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Abstract: In this paper, we give a generic approach for a group key exchange (GKE) in dynamic
setting, with a tree structure. Our construction is always feasible when the group can find the network
topology with tree structure efficiently. In our construction, all group members are modelled as the
node of the tree. From leaf node of the tree, a child node and his/her parent node run a two-party key
exchange to make their common secret key until it reaches the root node. After that, root node can
deliver the group secret key to all members as parent node sends the encrypted key to his/her child
node.

Then, by adopting NewHope protocol as a building block, we have implemented the first lattice-
based GKE, to the best of our knowledge in the open literature. The communication complexity for
our GKE protocol is O(N) where N is the number of participants.
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1 Introduction

Communication on an insecure network must prevent
any attacks that reads transmitted messages. When
two parties are communicating, a key exchange (KE)
generates a common secret key for secure transmission.
For secure group communiation, we require a secure
transmission between multiple parties instead of two
parties. A group key exchange (GKE) is a well-known
cryptographic primitive that establishes a common se-
cret key in which a shared secret key is derived from
group members as a function of the information from
them.

Moreover, we face the quantum computer era in the
near future. Post-quantum cryptographic primitive,
which is resistant to quantum computing attack, be-
comes one of main research areas in cryptography. In-
deed, in the quantum computer era, the security of
most public key cryptosystems based on number-theoretic
hard problems like integer factorization problem, dis-
crete logarithm problem, and elliptic curve discrete log-
arithm problem becomes vulnerable by Shor’s algo-
rithm [1].

It is clear that the effort to develop post-quantum
technologies is intensifying. National Institute of Stan-
dards and Technology (NIST) requested to submit post-
quantum cryptographic algorithms like encryption, KE/
key encapsulation scheme and signature scheme for stan-
dardization. While a lot of public implementation is
given in public including submissions to NIST PQC
competition, we don’t know any implementation of lattice-
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based GKE in the open literature. We suggest a simple
construction of GKE for a reference implementation.

In this paper, we give a generic approach for a simple
and efficient dynamic GKE protocol without trusted
authority and give an instantiation from the well-known
lattice-based key exchange, NewHope, with an imple-
mentation result.

1.1 Outline of the Paper

The rest of this paper is organized as follows. We
define basic terms for our scheme in Section 2 and re-
view the related work on GKE and lattice-based KE in
Section 3. Then, the design of our dynamic tree-based
group key exchange protocol and the security analysis
in Sections 4 and 5, respectively. We instantiate our
scheme by NewHope, with an implementation result
in Section 6. Finally, we give a conclusion and future
work in Section 7.

2 Preliminaries

2.1 Notations

A graph, denoted by G̃ = (Ṽ , Ẽ), is a pair of a set
of nodes Ṽ = {ṽ0, ṽ1, · · · , ṽN−1} and a set of edges Ṽ
connecting two nodes in Ṽ . An edge connecting two
nodes ũ and ṽ is denoted as eũ,ṽ = (ũ, ṽ).

For a set A and an error distribution χ sampled from

A, x
$←− A denotes a uniformly random sampling where

x ∈ A.
We denote a vector and a matrix as small bold let-

ters (e.g., x, y) and capital bold letters (e.g., A, B),
respectively. Each participant in a key exchange proto-
col is denoted as capital letters with a subscript (e.g.,
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Pi, Pj). We denote R and log(x) for a set of real num-
bers and log2(x), respectively.

For a ring R and any integer q ≥ 2, Rq denotes the
quotient ring as Rq = R/qR. A function µ is negligible
if and only if for all c ∈ N, there exists nc ∈ N such
that µ(n) < n−c for all n ≥ nc.

2.2 Basic Operations from Graph Theory

To design a dynamic extension of our tree-based group
key exchange framework, we use the following well-
known elementary graph operations; node addition/
deletion, edge addition/deletion and edge contraction.

Node addition operation adds a new node w̃ to the
original graph G̃ = (Ṽ , Ẽ) so that the new graph G̃′

= (Ṽ ∪ w̃, Ẽ). Edge addition operation adds an edge
ṽ1, ṽ2 ∈ Ṽ to the original graph G̃ = (Ṽ , Ẽ) so that
the new graph G̃′ = (Ṽ , Ẽ ∪ eṽ1,ṽ2). Similarly, we can
define edge deletion and node deletion.

For edge contraction, if we set a graph G̃ =
(
Ṽ , Ẽ

)
which contains an edge e = (ũ, ṽ) with ũ 6= ṽ. If f is a
function which maps every node in V \ {ũ, ṽ} to itself,
and maps ũ and ṽ to a new single node w̃. Figure 1
shows an example of edge contraction operation.

Figure 1: Edge contraction exapmple

The edge contraction of eũ,ṽ makes a new graph G′ =(
Ṽ ′, Ẽ′

)
, where Ṽ ′ =

(
Ṽ \ {ũ, ṽ}

)
∪ w and Ẽ′ = {Ẽ \

Ẽũ,ṽ}∪Ẽw̃. Ẽũ,ṽ is the set of edges that contains either

ũ or ṽ and Ẽw̃ is the set of edges (w̃, x̃) ∈ E if and only
if w̃ 6= x̃ and either (ũ, x̃) or (ṽ, x̃) is an edge in the
original graph.

For two graphs G̃ =
(
ṼG, ẼG

)
and H̃ =

(
ṼH , ẼH

)
,

we say that a graph H̃ is called a minor of the graph
G̃ if H̃ can be formed from G̃ by node deletion, edge
deletion and edge contraction.

We define a path between two nodes as a sequence of
edges P̃ = {eṽ0,ṽ1 , eṽ1,ṽ2 , · · · , eṽi−1,ṽi} in a graph where
ṽ0 is the origin node and ṽi is the destination node.

A cycle is a path whose origin and destination nodes
are the same and a tree is a graph without a cycle. A
graph is connected that there exists a path between all
two nodes in a graph.

A spanning tree T̃G̃ of the given graph G̃ with N
nodes is a connected tree which includes all vertices of
G̃ and the number of edges are equal to N − 1.

2.3 Ring Learning with Errors

A lattice Λ can defined as a discrete subgroup with
its basis B. A basis B of Λ is a set of linearly indepen-
dent elements B = {b1,b2, · · · ,bm} which generates
Λ and B = (b1|b2| · · · |bm) is called as a basis matrix

Protocol 1: NewHope

Alice Bob

seed
$←− {0, 1}256

a← Parse(SHAKE-128(seed))

s, e
$←− χ s′, e′, e′′

$←− χ
(b,seed)−−−−−→ a← Parse(SHAKE-128(seed))

u← as′ + e′

v← bs′ + e′′

v′ ← us
(u,r)←−−− r

$←− HelpRec(v)

ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

of Λ. Learning with Errors (LWE) problem is intro-
duced by Regev [2] in 2005 and Ring Learning with Er-
rors (RLWE) problem is introduced by Lyubashevsky
et al. [3] in 2010. Both LWE and RLWE problems state
that it is hard to find a secret value s from m indepen-
dent samples (ai, ais + ei) in Rq × Rq where Rq is a
ring.

Decisional version of RLWE problem is commonly
used as a cryptographic primitive like KE, as a building
block. This problem states that it is hard to distinguish
whether a sample (ai, bi) ∈ Rq × Rq is from RLWE
distribution of the form (ai, ais+ ei) ∈ Rq ×Rq where

a
$←− Rq, a secret key s← χs and an error e← χe or it

is sampled from uniform distribution of Rq ×Rq.
Given a polynomial ring R, a positive integer modu-

lus q, a noise distribution χ ofRq and l samples from ei-

ther uniform or RLWE distribution, AdvRLWE
n,q,χs,χe,l(A) is

the advantage of algorithm A in distinguishing RLWE
distribution and uniform distribution of Rq × Rq and

AdvRLWE
n,q,χs,χe,l(t) is the maximum advantage of any al-

gorithm running in time t. If χ = χs = χe, we simply
write AdvRLWE

n,q,χ,l .

2.4 NewHope Protocol

Alkim et al. [4] proposed RLWE-based KE called
NewHope in 2016. Protocol 1 describes the proce-
dure of NewHope. To operate NewHope, we define
HelpRec() and Rec() functions.

For a lattice D̂4 generated by a basis B = (u0,u1,u2,g)
where ui’s are the canonical basis vectors of Z4 and
g = ( 1

2 ,
1
2 ,

1
2 ,

1
2 ), CVPD̂4

(x ∈ R4) outputs the integer
vector z from a given vector x such that x − Bz ∈ V
where V is a Voronoi cell of a lattice, i.e., x ∈ V is close
to a zero point rather than all other lattice points.

HelpRec(x; b) outputs an integer vector from 2r

q (x +

bg) where HelpRec(x; b) = CVPD̂4

(
2r

q (x+bg)
)

mod 2r

and b ∈ {0, 1} is a uniformly chosen random bit.
Decode(x ∈ R4/Z4) outputs a bit k such that kg is

a closest vector to x + Z4, i.e., x− kg ∈ V + Z4.
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Rec(x, r) is a 1-bit-out-of-4-dimensions reconciliation
mechanism where

Rec(x, r) := Decode
(1

q
x− q

2r
Br
)
.

In our experiment, we set parameters (n, q) of NewHope
as (512, 12289) and (1024, 12289) with security level
101 and 233, respectively. They use centered binomial
distribution in error sampling χ.

3 Related Work

3.1 Lattice-based Key Exchange

Ding et al. [5] suggested the first lattice-based KE
in 2012 by extending Diffie-Hellman KE [6] to RLWE
setting. Since both LWE and RLWE problems require
the error term, we cannot change Diffie-Hellman KE
into RLWE setting directly. To control errors between
two approximately agreed ring elements in Rq, they
suggested the concept of a signal function and a robust
extractor, later referred as a key reconciliation mech-
anism. In a key reconciliation mechanism, one party
has output of rec and a key k ∈ {0, 1}λ for a secu-
rity parameter λ and the other party gets a key value
k′ ∈ {0, 1}λ from rec and a ring element b′ ∈ R.

Following this research, numerous publications [4,
7–19] have been focused on constructing KEs based
on lattice. Peikert [7] gave an efficient and practical
lattice-based KE which is suitable as “drop-in” replace-
ment for current Internet standards. Bos et al. [8] de-
signed the more efficient protocol to be implemented
in the TLS protocol and NewHope [4] improved the
performance with higher security level.

Frodo protocol [9] was suggested to remove the pos-
sible risk with more structure in the hardness problem.
The former protocols are designed in the ring structure
using RLWE problem but Frodo was designed to rely
its security on LWE problem without any ring struc-
ture.

Beyond these, there are many publications on lattice-
based key exchange and authenticated key exchange
protocols including Lizard, Round5, HILA5, RLWE-
PAK/PPK and RLWE-SRP [11–13,15–17,20].

There exist a small number of publications for lattice-
based GKEs. Ding et al. [5] suggested the basic idea of
GKE protocol, without rigorous proof, based on their
first lattice-based key exchange protocol in 2012. Then,
Xu et al. [21] proposed the first lattice-based 3-party
password authenticated key exchange protocol extend-
ing Ding et al.’s RLWE-PAK protocol [16].

Yang et al. [18] suggested the first provably-secure
GKE protocol based on the hardness of both LWE
and RLWE problems and the security of cryptographic
primitive called secure sketch [22] in the random ora-
cle model. But for secure sketch, trusted authority is
necessary and this protocol may have the single point
of failure issue.

Apon et al. [19] proposed the first provably-secure
(authenticated) GKE protocol based on the hardness

of RLWE problem and Katz-Yung compiler, without
trusted authority. They provide a constant-round pro-
cedure regardless of the number of participants in a
protocol. But to the best of our knowledge, none of
previous lattice-based GKE protocols do not suggest
parameter sets or an implementation result for their
protocol.

3.2 Dynamic Group Key Exchange

In 1996, Steiner et al. [23] extended two-party Diffie-
Hellman key exchange into GKE protcool with group
communications. This protocol has no a priori or-
dering of group members and no synchronization as
well. Then, they proposed a protocol that considers
the problem of key agreement in a group setting with
highly-dynamic group member population [24]. It sup-
ports dynamic group operations like adding and delet-
ing group members. They consider two types of group
key exchange protocols as centralized and contributory
ones.

Kim et al. [25,26] proposed Tree-based Group Diffie-
Hellman (TGDH) key management solution by blend-
ing binary key trees with Diffie-Hellman key exchange.
There are five types of membership changes; join, leave,
merge, partition and key refresh. This protocol is dy-
namic and guarantees group key secrecy, forward and
backward secrecy, fault-tolerance, and key independence
under passive adversary.

For the security model of dynamic setting, Bresson
et al. [27, 28] suggested two formal security models for
authenticated GKE depending on the power of corrup-
tion and the presence of mutual authentication secu-
rity which ensures that only legitimate participants can
compute identical session group secret key.

Compared to the weak corruption model, the strong
corruption model enables the adversary A to reveal the
long-term key as well as the short-term ephemeral se-
crets of the protocol instance. Moreover, the security
notion of forward secrecy is also defined in this security
model.

4 Tree-based GKE Protocol

4.1 Basic Construction

In the following construction based on RLWE, we as-
sume that all parties are trustful so the protocol doesn’t
get influenced by which party is chosen as the root node
of the tree. Also, no party reveals the other’s ephemeral
key.

Network topology can be interpreted as a graph where
the connection becomes an edge and each party be-
comes a node of the graph. From network topology
of a given group G, we can find a tree structure effi-
ciently if the graph is the connected graph. For the
sake of simplicity, we assume that the balanced binary
tree is chosen from the network topology and call it as
a keygen tree T̃ of our protocol.

Finding the keygen tree T̃ is almost the same as find-
ing the spanning tree T̃G̃ of the given graph G̃. This
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can be done efficiently by using path-finding algorithms
in graph theory, like well-known Dijkstra’s algorithm.

If there are N parties who participate in the com-
munication, we set a keygen tree T̃ with a depth d =
dlogNe and define a level of a party Pũ as lũ = d−lroot,ũ
where lroot,ũ is the length of a path from the node ũ to
the root node.

We assume that the number of parties are at least
three so that the root node always has two nodes as
a child. Then, we construct Tree-based Group Key
Exchange (TGKE) in static version as follows:

Step S1. Setup.
Find a keygen tree T̃ = (Ṽ , ẼT ) with the depth
d = dlogNe from the network topology.

Step S2. Key Construction.

1. Set the leaf nodes as level 0 party, their par-
ent nodes as level 1 party, till the root node
as level d party.

2. Between a parent node ṽp and its child node
ṽc, we run a two-party KE T KE to find the
two-party common secret key epkp,c between
two parties Pp and Pc as an ephemeral key.

3. We run T KE between level 0 parry and level
1 node. Then, each level 1 party does XOR
operation to get an initial value for the next
level. e.g., in Figure 2(a), since party P2

is the parent node of P4 and P5, P2 has
two ephemeral keys epk2,4 and epk2,5 and
compute the XORed values epk2 = epk2,4 ⊕
epk2,5.

4. Similarly, from level 1 party to level d party,
we run T KE .

5. Once root node gets the ephemeral keys with
his/her child node, it computes the common
group secret key skroot by XOR operation of
two-party common secret key.

Step S3. Key Sharing.

1. The root node sends the encrypted common
secret key kc to its child nodes ṽc by com-
puting kc = skroot ⊕ epkp,c

2. All parties get the same value skg after d
rounds of sending encrypted common secret
key.

4.2 Dynamic TGKE

To extend TGKE into dynamic setting by describ-
ing the procedure when a new party is joining or some
party is leaving the group communication.
Join describes the process when a party is joining the

group communication. Figure 3 shows how a new party
is joined to the network.

Figure 2: TGKE protocol in static setting

Step D1. Join.

1. Add a node ṽN to the original keygen tree
T̃ = {Ṽ , ẼT }. Then, add an edge between
ṽN and some node ṽi ∈ Ṽ with level 0 or
1, which becomes the balanced binary tree
after edge addition. We get a new keygen
tree T̃ ′ = {Ṽ

⋃
{ṽN}, ẼT

⋃
{(ṽi, ṽN )}}.

2. Between parent node ṽi and child node ṽN ,
we run two-party key exchange protocol T KE
to find the ephemeral key epki,N between
two parties ṽi and ṽN .

3. ṽi sends the encrypted common secret key
kc = skroot ⊕ epki,N to ṽN and ṽN gets the

Figure 3: Join example
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Figure 4: Remove examples for Leave and TreeRefresh

common secret key skroot by XOR operation.

Leave and TreeRefresh describe the member revoca-
tion mechanism since there are two examples when the
revoked member is the leaf node (deleting the node P4

in Figure 4(a)) or non-leaf node (deleting the node P2

in Figure 4(b)).

Step D2-1. Leave (leaf case).

1. Delete a node ṽi from the original keygen
tree T̃ = {Ṽ , ẼT }. Then, we get a new
keygen tree T̃ ′ = {Ṽ \ {ṽi}, ẼT \ {1 ≤ j ≤
g| (ṽi, ṽj)}}.

2. From this new tree, run key construction
phase and key sharing phase to get a new
common secret key sk′.

Step D2-2. TreeRefresh (non-leaf case).

1. Delete a node ṽi from the original keygen
tree T̃ = {Ṽ , ẼT }. Then, run the setup
phase to construct a new keygen tree.

2. From this new tree, run key construction
phase and key sharing phase to get a new
common secret key sk′.

Note that if we have the connected network topology,
we can easily generate the tree by contracting an edge
between ṽi and its child node. In this case, both leave

and tree contraction algorithms make the tree T̃ ′ which
is a minor of the tree T̃ .

5 Security Analysis

In this section, we give a security analysis of static
TGKE. Any probabilistic polynomial-time (PPT) ad-
versary should not distinguish a real common group
secret key to a random one even if he/she gets the tran-
scripts of the protocol. We assume that every party is
trustful and no party does insider attacks.

We derive the correctness proof and the security proof
in Theorems 1 and 2, respectively.

Theorem 1. Our protocol has the same common secret
key between all parties in the group.

Proof. (sketch) Since we focus on designing conceptually-
simpler model for fast and efficient implementation re-
sult, we send the common secret key by XORing two-
party common secret key. By repeating the same pro-
cess between parent node and his/her child node from
level 0 to level d, we always get the correct common
secret key for the group.

Before proving Theorem 2, we remark that the root
node has the level d and a leaf node has the level 0
where d = logN is a depth of a keygen tree from the
network of the group.

Theorem 2. If underlying two-party key exchange pro-
tocol T KE is secure against the passive adversary, TGKE
protocol is also secure.

Proof. (sketch) We prove a security by a hybrid game
between the real shared secret key and the random one
for each level of the tree.

Then, Game0 is the real game which the adversary
gets the real common group secret key sk and Gamed
is the game which the adversary gets the random value
td. We show that the views of Game0 and Gamed are
computationally indistinguishable for any PPT adver-
saries.

Game0. This game is the real game between proto-
col challenger and the passive adversary A, ad-
versary obtains the common secret key sk from
our protocol described in Section 4.

Game1. This game is identical to Game0 except
level 1 nodes changes his initial key as a ran-
dom value instead of two-party common secret
key with level 0 nodes.

Since the underlying two-party key exchange pro-
tocol is secure against passive adversary A. Ran-
dom values are indistinguishable from the key
generated by two-party KE for any PPT adver-
saries. Thus, the adversary cannot distinguish
Game0 and Game1.
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Gamei (2 ≤ i ≤ d − 1). This game is identical to
Gamei−1 except level i nodes changes his initial
key as a random value ri instead of two-party
common secret key with level i − 1 nodes. Since
the underlying two-party key exchange protocol
is secure against passive adversary A. Random
values are indistinguishable from keys generated
by two-party KE for any PPT adversaries. Thus,
the adversary cannot distinguish Gamei−1 and
Gamei.

Gamed. This game is identical to Gamed−1 except
that encrypted values from parties with level d−1
to the root node are replaced by random value td
during the protocol. Then, similar to the game
between Gamei−1 and Gamei, the views be-
tween Gamed−1 and Gamed are computation-
ally indistinguishable for any PPT adversaries.

Now, the claim follows since the real game Game0
and the random game Gamed are computationally in-
distinguishable assuming the security of underlying two-
party key exchange protocol.

6 Implementation

6.1 TGKE with NewHope

To apply NewHope into our TGKE framework, we
slightly modify the original construction. For setup
phase, we use the AVL tree for balanced binary tree.

For key construction with NewHope, we modify the
way to use XORed value of ephemeral keys by two par-
ties. In our experiment, we use XORed value as a seed
value of NewHope in the next level. The detail is de-
scribed below:

Step I2. Key Construction with NewHope.

1. Set the leaf node as level 0 party, its parent
node as level 1 party, till the root node is set
as level d party.

2. Between a parent node ṽp and its child node
ṽc, we run NewHope to find the two-party
common secret key epkp,c between two par-
ties Pp and Pc as an ephemeral key.

3. We run NewHope between level 0 node and
level 1 node. Then, each level 1 node does
XOR operation to obtain a seed from the
protocol 1. e.g., in Figure 2, since party
P2 is the parent node of P4 and P5, P2 has
two ephemeral keys epk2,4 and epk2,5 and
compute the XORed values epk2 = epk2,4 ⊕
epk2,5.

4. Similarly, from level 1 party to level d party,
we run NewHope between a child node and
its parent node.

5. Once root node gets the ephemeral keys with
his/her child node, it computes the common

secret key skroot by XOR operation of two-
party common secret key. We assume that
the number of parties are at least three so
that the root node always has two nodes as
a child.

Compared to our design, we use XORed value as a
seed of NewHope in the next level. To do that, we can
avoid the possible risk that the secret key is not a ring
element or suitable for RLWE problem.

For Join and two removal steps Leave and TreeRefresh
of TGKE, while we simply add a node to the tree and
adjust the tree when a party is joining, a huge compu-
tation is required for removing a party since either we
initialize all values of all nodes or reconstruct a tree.

6.2 Implementation Result

Our experiment was run on a computer with AMD
Ryzen 2600x six-core processor, 3.8GB of RAM, run-
ning Ubuntu 18.04.3 LTS. We summarize the running
time for static TGKE in Table 1 when the number of
participants N = 10, 30, 100 and 300, the dimension
n = 512 or 1024 and the modulus q = 12289 for both
dimension. We run the protocol 300 times for each con-
dition and check the average time to avoid the biased
data.

Table 1: Running time for static TGKE (unit: ms)

Static TGKE with NewHope
Number of Parties

10 30 100 300

Dimension

(Security Level)

512 (101) 0.755 2.404 8.458 25.550

1024 (233) 1.546 5.005 16.787 50.661

From Table 1, we check that the running time for
TGKE in static setting depends on the number of par-
ticipants almost linearly.

We also check the running time for Join and Remove
steps of TGKE, as membership changes by adding par-
ties to the group or removing parties from the group,
in Tables 2 and 3, respectively. We set the parame-
ters of NewHope for these two experiments as (n, q) =
(512, 12289).

As we expected from our design of Join, Table 2
shows the similar running time if the number of original
parties are the same.

But for removal steps, since we have to redesign the
tree when we remove the party out of the group, the
running time increases almost linearly as the number
of removal parties is increased.

6.3 Comparison with Other Protocols

In Table 4, we compare our construction with other
lattice-based GKEs in a theoretic point of view.

Compared to other protocols, our construction has
advantages that we get an implementation result and
moreover, it can be extended to the dynamic setting.
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Table 2: Running time for Join step (unit: ms)

Join of TGKE with NewHope
Number of Parties

10 30 100 300

Number of Join Parties
5 0.759 2.389 8.163 24.557

30 0.781 2.445 8.551 26.340

Table 3: Running time for removal steps (unit: ms)

Remove of TGKE with NewHope
Number of Parties

10 30 100 300

Number of Remove Parties

5 3.419 13.037 47.075 145.198

15 - 30.654 121.741 391.755

30 - - 223.297 747.587

But we have disadvantages that our security model
is much weaker than the standard model suggested by
Bresson et al. [27, 28] or other security model. Indeed,
there is a trivial attack in our protocol if an adversary
can get all two-party common secret keys when one of
the participants has leaked his information.

7 Conclusion and Future Work

In this paper, we construct a simple and theoretically-
efficient approach to design a GKE protocol using key-
gen trees and give a quantum-resistant instantiation
with the well-known NewHope protocol.

Then, we compare this method with other lattice-
based key exchange protocols. Our construction relies
on the security of underlying two-party key exchange
protocol and the communication complexity of lattice-
based GKE protocol is O(N) where N is the number
of group members.

Compared to Kim et al.’s Tree-based Group Diffie-
Hellman key management [26], our keygen tree consid-
ers all nodes to be parties in the protocol while only
leaf node is the communication party in [26]. Hence,
our tree has smaller number of vertices and edges. On
the other hand, our method covers single member addi-

Table 4: Comparison with other lattice-based GKEs

Method DXL12 [5] YMZ15 [18] ADGK19 [19] Ours

Communication
Complexitya O(N2) O(N) O(N) O(N)

Trusted Authority X O X 4b

Public
Implementation

No No No Yes

Dynamic Setting No No No Yes

a N is the number of participants for GKE.
b There is no trusted authority but all parties must be very honest to
prevent any attacks.

tion and revocation while Kim et al.’s method provides
group addition and revocation too.

Currently, our GKE model is vulnerable to insider
attacks since any party can impersonate other parties
by achieving their two-party common secret keys after
XORing with the group key skroot. Also, our protocol
is vulnerable to active adversaries who can corrupt a
party.

As future work, we consider how to control this issue
without increasing a lot of computation cost. Then,
we check the security under active adversaries who can
modify the scheme.
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