This completes the proof of Lemma 6.3. ¥
Therefore, we can conclude that the basic scheme satisfies the requirement

of Definition 4.5. This completes the proof of Theorem 6.1. ¤

Theorem 6.4 Under B-DHIA, the generalized identification scheme is se-

cure against active adversaries whose running time is defined by τ ′′, and the

success probability is bounded by ε′′.

Proof: We do not describe the full description of proof for the generalized

identification scheme in detail. However, the proof is straightforward. At first

we assume that there exists an (τ ′′, ε′′)-breakable adversary I = (P̃ , Ṽ) who

can break this identification scheme. Next, we can reduce the adversary I
at least with the advantage AdvSAA(I) = ε′′ into the adversary ∆ which can

solve the underlying problem with probability SuccB-DH
IG (∆) = ε̄ in running

time τ̄ . Clearly, during the reduction from I to ∆, the running time and the

success probability of I is preserved linearly in ∆. Then As in the proof of

Theorem 6.1, we can prove Theorem 6.4. ¥
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Chapter 7

Comparison with other schemes

In this section, we compare our basic scheme with the prior schemes in terms

of not only the computation overhead in the light of key size, communication

overhead, processing complexity but also their security.

We assume that an elliptic curve E over a base field K is chosen in the

same manner as [5]. That is, let E be the elliptic curve defined by the equation

y2 = x3+1 over Fp, where p is a prime satisfying p ≡ 2 (mod 3) and p = 6q−1

for some prime q > 3. Note that for the sake of the convenience m is replaced

by q. As pointed out in [5], from the practical point of view, we can assume

that p and q is a 512-bit prime and a 140-bit prime respectively, since the

MOV reduction [25] then leads to a DLP in a finite field of size approximately

21024.

In addition, we assume that system parameters p and q for our basic

scheme, Schnorr, and Okamoto are 512-bit and 140-bit respectively, and the

modulus n for FFS, GQ scheme is 512-bit. We assume that the standard

binary method is employed for the modular exponentiation as well as for

the point multiplication in polynomial basis form. We also assume that the

parameters for FFS are l = 20 and t = 1. Here, we only consider Okamoto

scheme as an Identification scheme 1 proposed in [29]. Note that for the

purpose of comparison with arithmetic operations of each scheme, we denote

M the cost of modular multiplication over a given finite field and A the cost of

point addition over a given elliptic curve. Table 7.1 shows the comparison of

identification schemes. If the Weierstraß equation over the affine coordinates
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Table 7.1: Comparison of identification schemes

Our scheme Schnorr Okamoto FFS GQ

Security proof Yes Yes Yes Yes Yes

Secure against active attacks Yes No Yes Yes No

Underlying problem B-DH DLP DLP RSA RSA

ID-based variant Possible Possible Possible Possible Possible

Public key size (bits) 512 512 512 10,240 1,024

Private key size (bits) 420 140 280 10,240 512

Communication overhead (bits) 932 672 812 1,044 1,044

Preprocessing (Prover)

(# of field multiplications 140A 210M 245M 1M 30M

or point additions)

On-line processing (Prover)

(# of field multiplications 2M Almost 0M Almost 0M 10M 31M

over a given finite field)

On-line processing (Verifier)

(# of field multiplications 141M 210M 248M 11M 35M

over a given finite field)

in fields of characteristic two is given by y2 + xy = x3 + a2x
2 + a6, then our

scheme has a2 = 0. Furthermore, since a generator P of the group G1 is

initially known all parties, we can enable the point multiplication in elliptic

curves to be more faster. In fact, the point multiplication consists of point

doublings and point additions. The binary method requires (` − 1) point

doublings and (W − 1) point additions, where ` is the bit length and W the

Hamming weight of the binary expansion, in general, W = `/2. Therefore, if

the point doublings are pre-computed, the point multiplication requires `
2
A-

point addition in average and `A-point addition in the worst case [4]. The

pre-computation is possible because P is initially given. In these cases, we

can estimate that A costs less than or equal to two times M, i.e., A ≤ 2M.

From Table 7.1, we can state the properties of our scheme as follows:

(1) Our scheme is more efficient than Schnorr and Okamoto with respect

to preprocessing of prover and on-line processing overhead of both parties

(prover and verifier). (2) However, our scheme requires memory for secret key
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about two times that of Schnorr and Okamoto. Moreover, its communication

overhead increases around four times more than those two schemes.
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Chapter 8

Conclusion and further work

In this thesis, we have studied the design and analysis of secure identification

protocols against active adversaries. We have reviewed previous works and

presented current concerns on the identification protocols. And then we have

presented our suggestions to solve the problems.

We have presented a practical construction of a new identification scheme

based on the B-DH problem using the Weil pairing. The identification proto-

col is a typical three-round identification (i.e., commitment-challenge-response

protocol). To the best of our knowledge, there is no identification scheme

based on the B-DH problem published in the open literature. To guarantee

that the protocol gives sound security, first we have identified all possible

attacks and next we have settles the standard model as our approach. The

standard model is the preferred approach of modern, mathematical cryptog-

raphy. Using this approach, we have showed that any attacker that can break

the identification protocol can be transformed into an efficient algorithm to

solve the underlying well-studied problem, the B-DH problem. Finally, we

have obtained an exact analysis of the security of the protocol rather than

asymptotic ones.

As we discussed the relation between an identification scheme and a sig-

nature scheme, our proposal can be extended to a signature scheme using

the Weil pairing. Also similar to IBE scheme proposed by Boneh et al., our

scheme can be associated with the public identity such as e-mail.

As the future work, it remains as an open problem to implement an algo-

41



rithm to efficiently compute the Weil pairing as suggested in [42]. The other

problem to be solved is that the proposed identification scheme has some

more computational complexity.
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áÔ�Ð�Ðc+t

�̂�"î
���

W1àÔ0>ß¼\� l�ìøÍô�Ç ��s�!Q /BNçß�\�"f �&³�FK, ���E�¼#�t�, q�yn=ë�H"f1pxs� n�

t�_O� J�(�¶_� +þAI��Ð �§8̈�÷&�¦ e����. Õª�Q�� n�t�_O� :�x���\� _�K� �§8̈�÷&��H

Bjr�t���H ��|ÃÐs� ½̈Z>� ½+É Ãº \O���H ‘0’õ� ‘1’_� ���5Åq�)a ��\P�\� Ô�¦õ��Ù¼�Ð, >h

���d��Z>� (entity identification)s�����H�:r|9�&h�ë�H]j\�¦ÃºìøÍô�Ç��.>h���d��Z>�ë�H

]j_�@/³ð&h�\V�Ð"f “¾ºç�H��x�t� (Fiji)\�"f#Q�"��Ér'��\� $100,000,000_�5Åx

�FK�̀¦ ¦���õAô�Ç'¹כ ���� Õª �Ér'���Ér Õª�� ����� Õª���t� #Qb�G>� SX���� ½+É Ãº e����H

��?”����H ë�H]j\�¦ �¦�9K��Ð��. ��s�!Q /BNçß�°ú �Ér q�@/��� �©�S!�\�"f ô�Ç ��6 x��

�� ���Ér ��6 x��\� _�K�"f ]jr��)a ���"é¶ (identity)s� ú́�����H �¦̀�	כ �Ð�©�K� ÅÒ

��H l�ZO�s� 9 �¹כ��9 s� l�ZO��̀¦ d��Z>� áÔ�Ð�Ðc+ts��� ÂÒ�Ér��.

�:r�:rë�H\�"f��H{9�~½Ó�¾Ó�<ÊÃº (one-way function)�Ð·ú��9���������+þAn�x�-ó¡�

ëß� (bilinear Diffie-Hellman) ë�H]j\� l�ìøÍô�Ç d��Z>� áÔ�Ð�Ðc+t�̀¦ [O�>���¦ s��	כ

_�îß����$í
\�@/ô�Ç&ñ
|¾Ó&h���H��\�¦]jr�ô�Ç��.d��Z>�áÔ�Ð�Ðc+ts���0pxô�Ç/BN���\�

@/K�"f îß���������H �¦̀�	כ �Ð�©��l� 0AK� d��Z>� áÔ�Ð�Ðc+ts� \O����� îß����ô�Ç ��

\� @/ô�Ç &ñ
+þA&h�s��¦ %3����ô�Ç Ãº�<Æ&h� 7£x"î
s� ÃºìøÍ÷&#Q ô�Ç��. îß����$í
 7£x"î
 ��

0px (provably secure)d��Z>�áÔ�Ð�Ðc+t_�[O�>���H#Q�9î�r{9�s���áÔ�Ð�Ðc+t_�[O�

>�\� l��:r&h���� ���\O�s���. ���Ér ��� ñ áÔ�Ð�Ðc+t_� [O�>�ü< ��ðøÍ��t��Ð �:r �7H

ë�H\�"f d��Z>� áÔ�Ð�Ðc+t_� îß����$í
_� �Ð�©��̀¦ 0AK�, ���$� ��0pxô�Ç �̧��H /BN���\�

@/ô�Ç ½̈Z>� x9� Ãº�<Æ&h� &ñ
_��� s�ÀÒ#Q�����. [O�>���¦�� ���H r�Û¼%7�\� @/ô�Ç

/BN��� �̧4Sq�̀¦ ½̈$í
ô�ÇÊê4�¤ú̧��̧ s��:r (complexity theory)\���H��ô�Ç��� ñ�<Æ&h�

»¡¤�è (cryptographic reduction)l�ZO��̀¦��6 x�#�ÅÒ#Q���r�Û¼%7�_�îß����$í
s�

\O����� ÷&��Ht� /BN�����_� ��"é¶\� �'aô�Ç �<ÊÃº�Ð ]jr��)a��. /BN����� �<ÊÃº��H /BN

���\� ¹ô�Çכ��9 r�çß� x9� $í
/BN SX�Ò�¦�Ð ³ð�&³�)a��. l��:r d��Z>� áÔ�Ð�Ðc+t\� @/ô�Ç îß�
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���$í
 7£x"î
s� ¢-a«Ñ÷&��� {9�ìøÍ�o �)a d��Z>� áÔ�Ð�Ðc+t�Ð SX��©� ��0px���.

�:r�7Hë�H\�"f]jr�ô�Çd��Z>�áÔ�Ð�Ðc+t�Ér������+þAn�x�-ó¡�ëß�ë�H]j\�l�ìøÍ�#�

%�6£§Ü¼�Ð]jr��)ad��Z>�áÔ�Ð�Ðc+ts���.v�_�ß¼l�,:�x���|¾Ó,���"é¶l�ìøÍ (identity-

based) l�ZO�Ü¼�Ð_� SX��©���0px$í
_� 8£¤���\�"f l��>r_� l�ZO�õ� q��§½+É ���. ¢̧

ô�Ç 0px1lx /BN��� (active attacks)�̀¦ s�6 x�#� ]jr��)a áÔ�Ð�Ðc+t�̀¦ �<H�©�r�v���H

X< ¹ô�Çכ��9 /BN�����_� ��"é¶�̀¦ &ñ
SX��>� ]jr���¦ e����. �:r �7Hë�H\�"f s�6 x�

��H n�x�-ó¡�ëß� ë�H]j_� ������+þA$í
 (bilinearity)_� ½̈�̂&h� \V�Ð"f Z�{9� �©� (Weil

pairing)�̀¦ ��6 xô�Ç��.
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