
Copyright c©2020 The Institute of Electronics,
Information and Communication Engineers

SCIS 2020 2020 Symposium on
Cryptography and Information Security

Kochi, Japan, Jan. 28 – 31, 2020
The Institute of Electronics,

Information and Communication Engineers

Enhancing Malware Detection by Modified Deep Abstraction and
Weighted Feature Selection

Harry Chandra Tanuwidjaja∗ Kwangjo Kim∗

Abstract: The current malware detection method is limited to two kinds of methods, static and
dynamic. Static method is easy to use but difficult to detect new kinds of malware. On the other hand,
dynamic method is strong against a new malware but needs an expert skill to manipulate it. For the
last decades, machine learning has advanced rapidly as a new malware detection method. The goal of
this paper is to propose a modified feature learning method for malware detection, which is based on
Deep Abstraction and Weighted Feature Selection proposed (DFES) for Intrusion Detection System
by Aminanto et al in 2017. The methodology consists of a combination between Stacked Autoencoder
(SAE) for feature extraction and weight based Artificial Neural Network (ANN) for feature selection
and classification. We did some experiment to find the optimum setting for both SAE and ANN and
find that the best result is given by the combination of SAE with 2 hidden layers and ANN with 2
hidden layers. In order to correspond with rapid release of new malware variant, we evaluate only
the selected features, and remove features that is highly related to static malware detection. We use
malware dataset created by Tek that consists of malware files from Virus Share and benign files from
windows binaries. Our experimental result shows that we can achieve 95.490% detection rate, 2.007%
false alarm rate, and 6 times faster compared to DFES. To the best of our knowledge, this is the first
paper that combines SAE and ANN as a feature learning method for malware detection

Keywords: malware detection, feature learning, feature extraction, feature selection, SAE, ANN

1 Introduction

The development of information technology has ad-
vanced rapidly. The utilization of Internet is essen-
tial to human life. However, there is a big threat that
many people still do not realize. The lack of informa-
tion security awareness exposes user to vulnerability
from several cyber-attacks. Information security issues
cannot be separated from malware problems. Several
researches in recent years have focused on improving
malware detection accuracy, as the variety of malware
increases from time to time. In 2013, Kaspersky Lab
stated that there were 200,000 new malware files that
appeared every day [1]. However, most antiviruses still
rely on a signature method, which compares their test
subject to a black list that contains malware signa-
tures. This leads to a vulnerability to new malware,
whose signature is not included in this list. To over-
come this problem, this paper proposes a new kind of
a malware detection method that can identify malware
efficiently using customized machine learning [2].

Previous publications on malware detection have been
proposed as follows: Alkhateeb [3] suggested the use of
API similarity for detection. Lansheng et al. [4] had an
idea to do classification on malware based on their task
behavior. Yin et al. [5] showed how to find malware
by analyzing the network traffic. However, all these
methods require expert analysis and consume too much

∗ School of Computing, Korea Advanced Institute of Science and
Technology (KAIST), 291 Gwahak-ro, Yuseong-gu, Daejeon,
34141, Korea. {elevantista, kkj}@kaist.ac.kr.

time. Our method leverages machine learning as sub-
stitution of human experts that requires much shorter
time compared to human analysis. The challenges in
utilizing machine learning are how to improve detection
accuracy and how to reduce the false alarm rate as low
as possible, but still require some amount of processing
time.

In this paper, we use malware dataset generated by
Tek [6], which consists of benign and malware files.
Benign files contain Windows binaries from Windows
2008, Windows XP, and Windows 7. There are 56 fea-
tures in the dataset. The total number of files is more
than forty thousands, come from both 32-bit and 64-
bit versions of Windows. Malware files were taken from
Virus Share. The size of malware files are more than
ninety thousand files. Both benign and malware bina-
ries were extracted into a list of feature in CSV format
by using pefile [7]. This dataset then needs to be pre-
processed in order to train the model during the learn-
ing process. Then, we use this pre-processed dataset
as the input of our approach, from the idea of Deep ab-
straction and weighted FEature Selection (DFES) [2],
which was verified to get the best performance to detect
impersonation attack in Wi-Fi network.

In addition, after extending their approach [2] to de-
tect malware, we try to implement modified DFES with
less feature during feature selection process. The orig-
inal DFES consists of four main parts: dataset pre-
processing, feature extraction, feature selection, and
classification. During feature extraction, important fea-

1



tures of malware will be extracted from a dataset and
the features were going to be stored as our sample.
Then, those new features and original features are con-
catenated and important features are selected from the
concatenated features in feature selection phase. The
feature extraction expands new features and feature
selection chooses important features from them. Dur-
ing the evaluation, we check the detection accuracy and
false alarm rate of our proposed approach. We compare
our result with [6], who used tree-based feature selec-
tion and random forest for classification and achieved
99.351% detection rate with 0.568% false alarm rate.

This paper is organized as follows: Section 2 reviews
several related researches. In Section 3, we provide
our proposed approach. In Section 4, we give our ex-
perimental results and analysis. Section 5 states our
conclusion and future work of this paper.

2 Related Researches

Malware detection has been studied for decades. The
old detection technique includes static detection and
dynamic detection. Lately, several machine learning
based malware detection methods have been proposed.

Some methods use malware behaviors as the features
of machine learning for malware detection. Shibahara
et al. [8] proposed a deep learning approach based
on characteristic of malware communication using Re-
current Neural Network (RNN). They showed that the
proposed method reduced 67.1% of analysis time while
keeping the range of covered URL to 97.9% compared
to full analysis method. Kolosnjaji et al. [9] pro-
posed deep learning based malware detection using sys-
tem call sequence. They showed that the combination
of Convolutional Neural Network (CNN) and Long-
Short Term Memory (LSTM) gives better accuracy,
compared to feedforward network and convolutional
network. Firdausi et al. [10] proposed an automatic
behavior based malware detection using machine learn-
ing. They used five classifiers including k-Nearest Neigh-
bors (k-NN), Näıve Bayes, J.48 Decision Tree, Sup-
port Vector Machine (SVM), and Multilayer Percep-
tron Neural Network (MLP). Their experiment showed
that J.48 classifier gave the best performance. Rieck
et al. [11] proposed a malware detection scheme based
on malware behavior using machine learning. They
showed that the incremental technique in malware be-
havior based analysis successfully decreased run time
and memory requirement, compared to regular cluster-
ing.

There are methods that combine feature extraction
and classification in machine learing for malaware de-
tection. Tobiyama et al. [12] proposed a malware de-
tection method using deep neural network based on
data traffic on computer. They used RNN for feature
extraction and CNN for classification. Their proposed
method achieved 92% detection accuracy. David et
al. [13] proposed Deepsign, a deep learning approach
for automatic malware signature generation and clas-
sification. They used Deep Belief Network (DBN) to

produce malware signatures. Their proposed approach
reached 98.6% accuracy with 0.2 input noise and 0.001
learning rate. Xu et al. [14] proposed machine learning
based malware detection by using virtual memory ac-
cess patterns. They used three classifiers (SVM, Ran-
dom Forest, and Logistic Regression) to do training
phase. They showed that the best performance was
achieved by random forest with 99% true positive rate
and 1% false positive rate. Liu et al. [15] proposed
a combination between image processing and machine
learning. They used opcode n-gram with gray scale im-
ages to extract malware features. Then, they did clus-
tering process using Shared Nearest Neighbor (SNN)
clustering algorithm. They reached 96.5% accuracy by
using random forest classifier.

Rathore et al. [16] proposed random forest based
deep learning with opcode frequency as feature vec-
tor for malware detection. Vinayakumar et al. [17]
combined image processing with deep learning for hy-
brid zero-day malware detection. While Xiao et al.
[18] proposed behavior based deep learning framework
to detect malware in cloud service environment. The
extracted API calls and use it as features during the
learning process. Zhong et al. [19] proposed multi level
deep learning structure that utilizes tree structure to
do clustering on malware detection system. Liu et al.
[20] implemented malware detection system by lever-
aging deep learning on API calls. Karbab et al. [21]
extraced API from Android devices as features for deep
learning based malware detection on IoT devices.

Other methods combine feature selection and classi-
fication in machine learing for malware detection. Ra-
man et al. [22] proposed an approach to do feature
selection in malware classification, with the addition of
using intuitive method during feature selection. They
used random forest algorithm to do feature selection.
Then, four classifiers, PART, IBk, J48Graft, and J48
were used to choose the highest seven features. Gando-
tra et al. [23] proposed zero-day malware detection by
combining static and dynamic malware analysis with
machine learning algorithm. They generated their own
dataset from Virus Share (for malwares) and Windows
system directories (for benign files). They did feature
selection by using information gain method, an entropy
based technique for selecting features. Then, for clas-
sification, they used seven classifiers from Weka, in-
cluding IB1, Näıve Bayes, J48, Random Forest, Bag-
ging, Decision Table, and Multi-layer Perceptron. The
best performance was achieved by Random Forest with
99.97% accuracy.

3 Our Approach

In this paper, we propose a new kind of malware de-
tection method by leveraging machine learning, which
offers a fast detection process with the ability to recog-
nize new malwares. The problem in utilizing machine
learning is to create accurate samples while we gener-
ate features to learn. Like a human, if we teach the
machine a wrong thing, it will not be able to detect

2



htbp

Figure 1: Stacked Autoencoder (SAE) network with
two hidden layers

malwares well. So, it is very important to produce
training samples with important features. We propose
a general detection method for all kinds of malwares
that leverages machine learning. Generally, DFES can
be described into four parts: dataset pre-processing,
feature extraction, feature selection, and classification.
We use Stacked Autoencoder (SAE) for feature extrac-
tion as well as Artificial Neural Network (ANN) for
feature selection and classification. We also propose
a modified DFES, which based on original DFES, but
has lighter feature selection with reduced number of
features.

3.1 Dataset Pre-processing

The malware dataset contains various values with
different data types. The data varies from negative
number, decimal number, big integer, Boolean, and
also string. As a result, we cannot use the dataset
directly as an input to our machine learner, due to mul-
tiple types of data [24]. Because of that background,
we decide to do dataset pre-processing. The purpose of
this step is to convert the data to real number format
with range between zero and one.

3.2 Stacked Autoencoder

Autoencoder [25] is a neural network model for di-
mensionality reduction in a learning process. When we
have high dimensional data with many features, the
feature can be spread. As a result, we need many train-
ing data during the learning process. Another way to
address this issue is by reducing the data dimension.
That is the reason why we need an autoencoder. An
autoencoder has one hidden layer and same number of
input and output [26]. Stacked Autoencoder (SAE),
as shown in Fig. 1, is a neural network that consists
of multiple encoders [27]. In our approach, we use two
autoencoders for feature extraction [28] and train them
separately. However, the two autoencoders are not de-
pendent from each other. The second autoencoder uses

Figure 2: The structure of Artificial Neural Network

the hidden layer from the first autoencoder and the
number of neurons in each hidden layer will decrease
accordingly. During the SAE training, we use unla-
beled dataset. The labeled dataset can be used during
classification process. The classification process can be
done by softmax regression function in the last step of
the training process [29].

3.3 Artificial Neural Network

Artificial Neural Network (ANN) [30], as shown in
Fig. 2, is a neural network model that consists of many
neurons. Each neuron receives input, multiplies the in-
put with weight, and adds bias, resulting in parameters
for activation function. The activation function decides
whether that neuron should be active or not, based on
the weighted sum [31]. In our proposed approach, we
use ANN to do feature selection and classification. The
ANN can be trained with two target classes: benign
class and malware class.

We measure the weight of each feature in dataset
to decide which feature is important. The weight here
represents the level of influence from input feature to
the first hidden layer [32]. If the value is small (nearly
zero), it means that the feature is not a deciding fac-
tor to pick whether a file is a malware or benign file.
We will measure the average weight of all features and
set a threshold value. We pick all features that have
weight value higher than the threshold. This is how
we do the feature selection [33]. We also use ANN for
classification process. Our scheme executes minimum
global error function with a scale conjugate gradient
optimizer [34] in supervised learning environment. We
decide to use supervised approach because it will in-
crease the performance of our classifier.

4 Evaluation

We evaluate the proposed scheme on Tek dataset.
We implement SAE and ANN algorithm using MAT-
LAB R2016b running on an Intel Xeon E-3-1230v2

3



Figure 3: All experiment scenarios used in this paper

CPU @3.70 GHz with 16 GB RAM. We evaluate the
performance of our proposed approach in four cases and
analyze them.

4.1 Malware Dataset

Tek malware dataset contains two kinds of data, be-
nign and malware files. Benign files are Windows bina-
ries from 32-bit and 64-bit versions of Windows 2008,
Windows XP, and Windows 7. Malware files were taken
from Virus Share, and then extracted into a CSV file
using pefile [7]. The benign files contain 41,323 binaries
while malware files contain 96,724 binaries, with a total
of 56 features. There are several types of data on the
dataset, including integer, decimal number, Boolean,
and also string. Since there are various types of data
with various value ranges, we need to process the data
before giving it as the input of machine learning. The
main idea is to convert all data into real number, then
do normalization, which means converting the value
into a value between zero and one. For string num-
ber, the normalization process is different compared
to other type of data. We can convert integer, deci-
mal number, and Boolean directly into float type data.
However, for string, we cannot process it directly. So,
we do iteration and give each string a number label. If
the same string appears, it is assigned with the same
number value as its predecessor. Normalization process
is done by calculating the difference of value with mini-
mum value, divided by the difference of maximum value
and minimum value of instances in a feature. Table.1
shows the top 10 features that have biggest weight value
in this experiment. Extracted feature means the artifi-

Table 1: Top 10 features with weight value
Feature Name Weight

MajorLinkerVersion 5.048819093
ImportsNbOrdinal 5.067934552

SectionsNb 5.097262066
SizeOfStackReserve 5.228942805
SizeOfHeapCommit 5.234657548
Extracted Feature 1 5.277306705
Extracted Feature 2 5.489399303

ResourcesMinEntropy 5.496055098
SectionsMaxEntropy 6.191716059

Subsystem 6.209451558

cial feature produced during feature extraction process,
so that we can not identify what kind of feature it is.

4.2 Experimental Setup

We examine four cases to evaluate our approach by
the heuristic way. The four cases are described as fol-
lows:

Case I (Fig. 3a): Dataset consists of 56 features

with original DFES

In the case I, we use dataset with 56 features. First,
we use the dataset as an input to SAE to do feature
extraction process. This process give 18 new extracted
features as the result. Then, we concatenate the 18
features with the original 56 features, resulting in 74
features. Then, we use the 74 features as the input of
ANN during the feature selection process, which gives
20 features as the output. After that, we use the 20

4



features as the input of ANN for the classification pro-
cess. The output is classification result. During the
testing, we use the model to assess the test dataset,
resulting in confusion matrix that contains how many
benign files detected as benign, how many benign files
detected as malwares, how many malwares detected as
benign files, and how many malwares detected as mal-
wares. Later, we will use these parameter to evaluate
the performance of our system.

Case II (Fig. 3b): Dataset consists of 56 features

with modified DFES

In the case II, we use dataset with 56 features. The
main difference from the first case is we do feature se-
lection using 56 original features only. After that, we
concatenate the selected features with 18 new extracted
features from SAE. By doing this, the number of fea-
tures for selection process are reduced, compared to
original DFES. As a result, the feature selection process
becomes faster and lighter than original DFES, which
we call it modified DFES. The main purpose of this
scheme is that we want to compare the performance
of modified DFES with original DFES. We combine 18
new extracted features with 10 selected features, re-
sulting in the combined 28 features. Then, we use the
28 features as the input of ANN during classification
process. In the testing phase, we use the model from
training phase to evaluate the test dataset.

Case III (Fig. 3c): Dataset consists of 55 features

with original DFES

In the case III, the methodology is the same with the
first case. However, we reduce the input into 55 origi-
nal features. We decide to do this after we analyze the
result of the first case. During the feature selection of
the first case, we check the result of selected features.
One of the features called name, has a weight of 25.
On the other hand, the average weight of all features
is 14.74. Because of that reason, we assume that this
features highly affect the detection rate. It is reason-
able because we use malwares from Virus Share. The
malwares are named Trojan, worm, Botnet, etc. So,
the name feature here will act like a database of static
antivirus detector. As a result, we decide to omit the
name feature from our features in order to make our
system resembles a real life that contain various kind
of malwares.

Case IV (Fig. 3d): Dataset consists of 55 features

with modified DFES

In the case IV, the methodology is the same with the
second case, however, we use 55 original features as the
input. We leverage modified DFES with fewer features
to process during feature selection. We also omit the
name feature, as in the case III. The purpose of this
case is to check the performance of modified DFES in
the environment that resembles the real life.

4.3 Evaluation Metrics

In order to measure the performance of our proposed
method, we use several evaluation metrics. We use the
most well referenced parameter measurements [35], in-
cluding accuracy, detection rate, false alarm rate, false
negative rate, F1 score, and precision. Accuracy (Acc)
means the proximity of measured result to the true
value. Detection rate (DR) refers to the number of
malwares detected, divided by the total number of mal-
wares. False Alarm Rate (FAR) is the number of be-
nign files that is detected as malwares, divided by the
total number of benign files in the dataset. False Neg-
ative Rate (FNR) is the number of malwares that is
wrongly detected as benign, divided by the total num-
ber of malwares in the dataset. F1 score is a measure-
ment of harmonic mean between precision and recall.
Precision is the number of correctly detected malwares,
divided by the number of files that is detected as mal-
wares. The measurement formulas can be defined as
shown in Eqs. (1) to (5):

Acc =
TP + TN

TP + TN + FP + FN
(1)

DR = Recall =
TP

TP + FN
(2)

FAR =
FP

TN + FP
(3)

F1 = 2 ·
Precision · Recall

Precision + Recall
(4)

Precision =
TP

TP + FP
(5)

where True Positive (TP) is the number of malware files
correctly classified as malware, True Negative (TN) is
the number of benign files correctly classified as benign,
False Positive (FP) is the number of benign files incor-
rectly classified as malware, and False Negative (FN)
is the number of malware files incorrectly classified as
benign.

4.4 Experimental Results

We implement our proposed approach based on the
four cases that has been stated in Section 4.2. We did
some experiment to find the optimum setting for both
SAE and ANN and find that the best result is given by
the combination of SAE with 2 hidden layers and ANN
with 2 hidden layers. We use two hidden layers in SAE
network with 35 and 10 hidden neuron for the case I
and III, respectively. On the other hand, we use two
hidden layers in SAE network with 25 and 10 hidden
neuron for case II and case IV, respectively. We present
the experiment result of each case with 2 tables. The
first table is the experiment result that shows the num-
ber of instances for these parameters: TN, FP, TP, and
FN. The second table provides the statistical result of
the experiment including DR, FAR, F1, and Acc.

Case I: Dataset consists of 56 features with orig-
inal DFES

The result of case I (Table 2 and Table 3) shows
that our approach achieves 99.836% detection rate with

5



Table 2: The experiment result of case I

Case I
Number of instances

TN FP TP FN
Train 67,539 36 29,015 42

Validation 14,590 7 6,095 15
Testing 14,526 4 6,166 11

All 96,655 47 41,276 68

Table 3: The statistical result of case I

Case I
Statistical result (%)

DR FAR F1 Acc
Train 99.855 0.053 99.866 99.919

Validation 99.755 0.048 99.820 99.894
Testing 99.822 0.028 99.879 99.928

All 99.836 0.049 99.861 99.917

99.917% accuracy. It also has 0.049% FAR and 99.816%
F1 score. Our approach gives good performance, how-
ever it still contains the name feature. We will compare
the performance of case I with case III to check the ef-
fect of omitting name feature from our dataset.

Case II: Dataset consists of 56 features with
modified DFES

Table 4: The experiment result of case II

Case II
Number of instances

TN FP TP FN
Train 67,627 4 28,980 21

Validation 14,478 3 6,223 3
Testing 14,590 1 6,112 4

All 96,695 8 41,315 28

Table 5: The statistical result of case II

Case II
Statistical result (%)

DR FAR F1 Acc
Train 99.928 0.006 99.957 99.974

Validation 99.952 0.021 99.952 99.971
Testing 99.935 0.007 99.959 99.976

All 99.932 0.008 99.956 99.974

The result of case II (Table 4 and Table 5) shows
that our approach achieves 99.932% detection rate with
99.974% accuracy. It also has 0.008% FAR and 99.956%
F1 score. Overall, the modified DFES gives slightly
better performance compared to original DFES in case
I. We will compare the performance of case II with case
IV later.

Case III: Dataset consists of 55 features with
original DFES

The result of case III (Table 6 and Table 7) shows
that our approach achieves 97.519% detection rate with
98.477% accuracy. It also has 1.114% false alarm rate
and 97.455% F1 score. The effect of omitting name

Table 6: The experiment result of case III

Case III
Number of instances

TN FP TP FN
Train 66,867 758 28,296 711

Validation 14,452 164 5,937 154
Testing 14,380 156 6,012 159

All 95,699 1,078 40,245 1,024

Table 7: The statistical result of case III

Case III
Statistical result (%)

DR FAR F1 Acc
Train 97.549 1.121 97.470 98.480

Validation 97.472 1.122 97.392 98.464
Testing 97.423 1.073 97.447 98.479

All 97.519 1.114 97.455 98.477

feature is clearly shown here. The detection rate is re-
duced by 2.3% with 1.5% less accuracy compared to
case I. The total time needed during this experiment is
261 seconds.

Case IV: Dataset consists of 55 features with
modified DFES

Table 8: The experiment result of case IV

Case IV
Number of instances

TN FP TP FN
Train 66,277 1,366 27,685 1,304

Validation 14,326 270 5,832 279
Testing 14,260 307 5,863 277

All 94,863 1,943 39,380 1,860

Table 9: The statistical result of case IV

Case IV
Statistical result (%)

DR FAR F1 Acc
Train 95.502 2.019 95.400 97.237

Validation 95.434 1.850 95.505 97.349
Testing 95.489 2.108 95.256 97.180

All 95.490 2.007 95.394 97.245

The result of case IV (Table 8 and Table 9) shows
that our approach achieves 95.490% detection rate with
97.245% accuracy. It also has 2.007% FAR and 95.394%
F1 score. This case gives the worst performance com-
pared to the others. This is caused by the omission of
name feature and the use of modified DFES. It also
shows that the performance of modified DFES scheme
in second case is highly affected by name feature. Af-
ter we leave out that feature, the detection is dropped
by 4.34%. The total time needed during this experi-
ment is 44 seconds, which is 6 times faster compared
to original DFES in case III.

6



Figure 4: Weight value of each feature

4.5 Weight analysis of weight feature

Figure 4 shows that feature number 1, which is the
name feature, has weight value around 23, much higher
compared to another features that have weight value
around 4. This kind of feature will cause overfitting
since it will correspond exactly to some specific data,
so it should not be used during training session. It
acts like static antivirus detector that use database for
detection process.

5 Conclusion and Future Work

From our experiments, we conclude that for 56 fea-
tures as input, original DFES gives good performance
in detecting malware with 99.836% detection rate and
0.049% false alarm rate, higher than Tek’s [6], which
has 99.351% detection rate and 0.568% false alarm rate.
On the other hand, modified DFES offers lighter fea-
ture selection process, which requires 1/6 time of origi-
nal DFES. However, the performance of original DFES
is still better than modified DFES, which is shown by
slightly higher detection rate and accuracy. We also
find that in malware detection, the name of file has a
big role, behaving like a database of static antivirus
detector, which successfully affects 4.442% detection
rate in our scheme. Overall, modified DFES achieved
95.490% detection rate, 2.007% false alarm rate, and
6 times faster processing time compared to original
DFES. To the best of our knowledge, our experiment
has achieved the best performance for Tek [6] dataset.
In the near future, we will try to improve the perfor-
mance of modified DFES by using another classifiers
like SVM, J.48 tree, random forest, and k-NN.

Acknowledgement

This work was partly supported by Indonesia En-
dowment Fund for Education (LPDP) and Institute for
Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT)
(No. 2017-0-00555, Towards Provable-secure Multi-
party Authenticated Key Exchange Protocol based on
Lattices in a Quantum World).

References

[1] “2012 by the numbers, kaspersky lab now detects
200,000 new malicious programs every day,” https:
//usa.kaspersky.com/, accessed: 2019-11-05.

[2] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja,
P. D. Yoo, and K. Kim, “Deep abstraction and
weighted feature selection for wi-fi impersonation
detection,” IEEE Transactions on Information
Forensics and Security, vol. 13, no. 3, pp. 621–636,
2017.

[3] E. M. S. Alkhateeb, “Dynamic malware detection
using api similarity,” in 2017 IEEE International
Conference on Computer and Information Tech-
nology (CIT). IEEE, 2017, pp. 297–301.

[4] L. Han, C. Fu, D. Zou, C. Lee, and W. Jia, “Task-
based behavior detection of illegal codes,” Mathe-
matical and Computer Modelling, vol. 55, no. 1-2,
pp. 80–86, 2012.

[5] H. Yin, D. Song, M. Egele, C. Kruegel, and
E. Kirda, “Panorama: capturing system-wide in-
formation flow for malware detection and analy-
sis,” in Proceedings of the 14th ACM conference on
Computer and communications security. ACM,
2007, pp. 116–127.

[6] “Machine learning for malware detection,”
https://www.randhome.io/blog/2016/07/16/
machine-learning-for-malware-detection/, ac-
cessed: 2019-11-10.

[7] “pefile,” https://github.com/erocarrera/pefile,
accessed: 2019-11-05.

[8] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba,
and T. Yada, “Efficient dynamic malware analysis
based on network behavior using deep learning,”
in 2016 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2016, pp. 1–7.

[9] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eck-
ert, “Deep learning for classification of malware
system call sequences,” in Australasian Joint Con-
ference on Artificial Intelligence. Springer, 2016,
pp. 137–149.

[10] I. Firdausi, A. Erwin, A. S. Nugroho et al.,
“Analysis of machine learning techniques used in
behavior-based malware detection,” in 2010 sec-
ond international conference on advances in com-
puting, control, and telecommunication technolo-
gies. IEEE, 2010, pp. 201–203.

[11] K. Rieck, P. Trinius, C. Willems, and T. Holz,
“Automatic analysis of malware behavior using
machine learning,” Journal of Computer Security,
vol. 19, no. 4, pp. 639–668, 2011.

7

https://usa.kaspersky.com/
https://usa.kaspersky.com/
https://www.randhome.io/blog/2016/07/16/machine-learning-for-malware-detection/
https://www.randhome.io/blog/2016/07/16/machine-learning-for-malware-detection/
https://github.com/erocarrera/pefile


[12] S. Tobiyama, Y. Yamaguchi, H. Shimada,
T. Ikuse, and T. Yagi, “Malware detection with
deep neural network using process behavior,”
in 2016 IEEE 40th Annual Computer Software
and Applications Conference (COMPSAC), vol. 2.
IEEE, 2016, pp. 577–582.

[13] O. E. David and N. S. Netanyahu, “Deepsign:
Deep learning for automatic malware signature
generation and classification,” in 2015 Inter-
national Joint Conference on Neural Networks
(IJCNN). IEEE, 2015, pp. 1–8.

[14] Z. Xu, S. Ray, P. Subramanyan, and S. Malik,
“Malware detection using machine learning based
analysis of virtual memory access patterns,” in
Proceedings of the conference on design, automa-
tion & test in Europe. European Design and Au-
tomation Association, 2017, pp. 169–174.

[15] L. Liu, B. Wang, B. Yu, and Q. Zhong, “Auto-
matic malware classification and new malware de-
tection using machine learning,” Frontiers of In-
formation Technology & Electronic Engineering,
vol. 18, no. 9, pp. 1336–1347, 2017.

[16] H. Rathore, S. Agarwal, S. K. Sahay, and M. Se-
wak, “Malware detection using machine learning
and deep learning,” in International Conference
on Big Data Analytics. Springer, 2018, pp. 402–
411.

[17] R. Vinayakumar, M. Alazab, K. Soman, P. Poor-
nachandran, and S. Venkatraman, “Robust in-
telligent malware detection using deep learning,”
IEEE Access, vol. 7, pp. 46 717–46 738, 2019.

[18] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Mal-
ware detection based on deep learning of behavior
graphs,” Mathematical Problems in Engineering,
vol. 2019, 2019.

[19] W. Zhong and F. Gu, “A multi-level deep learn-
ing system for malware detection,” Expert Systems
with Applications, vol. 133, pp. 151–162, 2019.

[20] Y. Liu and Y. Wang, “A robust malware detec-
tion system using deep learning on api calls,” in
2019 IEEE 3rd Information Technology, Network-
ing, Electronic and Automation Control Confer-
ence (ITNEC). IEEE, 2019, pp. 1456–1460.

[21] E. B. Karbab, M. Debbabi, A. Derhab, and
D. Mouheb, “Android malware detection using
deep learning on api method sequences,” arXiv
preprint arXiv:1712.08996, 2017.

[22] K. Raman et al., “Selecting features to classify
malware,” InfoSec Southwest, vol. 2012, 2012.

[23] E. Gandotra, D. Bansal, and S. Sofat, “Zero-day
malware detection,” in 2016 Sixth International
Symposium on Embedded Computing and System
Design (ISED). IEEE, 2016, pp. 171–175.

[24] M. E. Aminanto and K. Kim, “Detecting imper-
sonation attack in wifi networks using deep learn-
ing approach,” in International Workshop on In-
formation Security Applications. Springer, 2016,
pp. 136–147.

[25] P. Baldi, “Autoencoders, unsupervised learning,
and deep architectures,” in Proceedings of ICML
workshop on unsupervised and transfer learning,
2012, pp. 37–49.

[26] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio,
and P.-A. Manzagol, “Stacked denoising autoen-
coders: Learning useful representations in a deep
network with a local denoising criterion,” Journal
of machine learning research, vol. 11, no. Dec, pp.
3371–3408, 2010.

[27] K. Kim and M. E. Aminanto, “Improving detec-
tion of wi-fi impersonation by fully unsupervised
deep learning,” in International Workshop on In-
formation Security Applications. Springer, 2017,
pp. 212–223.

[28] I. Guyon, S. Gunn, M. Nikravesh, and L. A.
Zadeh, Feature extraction: foundations and appli-
cations. Springer, 2008, vol. 207.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learn-
ing,” nature, vol. 521, no. 7553, pp. 436–444, 2015.

[30] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Ar-
tificial neural networks: A tutorial,” Computer,
vol. 29, no. 3, pp. 31–44, 1996.

[31] F. Agostinelli, M. Hoffman, P. Sadowski, and
P. Baldi, “Learning activation functions to im-
prove deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

[32] X. Wang, Y. Wang, and L. Wang, “Improving
fuzzy c-means clustering based on feature-weight
learning,” Pattern recognition letters, vol. 25,
no. 10, pp. 1123–1132, 2004.

[33] J. Li, K. Cheng, S. Wang, F. Morstatter, R. P.
Trevino, J. Tang, and H. Liu, “Feature selection:
A data perspective,” ACM Computing Surveys
(CSUR), vol. 50, no. 6, p. 94, 2018.

[34] S. Mishra, R. Prusty, and P. K. Hota, “Analysis
of levenberg-marquardt and scaled conjugate gra-
dient training algorithms for artificial neural net-
work based ls and mmse estimated channel equal-
izers,” in 2015 International Conference on Man
and Machine Interfacing (MAMI). IEEE, 2015,
pp. 1–7.

[35] O. Y. Al-Jarrah, O. Alhussein, P. D. Yoo,
S. Muhaidat, K. Taha, and K. Kim, “Data ran-
domization and cluster-based partitioning for bot-
net intrusion detection,” IEEE transactions on cy-
bernetics, vol. 46, no. 8, pp. 1796–1806, 2015.

8


	Introduction
	Related Researches
	Our Approach
	Dataset Pre-processing
	Stacked Autoencoder
	Artificial Neural Network

	Evaluation
	Malware Dataset
	Experimental Setup
	Evaluation Metrics
	Experimental Results
	Weight analysis of weight feature

	Conclusion and Future Work

