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Abstract: Neural cryptanalysis is the utilization of deep learning to attack cryptographic primi-
tives. As computing power increases, deploying neural cryptanalysis becomes a more feasible option
to attack more complex ciphers. After reviewing all recent neural cryptanalysis publications on the
security of block ciphers including the detailed outcome of the attacks, we find that the types of neural
cryptanalysis on block ciphers can be classified into key recovery, cipher emulation, and identification
attacks. We evaluate whether the publications have used correct methodologies to analyze the attack
results or not, discuss limitations of current neural cryptanalysis results, and suggest future direction
of development of this field.
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1 Introduction

Deep learning (DL) models are capable of efficiently
approximating any unknown functions. Researchers
have extended applications of DL to every field from
customer behavior prediction to video generation. Now
the frontier has reached to the most complex types of
functions, namely cryptographic primitives. Attack-
ing cryptosystems using deep learning is called neural
cryptanalysis.

It has been a long time since the possibility of uti-
lizing neural networks for design and analysis of cryp-
tosystems has first proposed [29]. Such systems and
analysis methods had to remain on theoretical interest
before the available computing power reaches a cer-
tain level to perform actual experiments. Now the re-
source becomes plentiful, and theoretical advances lead
to more effective network structure and optimization
methods.

However, it seems that neural cryptanalysis is still
in the early stage due to the hardness of the tasks tar-
geting complex cryptographic primitives designed to
have strict requirements such as indistinguishability.
Also, the knowledge of the previous attacks has scat-
tered and not been systemized effectively. Therefore,
we survey the previous approaches and applications of
neural cryptanalysis on block ciphers. We also raise
disputes on the results of some previous publications,
about whether they have proper models and analysis
methods.

∗ Graduate School of Information Security, KAIST. 291,
Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141.
baek449@kaist.ac.kr

† School of Computing, KAIST. 291, Daehak-ro, Yuseong-gu,
Daejeon, South Korea 34141. kkj@kaist.ac.kr

2 Background

2.1 Block Cipher

Block ciphers are symmetric cryptosystems that en-
crypt plaintexts or decrypts ciphertexts by the unit of
blocks. Common designs of block ciphers include the
Feistel network and the substitution-permutation net-
work (SPN).

Practical ciphers are general-purpose block ciphers
having decent security level. Data Encryption Stan-
dard (DES) is one of the first practical ciphers. Cur-
rently, Advanced Encryption Standard (AES) is in the
most widespread use. Other than AES, plenty of prac-
tical block ciphers exist such as MARS, RC6, Serpent,
and Twofish.

Toy ciphers are block ciphers that having small key
and block size and simple structures. Simplified Data
Encryption Standard (SDES) [30] is one of the well-
known toy ciphers. Toy ciphers are used for demon-
strating cryptanalysis techniques as proofs of concepts.
In the neural cryptanalysis area, a lot of papers we
surveyed have targeted toy ciphers, especially SDES.

Lightweight ciphers are block ciphers designed for
small devices which have strict performance and mem-
ory requirements. Lightweight ciphers utilize simple
operations such as arithmetic addition, shifts (includ-
ing rotation), and bitwise binary operations. Lightweight
ciphers are denoted as LW in the tables of this paper.

2.2 Cryptanalysis of Block Cipher

The two well-known cryptanalysis methods are dif-
ferential cryptanalysis (DC) and linear cryptanalysis
(LC). The two attacks are notable as they broke the
security of DES. Other attempts have been proposed,
such as a method using multivariate quadratic equa-
tions [11].
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2.3 Deep Learning

Deep Learning is a group of techniques to solve learn-
ing problems using a neural network containing various
hidden layers. Dense layers and convolutional layers
are frequently used. Other types of connections can be
used; cascaded layers have connections from neurons of
all the layers from the input layer to the previous layer.
By training, the parameters (weights and the biases of
the neurons) are optimized to minimize the given loss
function.

Neural networks are known to be capable of approx-
imating any given function if enough training data and
latent space were given. However, it is also known
that in general boolean functions with constant depth
threshold circuits, the required resources would be be-
yond polynomial [6]. Shown by a known provable se-
curity of a public-key cryptosystem, this result making
cryptanalysis using neural network a challenging topic.

2.4 Neural Cryptanalysis

• Definition Neural cryptanalysis is defined as any
attempt to break a cryptosystem using deep learning.

• Attacks on Block Ciphers For block ciphers,
several attack scenarios of neural cryptanalysis will be
discussed in Sections 4, 5, and 6. Most attacks took
the black-box view of block ciphers, assuming the ad-
versary knows the entire specifications of the block ci-
pher algorithms, but does not know the secret key and
corresponding round keys.

•Relationship with Neural Cryptography There
exists the field of neural cryptography which utilizes
deep learning models as encryption and decryption or-
acles. Some schemes of neural cryptography have been
proposed for encrypting images. However, emulating
these oracles of the schemes are equivalent to a model
extraction attack. From the perspective of deep learn-
ing security, model extraction attacks already have been
widely researched and deployed in order to steal paid
models.

2.5 Neuro-aided Cryptanalysis

•Definition As a subset of neural cryptanalysis, neuro-
aided cryptanalysis is defined as any attempt to break a
cryptosystem using classical methods, while deep learn-
ing models are utilized to increase the effectiveness of
the attacks.

•Neuro-aided Side-channel Attack The most de-
veloped area of neuro-aided cryptanalysis is neuro-aided
side-channel attack [7, 16, 31]. The adversary obtains
the physical properties such as level of power signal
on the target hardware implementation of a cryptosys-
tem. Deep learning is used for analyzing metrics such
as timing and power amplitude information obtained
from the hardware more effectively.

• Possible Applications on Block Ciphers Sce-
narios such as finding weaknesses of S-box design, or
finding strong differential properties of a block cipher
may fall in the category of neuro-aided cryptanalysis.

3 Scope of the Survey

3.1 Classification by Attacks

Even if the target cryptosystem is same, different
attack scenarios exist based on different assumptions,
which leads to different use cases of DL models on the
attacks. For instance, regarding block ciphers, key re-
covery attacks aim to recover keys used in the cipher
(Section 4.1), while cipher emulation attacks (Section
5.1) aim to simulate encryption or decryption oracles
to recover plaintexts from ciphertexts without knowing
the key. Identification attacks (Section 6.1) determine
which encryption algorithm is used for the ciphertext.

The configurations of how deep learning models are
applied to cryptanalysis widely vary among the attacks.
For example, DL could be applied to end-to-end key re-
covery while plaintext and ciphertext pairs are given as
training data, or DL could be incorporated into classi-
cal cryptanalysis techniques such as differential crypt-
analysis. The details of each attack setting will be de-
scribed in the corresponding section.

3.2 Comparison Metrics

For each attack, the previous publications are com-
pared by following comparison metrics. A comparison
table is provided for each attack, while the properties
not specified in the publications are denoted as ques-
tion marks.

Target Block Cipher The publications are classi-
fied by the target block ciphers used in the attack. The
structures of the block ciphers were compared, also in-
cluding whether the block ciphers are toy, lightweight
(specified as LW), or practical ciphers. Number of
rounds indicate the round count of the block cipher
whose authors tried to break.

Neural Network Properties For the general com-
parison of neural networks, multiple aspects and pa-
rameters such as layer types, number of hidden layers,
number of neurons per layer, and activation function
are specified in the tables.

Training Methods Amount of training data, loss
functions, and average number of epoch are also pro-
vided to describe the training environment and param-
eters.

3.3 Disclaimer

This survey does not cover neuro-aided side-channel
attacks of block ciphers. This survey does not cover
neural cryptanalysis of stream ciphers [15], random
number generators [32], physically unclonable functions
[28], public key cryptosystems [27], neural cryptosys-
tems [24, 1], chaos-based cryptosystems [19], historical
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Table 1: Comparison on key recovery attacks using deep learning
Publications AW04 [4] AAAA12 [2] DH14 [12] Goh19 [17] Wab19 [33]

Attack Method KR/F KR KR KR/F KR/F

Target Name HypCipher SDES SDES Speck32/64 Hey02 [20]
Block Internal Structure Feistel/Toy Feistel/Toy Feistel/Toy ARX/LW SPN/Toy
Cipher Block Size (bit) 16 8 8 32 16

Attacked Round (Full Round) 4 (4) 2 (2) 2 (2) 11 (22) 4 (4)

Neural Layer Type Dense Dense Dense CNN/Residual Dense
Network # of Hidden Layers 2 32 1 ≤10 2

Properties # of Neurons per Layer 16 32 ? ? 256
Activation Function Sigmoid ? ? ReLU ReLU

Training Loss Function† SSE SSE ? MSE Varying
Methods Training Data (tuples) ≤53 1,024 102,400 107 ≤8,000

Avg. # of Epoch ? 7,869 ? 200 200

Result Success Success Success Success Success
† MSE: Mean Squared Error, SSE: Sum Squared Error [(SSE) = (# of output neurons) × (MSE)]

ciphers such as substitution ciphers and ENIGMA [18],
and any cryptosystems other than block ciphers.

4 Key Recovery Attacks

4.1 Description

Key recovery attacks are attempts to guess the key
of the cipher in non-negligible advantage. Even if an
adversary obtains some partial information of the key,
such as a round key, the information becomes an im-
portant clue toward full key recovery, the total break
of the cipher.

• Key Recovery Attack (KR) Given a plaintext
and ciphertext pair (p, c) satisfying c = Enc(k, p), the
attacker makes attempt to find k. Triples of a random
plaintext, a random key, and the corresponding cipher-
text (ki, pi, ci) such that ci = Enc(ki, pi) are given as
training data.

• Key Recovery Attack on Fixed Key (KR/F)
The objective of the attack is same as normal key re-
covery attacks, but only pairs of random plaintexts and
the corresponding ciphertexts (pi, ci) such that ci =
Enc(k, pi) are given as training data. A single deep
learning model cannot be an end-to-end solution since
the key is not given in the training data. Therefore, the
attack is usually integrated with an analysis method
that requires the knowledge of the algorithm. A com-
mon approach is to guess the key and examine the
model’s performance for each possible key.

4.2 Outcome

Albassal et al. [4] produced one of the pioneering
works in the neural cryptanalysis field. To perform
the key recovery attack on a fixed key for n-round ci-
pher, an attacker may guess the final round key r and
train the neural network for (n − 1)-round cipher. If
r is wrong, the result would be uniformly distributed
for the test data, by the wrong key randomization hy-
pothesis [5]. If r is correct, the error rate would be
significantly lower than the wrong guesses. Wabbersen
[33] had similar but slightly different approaches and

network structures against another SPN-structured toy
cipher on the Master’s thesis.

Alallayah et al. [2] distinguished key recovery attacks
from other emulation attacks, and performed both at-
tacks on SDES. Danziger et al. [12] did a similar task
using smaller layers and more training data. The au-
thors used the neural cryptanalysis results to claim that
a possible differential weakness on the S-box for SDES
had been effectively patched.

Gohr [17] provided significant contribution to extend
key recovery attack toward real-world lightweight ci-
pher named Speck32/64. He provided a systematic ap-
proach by first training a real-or-random distinguisher
on chosen plaintext assumption based on some known
property from differential cryptanalysis and utilized the
model for key recovery. The author further claimed
that the wrong key randomization hypothesis is not
ideally applicable for lightweight ciphers, and proposed
some methods to collect some bias (called “wrong-key
response profile”) from the hypothesis and additionally
took advantage of the bias for key recovery.

4.3 Comparison

In Table 1, the five notable results on key recovery
attacks using deep learning are compared.

Most of the key recovery attempts have been tar-
geted on toy ciphers. The authors of [4] provided their
own toy cipher called HypCipher as the target. Hyp-
Cipher is a Feistel-structured toy cipher borrowing one
of the AES S-boxes, supporting 8-bit key, 16-bit plain-
text, and 16-bit ciphertext. As toy ciphers have only
few rounds, the attacks targeting the toy ciphers were
successful on full-round ciphers.

On the other hand, Gohr used Speck32/64, which
was the only non-toy target block cipher among the key
recovery attacks. Note that Speck32/64 is a lightweight
block cipher having 22 rounds and 32-bit block size. He
took a bottom-up approach to start the attack from
lower rounds and extend the attack up to 11 rounds,
which is a half of the total rounds of Speck32/64.
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Table 2: Comparison on cipher emulation attacks using deep learning
Publications AAAA12 [2] MMP19 [26] JM19 [22] XHY19 [34]

Attack Method PR EE PR/B PR/B PR

Target Name SDES SDES PRESENT FeW DES
Block Internal Structure Feistel/Toy Feistel/Toy SPN/LW Feistel/LW Feistel/Practical
Cipher Block Size (bit) 8 8 64 64 64

Attacked Round (Full Round) 2 (2) 2 (2) 31 (31) 32 (32) 3 (16)

Neural Layer Type Dense Dense Dense Dense Dense†

Network # of Hidden Layers 32 32 1 2 1
Properties # of Neurons per Layer 32 32 ? ? 1,000

Activation Function ? ? Sigmoid Sigmoid Varying

Training Loss Function MSE MSE MSE MSE MSE
Methods Training Data (tuples) 1,024 1,024 10,000 10,000 65,536

Avg. # of Epoch 1,640 2,861 ? ? 350

Result Success Success Failure Failure Success (round≤2)
† The authors tried two other network layer types having weaker results compared to dense network.

4.4 Our Claim

Directly training a neural network to predict key
from plaintext and ciphertext pairs has been reported
to be effective on 2-round SDES which still holds linear
relationship between plaintexts and ciphertexts such as
follows:

∀x ∈ {0, 1}4 ,∀p ∈ {0, 1}8 , p′ = p⊕ IP−1(x|0000),

IP (SDES(p)⊕ SDES(p′)) = ????|x (1)

We claim that the approach is only effective for break-
ing toy ciphers, because of the complexity of lightweight
and practical block ciphers.

The round key guessing approach requires that the
model should be built for each round key in the round
key space. Speck32/64 uses 16-bit round key, while
DES and AES use 48-bit and 32-bit round key, respec-
tively. Therefore, the authors would not be able to
extend their approach toward practical ciphers having
large key space.

5 Cipher Emulation Attacks

5.1 Description

Cipher emulation attacks are attempts that trying
to mimic either the encryption or decryption oracle of
a target cipher.

• Plaintext Restoration Attack (PR) Given a
ciphertext c, the attacker tries to guess bits of the cor-
responding plaintext p such that c = Enck(p) with
non-negliglble advantage. Random plaintext and corre-
sponding ciphertext pairs (pi, ci) such that ci = Enc(k, pi)
are given as training data. If an attacker assumes the
chosen plaintext attack, the oracle would have been
given to the attacker.

• Bitwise Plaintext Restoration Attack (PR/B)
Plaintext restoration attack can be also deployed by
individual bits of plaintext. Pairs of (pi[k], ci) is given
as training data instead of (pi, ci), where pi[k] is the
kth bit of the plaintext pi.

• Encryption Emulation Attack (EE) Given a
plaintext p, the attacker tries to guess bits of the cor-
responding ciphertext c such that c = Enc(k, p) with
non-negliglble advantage. Random plaintext and corre-
sponding ciphertext pairs (pi, ci) such that ci = Enc(k, pi)
are given as training data.

5.2 Outcome

Alallayah et al. [2] provided cipher emulation attack
results of 12-bit SDES. The attack was performed in
both directions: plaintext restoration and encryption
emulation.

Mishra et al. [26] attempted to restore plaintext
from ciphertext encrypted by a lightweight block ci-
pher PRESENT having 31 rounds with 64-bit block.
The authors broke down the entire plaintext restoration
problem into smaller problems. Instead of building one
large network having 64 output neurons, the authors
tried to build 64 binary classifiers predicting each bit
on the restored plaintext. As the authors claimed that
the models did not produce any meaningful predictions
of plaintext, testing reduced-round PRESENT or other
successful attacks would be future work. Jain et al. [22]
obtained a similar result attacking another lightweight
cipher named FeW.

Xiao et al. [34] targeted DES up to two rounds.
They tried different types of networks (deep and thin,
shallow and fat, and cascade) and different activation
functions for plaintext restoration. The authors found
out that the shallow and fat network works more prop-
erly compared to the other networks, and activation
functions do not affect the results. The authors failed
to apply the attack on three round DES.

5.3 Comparison

In Table 2, the five notable results from four publica-
tions on cipher emulation attacks using deep learning
are compared.

Like the key recovery attacks, cipher emulation at-
tacks are successful on toy ciphers, but not yet on full-
round lightweight or practical ciphers. Xiao et al. [34]
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Table 3: Disputable plaintext restoration attack results on full-round practical ciphers
Publications Ala12 [3] HZ18 [21]

Attack Method PR PR PR PR

Target Name DES 3DES AES-128 AES-256
Block Internal Structure Feistel/Practical Feistel/Practical SPN/Practical SPN/Practical
Cipher Mode of Operation ECB ECB ECB/CBC ECB/CBC

Block Size (bit) 64 64 128 128

Neural Layer Type Dense Dense Cascaded Cascaded
Network # of Hidden Layers 4 4 to 5 4 4

Properties # of Neurons per Layer ≤512 ≤1,024 ≤256 ≤256
Activation Function Sigmoid Sigmoid Sigmoid Sigmoid

Training Loss Function MSE MSE MSE MSE
Methods Training Data (tuples) 2,048 4,096 ≈ 1741 ≈ 1741

Avg. # of Epoch 352 239 45 41

Total Error† 0.1110 0.1658 0.1734 0.2052
† Measured on total data including both training and test data

Table 4: Estimation of total error under the overfitting assumption (α = 0.7)
Publications Target Block Cipher ε Total Error E

Ala12 [3] DES (ECB) 0.0317 0.1110 0.1722
3DES (ECB) 0.0410 0.1658 0.1787

HZ18 [21] AES-128 (ECB) 0.0358 0.1768 0.1751
AES-128 (CBC) 0.0627 0.2095 0.1939
AES-256 (ECB) 0.0198 0.1699 0.1639
AES-256 (CBC) 0.0580 0.1909 0.1906

succeeded in the attack on 2-round DES but not 3-
round DES. However, 2-round DES is definitely not
enough to make the avalanche effect takes place. The
avalanche effect is a key requirement of block ciphers
describing diffusion of the one-bit plaintext difference
over the entire bits of ciphertext as rounds go by.

It is a common belief that deeper neural networks
are more effective to express complex functions than
shallow and fat networks. Xiao et al. [34] examined
that shallow and fat networks are better to break 2-
round DES, while Alallayah et al. [2] sticked to deep
and thin networks to make the attacks to the toy cipher
successful.

5.4 Our Claim

Besides the publications mentioned above, two claims
[3, 21] on plaintext restoration attack of the practical
ciphers exist. Alani [3] claimed that only a simple fully
connected network having 4 to 5 fully connected lay-
ers were enough to recover plaintext of DES and 3DES.
Hu and Zhao [21] followed the same approach to attack
AES. However, Xiao et al. [34] reported the Alani’s
work is not reproducible, while Lagerhjelm concluded
the same in his Master’s thesis [23]. After trying to
reproduce the Alani [3] and Hu and Zhao [21]’s results,
we claim that these results are consequences of over-
fitting, not a success on neural cryptanalysis. Table 3
lists the disputable results briefly.

•Metrics We found out that the analysis methods of
the publications were possibly misleading the readers.
Error values should be measured for test data only, to
properly show whether the trained models are indeed

successful plaintext restoration attacks. However, the
metrics of “outside error”[3] and “total error”[21] are
shown as the main results, which are measured by the
full dataset containing the training dataset.

• Overfitting Hypothesis Suppose that the dis-
puted models overfit to the training data and cannot
predict any corresponding plaintext from a ciphertext
excluding the training data, with advantage compared
to a random prediction. Such models would have test
error 0.5 from the baseline of randomly predicting plain-
text bit regardless of the ciphertext. With a training
data portion α and train error ε, the estimated total
error E can be calculated by

E ≈ εα+ 0.5(1− α) (2)

On the MATLAB default, α is equal to 0.7, specifying
15% validation data and another 15% test data.

• Finding Parameters Alani [3] gave explicit values
of ε of the 10 experiments for each cipher type, while
not mentioning the α value used in the work. Hu and
Zhao [21] did not provide the values; instead, we could
reverse calculate ε and α from the byte error distribu-
tion table to fit in the distribution

αB(8, ε) + (1− α)B(8, 0.5), (3)

where B(n, p) stands for the binomial distribution with
n trials and p probability.

The training data portion α best describing the er-
ror distribution table is approximately 0.68; the default
value of 0.7 is good for α. Though the authors speci-
fied α = 0.85, another 15% validation data were highly
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Table 5: Cipher Identification Attacks using Deep Learning
Publications CV07 [8] CVSK07 [9] DST13 [13]

Attack Method CSI CSI PTI / CSI

Target Names Enhanced RC6, Enhanced RC6, MARS, RC6, AES,
Block SEAL Serpent Serpent, Twofish
Cipher Internal Structure Feistel, Stream Feistel, SPN Feistel or SPN

Block Size (bit) 128 128 128

Attacked Round (Full Round) 20 (20) 20 (20), 32 (32) 10 to 32 (10 to 32)

Neural Layer Type Varying Dense Self-organizing Map
Network # of Hidden Layers 2 2 0

Properties # of Neurons per Layer ≤10 ≤25 100 / 400

Training Loss Function ? ? Cosine Angle

Methods Training Data (MB)† <2.0 <20.5 <1.5 / <1.2
# of Epoch ≤1,000 ≤5,000 10

Result Unknown (Train Acc. ≤93%) Failure Success
† Amount of data was measured by megabytes due to the data collection methods.

likely to be included in the training data as default.
Corresponding ε values are displayed in Table 4.

• Verifying the Hypothesis The similarity of the
estimated total error values and actual total error val-
ues supports the overfitting hypothesis except for Alani’s
DES experiment. Still, to convince readers about the
validity of the cryptanalysis attempt, the settings of the
DES experiment should be verified by the following.

i. The detailed test environment, such as α, should
be specified for a reproduction.

ii. The test error (excluding train and validation
data) which is less than 0.5 should be given for
any meaningful result. Using the total error may
mislead the readers when overfitting occurs.

iii. The data preparation method should be explained
in detail, ensuring the readers that the train-
ing dataset is disjoint from the validation or test
datasets.

In [3, 21], the results only implies that their fully
connected neural networks can overfit the training data
produced by practical ciphers. The results definitely do
not indicate that the plaintext restoration attack on
any of the practical ciphers was successful unless the
authors provide more crucial information to verify the
results.

To train any deep learning models successfully, the
loss landscape of the model should have a smooth gradi-
ent toward the global minimum. However, in the mod-
els of the papers, the loss landscape has a basin area
representing parameters resulting 0.5 activation level
for each output node regardless of the input (MSE/bit
= 0.25). This limits the use of the training algorithm
on finding the global minimum for end-to-end attack
on full-round lightweight or practical ciphers.

6 Identification Attacks

6.1 Description

• Plaintext Type Identification Attack (PTI)
Let P ′ ⊂ P is the domain of the plaintext type iden-

tification attack. Given a partition {Px} of P ′ and a
ciphertext c = Enc(k, p) where p ∈ P ′, the attack aims
to find j such that p ∈ Pj . Random plaintext and cor-
responding ciphertext pairs (pi, ci) such that pi ∈ P ′

and ci = Enc(k, pi) are given as training data.

• Cipher System Identification Attack (CSI) Let
P ′ ⊂ P is the plaintext domain of the cipher system
identification attack. Let {Encx} is a set of block ci-
pher encryption oracles with the same block size. Given
a ciphertext c satisfying c = Encj(k, p) where p ∈ P ′,
the attack attempts to find j. Triples of a random
plaintext, an oracle index, and the corresponding ci-
phertext (pi, ji, ci) such that ci = Encji(k, pi) where
pi ∈ P ′ are given as training data.

6.2 Outcome

Chandra et al. [8] tried to identify whether a block
cipher (Enhanced RC6) or a stream cipher (SEAL) was
used for encrypting the plaintext. The authors did not
conduct test data evaluation despite getting high train-
ing accuracy. On their subsequent work [9], the authors
conducted a larger experiment involving two block ci-
phers (Enhanced RC6 and Serpent) and two stream ci-
phers (LILI-128 and RABBIT). This time, the authors
performed test data evaluation for each pair of ciphers
and successfully identified RABBIT ciphertexts from
the other ciphertexts in the accuracy far higher than
50%. However, identifying the two types of block ci-
phers was failed.

de Souza et al. [13] experimented on both plaintext
type identification and cipher system identification at-
tacks. The authors used words from the Bible in 8
different languages (Portuguese, Spanish, French, Ger-
man, Danish, Dutch, Greek, and Hebrew) as training
data, encrypted in the five AES finalist ciphers. Un-
like other publications, the authors used unsupervised
learning, since clustering can be implemented using a
self-organizing map of neurons. Instead of identifying
each ciphertext block, the training data was divided
into 6-to-8-kilobyte ‘collections’ and its encryption was
converted to a vector.
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6.3 Comparison

In Table 5, the four notable results from three publi-
cations on identification attacks using deep learning are
compared. The work of de Souza et al. [13] is unique
in the aspect of utilizing unsupervised training algo-
rithm for the task. Neural network structures such as
self-organizing map had to be deployed for the unsuper-
vised learning tasks. Since the attack used block col-
lections instead of using individual blocks, duplicates
in ciphertext blocks would occur and can be leveraged
for detection of same block cipher and plaintext.

6.4 Our Claim

Technically not being a deep learning model as no
hidden layers are present, the neural network cluster-
ing approach in [13] utilized ECB mode of the ciphers,
encrypting the same plaintext blocks into the same ci-
phertext blocks. Therefore, if two ciphertext collections
have at least one common ciphertext block, a model can
safely conclude that they are from the same cipher al-
gorithm and the same plaintext class except negligible
probability. The cosine angle between vectors of two
collections becomes less than 90 degrees if and only if
this is the case. The results are the attacks on ECB
mode of operation, rather than cryptanalysis on block
ciphers themselves. This is similar to the other pre-
vious results using other machine learning algorithms
outside deep learning, such as a decision tree [25] or a
support vector machine [14, 10].

7 Conclusion and Future Work

We reviewed recent publications using deep learning
to perform cryptanalysis on block ciphers, namely neu-
ral cryptanalysis. We enumerated different attacks on
the field of neural cryptanalysis. We found out most
of the successful reports on neural cryptanalysis tar-
get toy ciphers or reduced-round ciphers. The result
indicates that no effective methods exist to break full
round lightweight or practical block ciphers until now.
On some of the attack results on practical block ciphers,
we raised disputes on their metrics and methodology to
declare success of cryptanalysis.

As the future work, new sophisticated applications
of deep learning should be developed in order to break
full-round lightweight and practical ciphers. Crypt-
analysis using deep learning can be applied to cryp-
tosystems other than block ciphers. For example, in
public key cryptosystems (including post-quantum ones),
deep learning may provide techniques to more efficiently
solve the underlying problems.

Finally, quantum computing becomes a breakthrough
technology toward more efficient computation. Quan-
tum computing may enhance the training of existing
deep learning models using Grover search or quantum
annealing, as the training procedures are equivalent to
solving optimization problem. Other quantum machine
learning techniques will be developed in the future,
which can be applied to faster cryptanalysis of block
ciphers and other cryptosystems.
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