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SUMMARY Deep learning is gaining more and more lots of attractions
and better performance in implementing the Intrusion Detection System
(IDS), especially for feature learning. This paper presents the state-of-the-
art advances and challenges in IDS using deep learning models, which have
been achieved the big performance enhancements in the field of computer
vision, natural language processing, and image/audio processing than the
traditional methods. After providing a systematic and methodical descrip-
tion of the latest developments in deep learning from the points of the de-
ployed architectures and techniques, we suggest the pros-and-cons of all
the deep learning-based IDS, and discuss the importance of deep learning
models as feature learning approach. For this, the author has suggested the
concept of the Deep-Feature Extraction and Selection (D-FES). By com-
bining the stacked feature extraction and the weighted feature selection for
D-FES, our experiment was verified to get the best performance of detec-
tion rate, 99.918% and false alarm rate, 0.012% to detect the impersonation
attacks in Wi-Fi network which can be achieved better than the previous
publications. Summary and further challenges are suggested as a conclud-
ing remark.
key words: intrusion detection system, deep learning, feature learning,
anomaly detection, deep-feature extraction and selection

1. Introduction

Computer networks and the Internet are inseparable from
human life today. Abundant applications rely on the Inter-
net, including life-critical applications in healthcare, content
sharing, military, etc. Moreover, extravagant financial trans-
actions exist over the Internet every day. This rapid growth
of the Internet has led to a significant increase in wireless
network traffic in recent years. An Intrusion Detection Sys-
tem (IDS) plays as one of the most important roles in provid-
ing the security infrastructure to all kinds of the network [2]
including wireless networks [3]. Machine Learning (ML)
has been well adopted as the primary detection algorithm
in IDS owing to their model-free properties and learnabil-
ity [4]. Leveraging the recent development of ML such as
Deep Learning (DL) [5] can be expected to bring significant
benefits for improving existing IDS.

Some improvements in IDS could be achieved by em-
bracing a breakthrough in ML [4], in particular DL of which
applications have won numerous contests in pattern recog-
nition, etc. [6]. DL belongs to a class of ML methods, where
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employs the consecutive layers of information-processing
stages in hierarchical manners for pattern classification and
feature or representation learning [7]. According to [8],
there are three important reasons why DL has been be-
coming prominent recently.– First, processing abilities (e.g.,
GPU) increased sharply. Second, computing hardware get-
ting affordable, and last, a breakthrough in ML research.

Shallow and Deep Learners are distinguished by the
depth of their credit assignment paths, which are chains of
possibly learnable, causal links between actions and effects.
Usually, DL plays an important role in image classification
and is also commonly used for language, graphical model-
ing, pattern recognition, speech, audio, image, video, nat-
ural language and signal processing [7]. There are many
DL methods such as Deep Belief Network (DBN), Boltz-
man Machine (BM), Restricted Boltzman Machine (RBM),
Deep Boltzman Machine (DBM), Deep Neural Network
(DNN), Auto Encoder, Deep / Stacked Auto Encoder (SAE),
Stacked denoising Auto Encoder, Distributed representation
and Convolutional Neural Network (CNN). The advance-
ments in learning algorithms might improve IDS to obtain
higher detection rate and lower false alarm rate.

On the other hand, the broad and rapid spread of com-
puting devices using the Internet, especially Wi-Fi networks
create complex, large, and high-dimensional data, which
makes us difficult to countermeasure the attacks properly.
Feature learning acts as an essential tool for improving the
learning process of a machine-learning model. It consists
of feature construction, extraction, and selection. Feature
construction expands the original features to enhance their
expressiveness, whereas feature extraction transforms the
original features into a new form and feature selection elim-
inates unnecessary features [9]. Feature learning is a key to
improve the performance of existing ML-based IDS.

There are various approaches of how to adopt DL in
IDS applications. Several researches use DL methods in
a partial sense only, while the rest still uses conventional
neural networks. Also, DL method requires a lot of time to
train correctly. However, some researchers have adopted DL
method in implementing their IDS to achieve better perfor-
mance despite of the training overhead.

Tran et al. [10] provided an example how to use DL
in IDS. Classical ML algorithms, such as Naive Bayes and
C4.5, assisted by high-level features, were generated us-
ing genetic programming and implemented in IDS. This ap-
proach is a common way of leveraging DL models in IDS,
where the DL models can improve any classical ML with
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high-level features. This approach was also adopted by Am-
inanto et al. [11]. Hamed et al. [12] surveyed several pre-
processing techniques in IDS researches, how to collect data
from real world and honeypot and how to build a dataset
from raw input data. Although most of IDS use DL models
as their data pre-processing technique, their work focuses on
reviewing DL-based IDS.

We have examined feature extraction using SAE,
which can reduce the complexity of original features of the
dataset. However, besides a feature extractor, SAE can also
be used for classifying and clustering tasks. Aminanto et
al. [13] used semi-supervised approach for IDS which con-
tains feature extractor (unsupervised learning) and classifier
(supervised learning). SAE was leveraged for feature ex-
traction and regression layer with softmax function for the
classifier. SAE as feature extractor was also used in [11],
but Artificial Neural Network (ANN), Decision Tree (DT),
and Support Vector Machine (SVM) were leveraged as fea-
ture selection. In other words, stacked feature extraction
and weighted feature selections can be combined together.
Their experiments [11] improved the feature learning pro-
cess by combining stacked feature extraction with weighted
feature selection. The feature extraction of SAE is capable
of transforming the original features into a more meaning-
ful representation by reconstructing its input and providing
a way to check that the relevant information in the data has
been captured. SAE can be efficiently used for unsupervised
learning on a complex dataset.

Aminanto and Kim [14], [15] used SAE for other roles
than a feature extractor, such as for classifying and cluster-
ing. ANN was adopted as feature selection since the weight
from the trained models mimics the significance of the cor-
responding input [14]. By selecting the important features
only, the training process becomes lighter and faster than be-
fore. In particular, Aminanto and Kim [14] exploited SAE as
a classifier since this employs consecutive layers of process-
ing stages in hierarchical manners for pattern classification
and feature or representation learning. On the other hand,
Aminanto and Kim [15] proposed a novel fully unsupervised
method which can detect attacks without prior information
on the data label. The scheme is equipped with an unsuper-
vised SAE for extracting features, and a K-means clustering
algorithm for clustering task. Detailed discussions will be
suggested in Sect. 5.

The remainder of this paper is organized as follows:
Sect. 2 introduces the overall of IDS including its history
and classification based on the detection method. We re-
examine the classification of DL methods depending on
the intention of architectures and techniques in Sect. 3. In
Sect. 4, we discuss about state-of-the-art of DL-based IDS
by surveying the latest publications. Section 5 discusses
two novel models which leverage deep learning as a fea-
ture learning approach to achieve the best performance of
detecting the impersonation attacks using AWID dataset in
Wi-Fi network. Finally, Sect. 6 provides the conclusion and
future work.

2. Overview of IDS

An IDS becomes a popular security measure in computer
networks. Unlike Firewall (FW), IDS usually located in-
side the network to monitor all incoming traffics. One may
consider using both FW and IDS to protect the network effi-
ciently. IDS is defined as automation of intrusion detection
process of finding events of violation of security policies or
standard security practices in computer networks [16]. Be-
sides identifying the security incidents, IDS also has other
functions: documenting existing threats and deterring ad-
versaries. IDS requires particular properties which acts as
a passive countermeasure, monitors whole or part of net-
works only and aims high attack detection and low false
alarm rates.

2.1 History

IDS was firstly introduced in 1980 by Anderson, an infor-
mation security expert. In his report, titled “Computer Secu-
rity Threat Monitoring and Surveillance [17],” he proposed
a system that is recognized as the pioneer of automated IDS.
The system is based on rule-based detection approach that
scans network traffic to detect malicious activities. Ander-
son’s idea is considered as the foundation of IDS develop-
ment; however, there is a limitation in detecting zero-day
attack in his work. This limitation is a common weakness of
rule-based IDS. Four years later, Denning published “An In-
trusion Detection Model [18],” which introduced the model
of commercial IDS. The growth of IDS continued during
1990’s. At the early of 2000’s, anomaly detection-based IDS
was developed, but the performance was not so good be-
cause of high false positive. There was also no environment
that IDS was really deployed. As a result, IDS seems to be
on the path of undeployment. However, during 2010s, when
big data and cloud computing have become to be popular,
IDS received lots of attractions as a border control for the
security of a network. Moreover, the development of ma-
chine learning helped IDS to get better performance. Due
to these, IDS has arisen from brink of disappearance and
became more important than ever. Nowadays, IDS plays an
important role in big data security and still continues to grow
in positive progression.

2.2 Classification

We can divide IDS depending on their placement and the
methodology deployed in a target network. By the posi-
tioning of the IDS module in the network, we might dis-
tinguish IDS into three classes: network-based, host-based
and hybrid IDS. The first IDS, network-based IDS puts the
IDS module inside the network where the whole traffics can
be monitored. This IDS checks for malicious activities by
inspecting all packets moving across the network. On the
other hand, the host-based IDS which places the IDS mod-
ule on each client of the network. The module examining
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all inbound and outbound traffics of the corresponding client
leads to detail monitoring of the particular client. Two types
of IDS have specific drawbacks– the network-based IDS
might burden of the workload then miss some malicious ac-
tivities, while the host-based IDS does not monitor all the
network traffics but having less workload than the network-
based IDS. Therefore, the hybrid IDS places IDS modules
in the network as well as clients to monitor both specific
clients and network activities at the same time.

Based on the detection method, IDS can be divided
into three typical types: misuse, anomaly, and specification-
based IDS. A misuse-based IDS, known as a signature-
based IDS [19], looks for any malicious activities by match-
ing the known signatures or patterns of attacks with the
monitored traffics. This IDS suits for known-attack detec-
tion; however, new or unknown attacks (also called as zero-
day exploits) are difficult to be detected. An anomaly-based
IDS detects an attack by profiling normal behavior and then
triggers an alarm if there is any deviation from it. The
strength of this IDS is its ability for unknown attack detec-
tion. Misuse-based IDS usually achieves higher detection
performance for known attacks than anomaly-based IDS. A
specification-based IDS manually defines a set of rules and
constraints to express the normal operations. Any deviation
from the rules and constraints during execution is flagged as

Table 1 Comparison of IDS types

Type Misuse-based Anomaly-based Specification-
based

Method Identify known
attack patterns

Identify unusual
activity patterns

Identify viola-
tion of pre-
defined rules

Detection Rate High Low High

False Alarm Rate Low High Low

Unknown Attack
Detection

Incapable Capable Incapable

Drawback Updating signa-
tures is burden-
some

Computing any
ML is heavy

Relying on ex-
pert knowledge
during defining
rules is unde-
sirable

Table 2 Comparison between supervised and unsupervised learnings

Supervised Unsupervised

Definition The dataset are la-
beled with pre-defined
classes

The dataset are la-
beled without pre-
defined classes

Approach Classification Clustering

Method Support Vector Ma-
chine, Decision Tree,
etc

K-means clustering, Ant
Clustering Algorithm,
etc

Known Attack
Detection

High Low

Unknown At-
tack Detection

Low High

malicious [20]. Table 1 summarizes the comparison of IDS
types based on their methodology.

We discuss further the machine learning-based IDS
which belongs to a kind of the anomaly-based IDS [21].
There are two types of learning – supervised and unsuper-
vised learnings. The unsupervised learning does not require
a labeled dataset for training which is crucial for colossal
network traffics recently, while the supervised learning re-
quires a labeled dataset. Unsupervised learning capability is
of critical significance as it allows a model to detect new at-
tacks without creating costly labels or dependent variables.
Table 2 outlines a comparison between supervised and un-
supervised learnings.

3. Deep Learning Methods in Brief

DL originally comes from the advancements of Neural Net-
work (NN) algorithm. Various methods have been applied in
order to overcome the limitations of one hidden layer only
in NN. Those methods employ consecutive hidden layers
with hierarchically cascaded connection. Due to a variety
of models belonging to DL, Aminanto and Kim [22] ex-
tended to classify several DL models based on Deng [7], [8]
which differentiates DL into three sub-groups, generative,
discriminative and hybrid. The classification is based on
the intention of architectures and techniques, e.g., synthe-
sis/generation or recognition/classification. The classifica-
tion of DL methods is illustrated in Fig. 1.

3.1 Generative Model

Generative model or so-called unsupervised learning uses
the unlabeled data. The main concept of applying generative
architectures to pattern recognition is unsupervised learn-
ing or pre-training [7]. Since the deeper the neural network
becomes, the more complicated the learning process is re-
quired. Thus, with the limited training data, learning at each
layer in layer-by-layer approach without relying on all the
previous layers is essential. There are a number of methods
that classified as the unsupervised learning.

Fig. 1 Classification of DL methods
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3.1.1 Stacked (Sparse) Auto Encoder

(Sparse) Auto Encoder (AE) can be used as DL technique
by an unsupervised greedy layer-wise pre-training algorithm
known as Stacked (Sparse) Auto Encoder (SAE). Here, pre-
training refers to the training of a single AE using a single
hidden layer. Each AE is trained separately before being
cascaded afterward. This pre-training phase is required to
construct a stacked AE. In this algorithm, all layers except
the output layer are initialized in a multi-layer neural net-
work. Each layer is then trained in an unsupervised manner
as an AE, which constructs new representations of the input.

SAE is trained with the same neuron number of both
input and output layers. Meanwhile, the nodes in the hidden
layer are smaller than the input which represents a new less-
feature set. This architecture leads to an ability that can re-
construct the data after complicated computations. AE aims
to learn a compact set of data efficiently and can be stacked
to build a deep network. Training results of each hidden
layer are cascaded, which can provide new transformed fea-
tures by different depths. To train more precisely, we can
append an additional classifier layer with class labels [23].
The labels will act as a semi-supervised feature learner when
we can have a large amount of tagged training samples. As a
result, the additional layer will improve the accuracy during
the learning process. Besides, a Denoising Auto Encoder
(DAE) is trained to reconstruct a precise correction input
from the corrupted input by noise [24], which may also be
stacked to build deep networks as well.

3.1.2 Boltzman Machine

Boltzman Machine (BM) is a network of binary units that is
symmetrically paired [25], which means all input nodes are
linked to all hidden nodes. BM is a shallow model with one
hidden layer only. BM has a structure of neuron units that
make stochastic decisions about whether active or not [8].
If one BM output is cascaded into multiple BMs, they are
called Deep BM (DBM). Meanwhile, Restricted Boltzmann
machine (RBM) is a customized BM without connection
among the input and hidden nodes. RBM consists of visible
and hidden variables such that their relations can be figured
out. Visible means neurons in input for training data. If mul-
tiple layers of RBM are stacked, a layer-by-layer scheme
called Deep Belief Network (DBN). DBN could be used
as a feature extraction method for dimensionality reduc-
tion when unlabeled dataset and back-propagation are used
(which means unsupervised training). In contrast, DBN can
be used for classification when appropriately labeled dataset
with feature vectors are used (which means supervised train-
ing) [26].

3.1.3 Sum-Product Networks

Other deep generative model is Sum-Product Networks
(SPN), which is a directed acyclic graph with variables as

leaves, sum and product operations as internal nodes, and
weighted edges [27]. The sum nodes provide mixture mod-
els while the product nodes express the feature hierarchy [8].
Therefore, we can consider SPN as a combination of mix-
ture models and feature hierarchies.

3.1.4 Recurrent Neural Network

Recurrent Neural Network (RNN) is an extension of neu-
ral networks with cyclic links to process sequential infor-
mation. This cyclic links placed between higher and lower
layer neurons which enable RNN to propagate data from
previous to current events. This property makes RNN hav-
ing a memory of time series events [28].

One advantage of RNN is capable of connecting the
previous information to present task; however, it can-
not reach “far” previous memory. This problem is com-
monly known as long-term dependencies. Long-Short Term
Memory Networks (LSTM) introduced by Hochreiter and
Schmidhuber [29] to overcome this problem. LSTMs are an
extension of RNN with four neural networks simplified as
LSTM-RNN here in a single layer, where RNN have one
only.

The main advantage of LSTM is the existence of state
cell which is the line passing through in the top of every
layer. The cell accounts for propagating information from
the previous layer to the next one. Then, “gates” in LSTM
would manage which information will be passed or dropped.
There are three gates to control the information flow, namely
input, forget and output gates [30]. These gates are com-
posed of a sigmoid neural network.

3.2 Discriminative Model

Discriminative model or supervised learning is intended
to distinguish some parts of data for pattern classification
with labeled data [7]. An example of the discriminative ar-
chitecture is Convolutional Neural Network (CNN) which
employs a special architecture particularly suitable for im-
age recognition. The main advantage of CNN is no need
of hand-crafted feature extraction. CNN can train mul-
tilayer networks with gradient descent to learn complex,
high-dimensional, nonlinear mappings from large collec-
tions of data [31] by using three basic concepts: local re-
ceptive fields, shared weights, and pooling [32].

RNN can also be considered as a discriminative model
when the output of RNN used as label sequences for the
input [8]. One example of this network was proposed by
Graves [33] who leveraged RNNs to build a probabilistic se-
quence transduction system, which can transform any input
sequence into any finite, discrete output sequence.

3.3 Hybrid Model

The hybrid deep architecture combines both generative and
discriminative architectures. The hybrid structure aims to
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distinguish data as well as discriminative approach. How-
ever, in the early step, it has assisted in a significant way
with the generative architectures results. An example of hy-
brid architecture is Deep Neural Network (DNN) [7]. How-
ever, confusion between DNN and DBN happens. In the
open literature, DBN also uses backpropagation discrimina-
tive training as a “fine-tuning.” This concept of DBN looks
similar to DNN. According to Deng [8], DNN is defined as
a multilayer network with cascaded fully connected hidden
layers and is often use stacked RBM as a pre-training phase.
Many other generative models can be considered as discrim-
inative or hybrid models when classification task added with
class labels.

Goodfellow et al. [34] introduced a novel framework
which trains both generative and discriminative models at
the same time, which the generative model G captures the
data distribution and the discriminative model D distin-
guishes the original input data and the data coming from the
model G. It is a zero-sum game of G and D models [35] that
model G aims to counterfeit the original input data while
model D aims to discriminate the original input and output
of model G. According to Dimokranitou [35], the advantage
of Generative Adversarial Network (GAN) is consistent in a
sense that after equilibrium is achieved, GAN can be trained
with missing or limited data without using approximate in-
ference or Markov chain. On the other hand, the disadvan-
tage of applying GAN must find the equilibrium between G
and D models.

4. State-of-the-Art Deep Learning for IDS

This section reviews the state-of-the-art IDS leveraging
DL models in the open literature from the year, 2016 to
2019. The critical issues like problem domain, methodol-
ogy, dataset and experimental result of each publication will
be discussed. All publications can be classified into three
different categories according to DL classification as sug-
gested in the previous section, namely generative, discrimi-
native and hybrid models. The generative model consists of
IDS that use DL models for feature extraction only and use
shallow methods for the classification task. The discrimi-
native model contains IDS that use a single DL method for
both feature extraction and classification task. While the hy-
brid model includes IDS that use more than one DL methods
for the sake of generative and discriminative IDS. Here, all
IDS are compared to understand the advancement of DL in
IDS researches.

4.1 Generative Model

We describe the latest researches on IDS under the gener-
ative model which uses DL for feature extraction only and
use shallow methods for the classification task.

4.1.1 DNN as Generative

Roy et al. [36] proposed an IDS by leveraging DL models

and validated that a DL approach can improve IDS perfor-
mance. DNN is selected comprising of multilayer feedfor-
ward neural network with 400 hidden layers. Shallow mod-
els, rectifier and softmax activation functions, are used in the
output layer. The advantages of feedforward neural network
are to provide the capabilities for the precise approximation
in a complex multivariate nonlinear function directly from
the input values and for the robust modeling capabilities in
a large class. Besides that, the authors claimed that DNN is
better than DBN since the discriminating ability can suit pat-
tern classification well by characterizing the posterior distri-
butions of classes.

For the sake of validation, KDD Cup’99 [37] dataset
was used. This dataset has 41 features that become the in-
put to the network. The authors divided training data into
75% for training and 25% for validation. They also com-
pared the performance of a shallow classifier, SVM. Based
on their experiments, DNN outperforms SVM by the accu-
racy of 99.994%, while SVM achieved 84.635% only. This
result shows the effectiveness of DNN for IDS.

4.1.2 Accelerated DNN as Generative

Another DNN but different architecture was proposed by
Potluri and Diedrich [38] in 2016. Their work mainly fo-
cuses on improving DNN implementation for IDS by using
multi-core CPUs and GPUs. This is important since DNN
requires large computation for training [39]. They adapted
SAE to construct the DNN in this approach. The archi-
tecture of this network has 41 input features from NSL-
KDD [40] dataset, 20 neurons in the first hidden layer by
the first AE, ten neurons in the second hidden layer by the
second AE, and five neurons in the output layer containing
softmax activation function. In the training phase, each AE
is trained separately but in sequence since the hidden layer
of the first AE becomes the input of second AEs. There are
two steps for fine-tuning processes, the first by softmax acti-
vation function and the second by backpropagation through
the entire network.

NSL-KDD dataset is a revised version of KDD Cup’99
dataset. It has the same number of features which is 41 but
with more rational distributions and without redundant in-
stances that appear in KDD Cup’99 dataset. The authors
firstly tested the network with different attack class com-
binations from 2 to 4 classes. The smaller number of at-
tack classes performs better than the higher number of at-
tack classes as expected since the imbalance of the class
distribution leads to a good result for the fewer attack types.
Their experiments showed that the training using parallel
CPU achieved three times faster than serial CPU. Unfortu-
nately, the authors do not provide performance comparison
regarding detection accuracy or false alarm rate.

4.1.3 Self-Taught Learning as Generative

Self-Taught Learning (STL) was proposed as a DL model
for IDS by Javaid et al. [41]. The authors mentioned two
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challenges to develop an efficient IDS. The first challenge
is to select feature since the selected features for a partic-
ular attack might different for other attack types. The sec-
ond challenge is to deal with the limited amounts of a la-
beled dataset for the training purpose. Therefore, a gener-
ative DL model was chosen in order to deal with this unla-
beled dataset. STL consists of two stages – Unsupervised
Feature Learning (UFL) and Supervised Feature Learning
(SFL). For UFL, the authors leveraged sparse AE while soft-
max regression for SFL. The UFL accounts for feature ex-
traction with unlabeled dataset while the SFL accounts for
classification task with the labeled data.

The authors verified their approach using NSL-KDD
dataset. Before the training process, the authors defined a
pre-processing step for the dataset which contains 1-to-N
encoding and min-max normalization. After 1-to-N encod-
ing process, 121 features were ready for normalization step
and input features for the UFL. 10-fold cross-validation and
test dataset from NSL-KDD dataset were selected for the
training and the testing, respectively. The authors also eval-
uated the STL for three different attack combinations, 2-
class, 5-class, and 23-class. In general, their STL achieved
higher than 98% of classification accuracy for all combina-
tions during the training phase. In the testing phase, the STL
achieved an accuracy of 88.39% and 79.10% for 2-class and
5-class classifications, respectively. They suggested that the
future work is to develop real-time IDS using DL models
and an IDS with on-the-go feature learning on the raw net-
work traffic.

4.1.4 Stacked DAE as Generative

Yu et al. [42] introduced a session-based IDS using a DL ar-
chitecture. They came up with common IDS shortcomings:
high false positive and false negative, most attack features
in common dataset are heavily structured and have special
semantics involved in specific expert knowledge, and the
heavily hand-crafted dataset is closely related to particular
attack classes. Therefore, a DL model was leveraged since
the unsupervised DL can learn the essential features auto-
matically from the large data. Their approach consists of
extracting features from the raw data and applying the unsu-
pervised Stacked Denoising AE (SDAE) that itself contains
two hidden layers and a softmax regression layer. For the
denoising purpose, the authors randomly set the input fea-
tures using zero value for 10%, 20% and 30% of the input
features. The authors claimed that the advantages of using
SDAE is to improve the learning capability of the impor-
tant features from the unlabeled instances automatically, by
adding robust denoising strategy from the missing and noisy
input, and having the better dimensional reduction if the hid-
den layer is non-linear.

They measured accuracy, precision, recall, F-score and
Receiver Operating Characteristic (ROC) curve as the per-
formance metrics. Binary and multi-class classifications
were used along with 43% of the dataset and whole dataset
combinations to verify the performance of the SDAE, which

is also compared to other DL models, namely SAE, DBN
and AE-CNN models. In overall, the SDAE achieved the
best performance with the highest accuracy rate of 98.11%
of multi-class classification using the whole dataset.

4.1.5 LSTM-RNN as Generative

Kim et al. [30] adopted the generative approach of LSTM-
RNN for IDS. They leveraged softmax regression layer as
the output layer. While other hyper-parameters are 100 time
step, 50 batch size and 500 epoch. Also, Stochastic Gradi-
ent Descent (SGD) and Mean Square Error (MSE) are used
as the optimizer and loss function, respectively. The 41 in-
put features were drawn from KDD Cup’99 dataset. Their
experiments showed that if the best learning rate is 0.01 and
the hidden layer size is 80, they can achieve 98.88% of the
detection rate and 10.04% of the false alarm rate. Similar
network topology also proposed by Liu et al. [43] with dif-
ferent hyper-parameters: 10 time step, 100 batch size, and
500 epoch. Using KDD Cup’99 dataset, they got 98.3% of
detection rate and 5.58% of false alarm rate.

4.2 Discriminative Model

We describe the latest researches on IDS under the discrimi-
native model which uses a single DL method for both feature
extraction and classification task.

4.2.1 DNN as Discriminative

Software Defined Networks (SDN) is an emerging network
technology of current applications since it has a unique
property that can be constructed by the controller plane and
the data plane. The controller plane decouples the network
control and forwarding functions. The centralized approach
of controller plane makes SDN controller suitable for IDS
function due to the whole network captured by the con-
troller. Unfortunately, due to the separation of control and
data planes, it leads to some critical threats. Tang et al. [44]
proposed a DNN approach for IDS in SDN context. The
DNN architecture is 6-12-6-3-2 which means six input fea-
tures, three hidden layers with twelve, six and three neurons
for each layer and two classes output.

They used NSL-KDD dataset to verify their approach.
Since the dataset has 41 features, the authors selected 6 fea-
tures that are fundamental features in SDN based on their
expertise. They measured accuracy, precision, recall, F-
score and ROC curve as the performance metrics. Based on
the experimental result, the learning rate of 0.001 is the best
hyper-parameter since the learning rate of 0.0001 already
over-fitted. Their approach achieved 75.75% of accuracy,
which is lower than other methods using whole 41 features
but higher than other methods using 6 features only. From
this fact, the authors claimed that the proposed DNN can be
generalized to abstract the characteristics of network traffic
with the limited features alone.
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4.2.2 RNN as Discriminative

Yin et al. [45] highlighted the advantages of RNN imple-
mentation for improving the performance of IDS. RNN con-
tains forward and backward propagation, where the latter is
the same neural network which computes the residual of for-
warding propagation. The proposed RNN-IDS begins with
data pre-processing step which comprises of numericaliza-
tion and normalization. Feature-ready data can be propa-
gated into the training step of RNN. The output model from
the training is used as testing step for the test dataset.

For the experiment, they used NSL-KDD dataset, for
both training and testing. The original features are 41 fea-
tures but became 122 features after numericalization which
maps string to binary. Two types of classification were
tested, namely binary and multi-class classifications. Based
on the experimental results, the best hyper-parameter dur-
ing the binary classification is the learning rate of 0.1, an
epoch of 100 and the hidden nodes of 80 with an accuracy
of 83.28% (using KDDTest+) [46]. Meanwhile, during the
multi-class classification, the best hyper-parameter is learn-
ing rate of 0.5 and the hidden nodes of 80 with an accuracy
of 81.29%. The RNN-IDS outperformed other ML method-
ologies tested by the authors for both binary and multi-class
classification.

4.2.3 CNN as Discriminative

Li et al. [47] experimented using CNN as the feature extrac-
tor and classifier for IDS. CNN achieved many successful
implementations in image-related classification tasks, how-
ever, still a big challenge for text classification. Therefore,
the main challenge of implementing CNN in IDS context
is the image conversion step, which is proposed by Li et
al. [47]. NSL-KDD dataset was used for the experiment.
The image conversion step begins by mapping of 41 origi-
nal features into 464 binary vectors. The mapping step com-
prises of two types mapping, one hot encoding and one hot
encoder with 10 binary vectors for symbolic and continu-
ous features, respectively. The image conversion step con-
tinues with converting 464 vectors into 8× 8 pixel images.
These images are ready for the training input of CNN. The
authors decided to experiment with the learned CNN mod-
els, ResNet 50 and GoogLeNet. Their experimental results
on KDDTest+ show the accuracy of 79.14% and 77.14% us-
ing ResNet 50 and GoogLeNet, respectively. Although this
result does not improve the state-of-the-art performance of
IDS, this work demonstrated how to apply CNN with image
conversion in IDS context.

4.2.4 LSTM-RNN as Discriminative

LSTM-RNN became more popular due to its successful ap-
plications in various research areas. Considering the previ-
ous events can be applied to increase the better performance
of IDS.

Staudemeyer [28] experimented various network
topologies of LSTM-RNN for network traffic modeling as a
time series. Training data were extracted from KDD Cup’99
dataset. The author also selected the subset of salient fea-
tures by using decision tree algorithm and compared to the
whole and subset features performance in the experiment.
Based on the experimental results, the best performance was
achieved by four memory blocks containing two cells, with
forget gates and shortcut connections, 0.1 of learning rate
and up to 1,000 epochs. The overall accuracy is 93.82%.
They also mentioned in the conclusion that LSTM-RNN is
suitable for classifying attacks with a big number of records
and poor for a limited number of attack instances.

Bontemps et al. [48] leveraged LSTM-RNN in IDS for
two objectives: a time series anomaly detector and collective
anomaly detector by proposing a circular array. Collective
anomaly itself is a collection of related anomalous data in-
stances concerning the whole dataset [48]. They used KDD
Cup’99 dataset for their experiment and explained the pre-
processing steps needed to build a time series dataset from
KDD Cup’99 dataset.

Putchala [49] implemented a simplified form LSTM,
called Gated Recurrent Unit (GRU) in IoT environments.
GRU is suitable for IoT due to its simplicity which caused
by reducing a number of gates in the network. GRU merges
both forget and input gate to an update gate and combines
the hidden and cell state to become a simple structure.

The author then adopted a multi-layer GRU, which is
GRU cells used in each hidden layer of RNN and feature
selection also done by using random forest algorithm. Their
experiments were conducted using KDD Cup’99 dataset and
achieved 98.91% and 0.76% of accuracy and false alarm
rate, respectively.

Bediako [50] proposed a Distributed Denial of Ser-
vice detector using LSTM-RNN. They checked the perfor-
mance of LSTM-RNN using both CPU and GPU. NSL-
KDD dataset was used for experiments. The notable de-
tection accuracy is 99.968%.

4.3 Adversarial Networks as Hybrid

We introduce an IDS in brief that uses more than one
DL model for both generative and discriminative purposes.
Dimokranitou et al. [35] proposed an abnormal events de-
tector in images using an adversarial networks. Although
the detector was not an IDS, it has the same objective to
detect anomalies. They implemented an adversarial autoen-
coder which combines autoencoders and GAN. The network
attempts to match the aggregated posterior of the hidden
code vector of AE, with an arbitrary prior distribution. The
reconstruction error of learned AE is low for normal events
and high for irregular events.

4.4 Deep Reinforcement Learning as Hybrid

Choi and Cho [51] proposed an adaptive IDS for database
applications using an Evolutionary Reinforcement Learn-
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Table 3 Model comparisons on KDD cup’99 dataset

Model Feature Extrac-
tor

Classi f ier Accuracy (%)

DNN [36] FF-NN Softmax 99.994
LSTM-RNN-K [30] LSTM-RNN Softmax 96.930
LSTM-RNN-L [43] LSTM-RNN Softmax 98.110
LSTM-RNN-S [28] LSTM-RNN LSTM-RNN 93.820
GRU [49] GRU GRU 98.920

ing (ERL), which combines evolutionary learning and re-
inforcement learning used for the learning process of a pop-
ulation and an individual, respectively. The approach com-
prises of two Multilayer Perceptrons (MLPs): a behavior
and an evaluation network. Since the evaluation network
used for evolutionary learning, the network evolves to ex-
plore the optimal model. Their experiments were done us-
ing a particular scenario, called TPC-E, which is an online
transaction processing workload of a brokerage company. A
90% of classification accuracy was achieved after 25 gener-
ations.

Feng and Xu [52] concerned about detecting unknown
attacks in Cyber Physical System (CPS). Then a novel deep
RL based optimal strategy was proposed. The novelty came
as an explicit cyber state dependent dynamics and a model
of the zero-sum game to solve the Hamiltonian-Jacobi-Isaac
(HJI) equation. A deep Reinforcement Learning (RL) algo-
rithm with game theoretical actor structure was developed to
address the HJI equation. The deep RL network consists of
3 multi-layer NNs; the first is used in critic part, the second
is used to approximate the possible worst attack policy and
the last is used to estimate the optimal defense policy in real-
time. Firstly, the critic-NN solves the HJI equation. Then,
the computation result is used by the Worst-Attack-Policy-
NN to approximate the possible attack. After that, the so-
lution from the critic-NN and the Worst-Attack-Policy-NN
become the input of Optimal-Defense-Policy NN to approx-
imate the worst cyber attack policy. In order to improve the
accuracy, online back propagation method is used by ap-
proximating the cost function on Critic-NN. HJI equation
is used to train the NN weight and find the most optimum
weight with smallest error.

4.5 Comparison of State-of-the-Art Methods

We compare and summarize all the previous publications
based on KDD Cup’99 and NSL-KDD datasets in Tables 3
and 4, respectively. The performance of IDS on KDD
Cup’99 are promising, as expected, more than 90% of accu-
racy. Three IDS in Table 3 are using LSTM-RNN approach
which means that a time series analysis is suitable for dis-
tinguishing benign and anomalies in network traffic.

Even more, GRU [49] demonstrated that a lightweight
DL model is possible to be implemented in IoT environ-
ments which is crucial for low-power applications. There
is still a space for improvement when we are using NSL-
KDD dataset as shown in Table 4. The most accurate model

Table 4 Model comparisons on NSL-KDD dataset

Model Feature Extractor Classi f ier Accuracy (%)

STL [41] AE Softmax 79.10
DNN-SDN [44] NN NN 75.75
RNN [45] RNN RNN 81.29
CNN [47] CNN CNN 79.14

is RNN [45] with 81.29% of accuracy. Again, this fact in-
fers that a time series analysis may improve IDS perfor-
mance. Although IDS using CNN achieved not the best
performance, it is noticed that by applying a proper text-
to-image conversion, we may benefit full potential of CNN
as already shown in image recognition researches.

5. Deep Feature Learning for IDS in Wi-Fi Networks

Feature Learning (FL) is a technique that models the behav-
ior of data from a subset of attributes only. It also shows
the correlation between detection performance and traffic
model quality efficiently [53]. One advantage of deep learn-
ing models is to process the underlying data from the input
which suits for the task of FL. Therefore, we discuss this
critical role of deep learning in IDS as (i) deep feature ex-
traction and (ii) deep learning for assisted clustering.

5.1 Wi-Fi Dataset

In Wi-Fi network area, there is a dataset so-called Aegean
Wi-Fi Intrusion Dataset (AWID) developed by Kolias et
al. [54]. There are two types of AWID dataset. The first
type named “CLS”, has four target classes, whereas the sec-
ond, named “ATK”, has 16 target classes. The 16 classes
of the “ATK” dataset belong to the four attack categories in
the “CLS” dataset. As an example, the Caffe-Latte, Hirte,
Honeypot and EvilTwin attack types listed in the “ATK”
dataset, are categorized as an impersonation attack in the
“CLS” dataset. Based on the size of the data instances in-
cluded, the AWID dataset comprises both full and reduced
versions. There are 1,795,595 instances in the reduced train-
ing dataset, with 1,633,190 and 162,385 normal and attack
instances, respectively. There are 575,643 instances in the
reduced test dataset, with 530,785 and 44,858 normal and
attack instances, respectively.

The data contained in the AWID dataset are diverse in
value, discrete, continuous, and symbolic, with a flexible
value range. These data characteristics could make it diffi-
cult for the classifiers to learn the underlying patterns cor-
rectly [55]. The target classes were mapped to one of these
integer-valued classes: 1 for normal instances, 2 for an im-
personation, 3 for flooding, and 4 for an injection attack.
Meanwhile, symbolic attributes such as a receiver, destina-
tion, transmitter, and source address were mapped to integer
values with a minimum value of 1 and a maximum value,
which is the number of all symbols. The pre-processing
phase thus includes mapping symbolic valued attributes to
numeric values, according to the normalization steps and
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Table 5 Distribution of each class for both balanced and unbalanced
dataset

Class Training Test

Normal
Unbalanced 1,633,190 530,785
Balanced 163,319 53,078

Attack

Impersonation 48,522 20,079
Flooding 48,484 8,097
Injection 65,379 16,682
Total 162,385 44,858

AWID dataset mimics the natural unbalanced network distribution between normal
and attack instances. “Balanced” means to make equal distribution between the num-
ber of normal instances (163,319) and total attack instances (162,385). 15% of train-
ing data were withdrawn for validation data.

dataset-balancing process described in Algorithm 1.

Algorithm 1 Dataset Pre-processing Function
1: function DATASET PRE-PROCESSING(Raw Dataset)
2: function DATASET NORMALIZATION(Raw Dataset)
3: for each data instance do
4: cast into integer value
5: normalize (Eq. (1))
6: NormalizedDataset
7: end for
8: end function
9: function DATASET BALANCING(NormalizedDataset)

10: Pick 10% of normal instances randomly
11: BalancedDataset
12: end function
13: InputDataset← BalancedDataset
14: return InputDataset
15: end function

Some dataset attributes such as the WEP Initialization
Vector (IV) and Integrity Check Value (ICV) were hexadec-
imal data, which need to be transformed into integer values
as well. The continuous data such as the timestamps were
also left for the normalization step. Some of the attributes
have question marks, ?, to indicate unavailable values. One
alternative was selected in which the question mark was as-
signed to a constant zero value [56]. After all, data were
transformed into numerical values; attribute normalization
is needed [57]. Data normalization is a process; hence, all
value ranges of each attribute were equal. The mean range
method [58] was adopted in which each data item is linearly
normalized between zero and one to avoid the undue influ-
ence of different scales [56]. Equation (1) shows the nor-
malizing formula.

zi =
xi−min(x)

max(x)−min(x)
, (1)

where zi denotes the normalized value, xi refers to the cor-
responding attribute value and min(x) and max(x) are the
minimum and maximum values of the attribute, respectively.
The class distribution in the dataset is shown in Table 5.

The ratio between the normal and attack instances is
10:1 for both unbalanced training and the test dataset. The

Fig. 2 Stepwise procedure of D-FES with two target classes: normal and
impersonation attack

reduced “CLS” data are a good representation of a real net-
work, in which normal instances significantly outnumber at-
tack instances. This property might be biased to the training
model and affect the model performance [59], [60]. To al-
leviate this, the dataset was balanced by selecting 10% of
the normal instances randomly. However, a specific value
was set as the seed of the random number generator for re-
producibility. The ratio between normal and attack instances
became 1:1, which is an appropriate proportion for the train-
ing phase [60].

5.2 Deep Feature Extraction

The recent advances in mobile technologies have resulted
in IoT-enabled devices becoming more pervasive and in-
tegrated into our daily lives. The security challenges that
need to be overcome mainly stem from the open nature of
a wireless medium such as a Wi-Fi network. An imper-
sonation attack is an attack in which an adversary is dis-
guised as a legitimate party in a system or communications
protocol. The connected devices are pervasive, generat-
ing high-dimensional data on a large scale, which compli-
cates simultaneous detections. Feature learning, however,
can circumvent the potential problems that could be caused
by the large-volume nature of network data. Aminanto et
al. [11] presented a novel Deep-Feature Extraction and Se-
lection (D-FES), which combines stacked feature extraction
and weighted feature selection. The stacked autoencoding
is capable of providing representations that are more mean-
ingful by reconstructing the relevant information from its
raw inputs. These representations were then combined with
modified weighted feature selection inspired by an existing
shallow-structured machine learner. D-FES empowers ma-
chine learning algorithm to perform the feature learning. It
is shown that the ability of the condensed set of features to
reduce the bias of a machine learner model as well as the
computational complexity. Feature extraction and selection
techniques are adopted in D-FES. Figure 2 shows the step-
wise procedure of D-FES with two target classes.

A pre-processing procedure, which comprises the nor-
malization and balancing steps, is necessary. D-FES starts
by constructing SAE-based feature extractor with two con-
secutive hidden layers to optimize the learning capability
and the execution time [61]. The SAE outputs 50 extracted
features, which are then combined with the 154 original fea-
tures existing in the AWID dataset [54]. Weighted feature
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Fig. 3 ANN network with one hidden layer only

selection methods were then utilized using well-referenced
machine learners including SVM, ANN, and C4.5 to con-
struct the candidate models, namely D-FES-SVM, D-FES-
ANN, and D-FES-C4.5, respectively. SVM separates the
classes using a support vector (hyperplane). Then, ANN
optimizes the parameters related to hidden layers that min-
imize the classifying error concerning the training data,
whereas C4.5 adopts a hierarchical decision scheme such as
a tree to distinguish each feature [62]. The final step of the
detection task involves learning an ANN classifier with 12–
22 trained features only. Figure 3 shows an ANN network
with one hidden layer only where b1 and b2 represent the
bias values for the corresponding hidden and output layer,
respectively.

To select the essential features, the weight values be-
tween the first two layers were considered. The weight rep-
resents the contribution from the input features to the first
hidden layer. A wi j value close to zero means that the cor-
responding input feature x j is meaningless for further prop-
agation, thus having one hidden layer is sufficient for this
particular task. The important value of each input feature is
shown in Eq. (2).

Vj =
h

∑
i=1
|wi j| , (2)

where h is the number of neurons in the first hidden layer.
The feature selection process involves selecting the features
of which the Vj values are higher than the threshold value af-
ter the input features were sorted according to their Vj values
in descending order. Following the weighted feature selec-
tion, ANN is also used as a classifier. When learning with
ANN, a minimum global error function was executed. It has
two learning approaches, supervised and unsupervised. This
study uses a supervised approach since knowing the class
label may increase the classifier performance [63]. Also, a
scaled conjugate gradient optimizer, which is suitable for a
large scale problem, is used [64].

The second feature selection model is SVM-RFE (Re-
cursive Feature Elimination), which used in D-FES-SVM by
using the linear case [65]. The inputs are training instances
and class labels. First, a feature ranked list was initialized
that is filled by a subset of important features that are used
for selecting training instances. The scheme continues by
train the classifier and computes the weight vector of the di-

Table 6 Model comparisons on selected features

Model DR (%) FAR (%) Acc (%) F1 (%) Mcc (%) TBM (s)

CFS 94.85 3.31 96.27 92.04 89.67 80
Corr 92.08 0.39 97.88 95.22 93.96 2
ANN 99.79 0.47 97.88 99.10 98.84 150
SVM 99.86 0.39 99.67 99.28 99.07 10,789
C4.5 99.43 0.23 99.61 99.33 99.13 1,294

Table 7 Model comparisons on D-FES feature set

Model DR (%) FAR (%) Acc (%) F1 (%) Mcc (%) TBM (s)

CFS 96.34 0.46 98.80 97.37 96.61 1,343
Corr 95.91 1.04 98.26 96.17 95.05 1,264
ANN 99.88 0.02 99.95 99.90 99.87 1,444
SVM 99.92 0.01 99.97 99.94 99.92 12,073
C4.5 99.55 0.38 99.60 99.12 98.86 2,595

mension length. After the value of the weight vector was ob-
tained, it computes the ranking criteria and finds the feature
with the smallest ranking criterion. From this, the feature
ranking list was updated, and the feature with the smallest
ranking criterion was eliminated. A feature ranked list was
finally created as its output. The last feature selection model
is Decision Tree C4.5. The feature selection process begins
by selecting the top-three level nodes. It then removes the
equal nodes and updates the list of selected features.

A set of experiments was conducted to evaluate the
performance of the proposed D-FES method in Wi-Fi im-
personation detection. Choosing a proper dataset is an im-
portant step in the IDS research field [66]. The AWID
Dataset [54] which comprises of Wi-Fi network data col-
lected from real network environments, is used in this study.
Fair model comparison and evaluation were achieved by
performing the experiments on the same testing sets as in
[54]. It is noteworthy to mention that Tables 6 and 7 sum-
marize the experiment results in [11]. Table 6 listed the per-
formance of each algorithm on the selected feature set only.

SVM achieved the highest Detection Rate (DR)
(99.86%) and Matthews correlation coefficient (Mcc)
(99.07%). However, it requires CPU Time to Build Model
(TBM) of 10,789s to build a model, the longest time among
the models observed. As expected, the filter-based methods
(CFS and Corr) built their models quickly; however, they at-
tained the lowest Mcc for CFS (89.67%). Table 7 compared
the performances of the candidate models on the feature sets
that were produced by D-FES.

SVM again achieved the highest DR (99.92%) and Mcc
(99.92%). It also achieved the highest False Alarm Rate
(FAR) with a value of only 0.01%. Similarly, the lowest
Mcc was achieved by Corr (95.05%). This concludes that
wrapper-based feature selections outperform filter-based
feature selections. The following patterns were observed
from Tables 6 and 7: Only two out of five methods (Corr and
C4.5) showed lower FAR without D-FES, which is expected
to minimize the FAR value of the proposed IDS. This phe-
nomenon might exist because the original and extracted fea-
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Fig. 4 Their proposed scheme contains feature extraction and clustering
tasks

tures were not correlated because Corr and C4.5 measure the
correlation between each feature. Filter-based feature selec-
tion methods require much shorter CPU time compared to
the CPU time taken by D-FES. However, D-FES improves
the filter-based feature selections performance significantly.

5.3 Deep Learning for Assisted Clustering

IDS has been becoming a vital measure in any networks, es-
pecially Wi-Fi networks. Wi-Fi networks growth is undeni-
able due to a vast amount of tiny devices connected via Wi-
Fi networks. Regrettably, adversaries may take advantage
by launching an impersonation attack, a typical wireless net-
work attack. Any IDS usually depends on classification ca-
pabilities of machine learning, which supervised learning
approaches give the best performance to distinguish benign
and malicious data. However, due to massive traffic, it is dif-
ficult to collect labeled data in Wi-Fi networks. Therefore,
Aminanto and Kim [15] proposed a novel fully unsupervised
method which can detect attacks without prior information
on the data label. The method is equipped with an unsu-
pervised stacked autoencoder for extracting features, and a
k-means clustering algorithm for clustering task. There are
two main tasks, feature extraction, and clustering tasks. Fig-
ure 4 shows their proposed scheme which contains two main
functions in cascade.

A real Wi-Fi networks-trace, AWID dataset [54] is
used, which contains 154 original features. Before the
scheme starts, normalizing and balancing process should
be done to achieve best training performance. The scheme
starts with two cascading encoders, and the output features
from the second layer then forwarded to the clustering algo-
rithm. The first encoder has 100 neurons as the first hidden
layer while the second encoder comes with 50 neurons only.
A standard rule for choosing the number of neurons in a hid-
den layer is using 70% to 90% of the previous layer. In this
paper, k=2 was defined since they considered two classes
only. The scheme ends by two clusters formed by k-means
clustering algorithm. These clusters represent benign and
malicious data.

There are two hidden layers in the SAE network in
[15] with 100 and 50 neurons accordingly. The encoder
in the second layer fed with features formed by the first
layer of the encoder. The softmax activation function was
implemented in the final stage of the SAE to optimize the

Table 8 Evaluation of clustering output

Input DR(%) FAR(%) Acc(%) Prec(%) F1(%)

Original data 100.00 57.17 55.93 34.20 50.97
1st hidden layer 100.00 57.48 55.68 34.08 50.83
2nd hidden layer 92.18 4.40 94.81 86.15 89.06

Table 9 IDS leveraging SAE

Publication Role of SAE Combined with

AK16a [14] Classifier ANN
AK16b [13] Feature Extractor Softmax Regression
AK17 [15] Clustering K-means Clustering
ACTYK17 [11] Feature Extractor SVM, DT, ANN

SAE training. The 50 features extracted from the SAE were
then forwarded to k-means clustering algorithm as input.
Random initialization was used for k-means clustering al-
gorithm. However, a particular value must be defined as a
random number seed for reproducibility. Clustering results
were compared from three inputs: original data, features
from the first hidden layer of the SAE and features from
the second hidden layer of the SAE as shown in Table 8.

It was observed that the limitation of a traditional k-
means algorithm, which unable to clusters complex and
high dimensional data of AWID dataset, as expressed by
55.93% of accuracy only. Although 100 features coming
from the 1st hidden layer achieved 100% of detection rate,
the false alarm rate was still unacceptable with 57.48%. The
k-means algorithm fed by 50 features from the 2nd hidden
layer achieved the best performance among all as shown by
the highest F1 score (89.06%) and Acc (94.81%), also the
lowest FAR (4.40%). Despite a bit lower detection rate, the
scheme improved the traditional k-means algorithm in over-
all by almost twice F1 score and accuracy.

5.4 Comparison on AWID Dataset

The goal of deep learning method is learning feature hierar-
chies from the lower level to higher level features [67]. The
technique can learn features independently at multiple lev-
els of abstraction, and thus discover complicated functions
mapping between the input to the output directly from raw
data without depending on customized features by the ex-
perts. In higher-level abstractions, humans often have no
idea to see the relation and connection from the raw sensory
input. Therefore, the ability to learn sophisticated features,
also called as feature extraction, will become necessarily
needed as the amount of data increased sharply. SAE is one
good instance of feature extractors. Therefore, several pre-
vious works which implement SAE as the feature extractor
and other roles in the IDS module, are discussed as shown
in Table 9. Feature extraction by SAE can reduce the com-
plexity of original features of the dataset. However, besides
a feature extractor, SAE can also be used for classifying and
clustering tasks as shown in Table 9.

AK16b [13] used semi-supervised approach for IDS
which contains feature extractor (unsupervised learning)
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Table 10 Comparison on impersonation detection

Method DR (%) FAR (%)

AK16a [14] 65.178 0.143
AK16b [13] 92.674 2.500
AK17 [15] 92.180 4.400
ACTYK17 [11] 99.918 0.012
KKSG15 [54] 22.008 0.021

and classifier (supervised learning). SAE was leveraged for
feature extraction and regression layer with softmax acti-
vation function for the classifier. SAE as feature extractor
also used in ACTYK17 [11], but ANN, DT, and SVM were
leveraged as a feature selection. In other words, it com-
bines stacked feature extraction and weighted feature selec-
tions. The experiment in [11] shows that D-FES has im-
proved the feature learning process by combining stacked
feature extraction with weighted feature selection. The fea-
ture extraction of SAE is capable of transforming the origi-
nal features into a more meaningful representation, so it can
be efficiently used for unsupervised learning on a complex
dataset.

Unlike two previous approaches, AK16a [14] and
AK17 [15] used SAE for other roles than a feature extrac-
tor, namely classifying and clustering methods, respectively.
ANN was adopted as a feature selection since the weight
from trained models mimics the significance of the corre-
sponding input [14]. By selecting the important features
only, the training process becomes lighter and faster than
before. AK16a exploited SAE as a classifier since this em-
ploys consecutive layers of processing stages in hierarchical
manners for pattern classification and feature or representa-
tion learning. On the other hand, AK17 proposed a novel
fully unsupervised method which can detect attacks with-
out prior information on data label. The scheme is equipped
with an unsupervised SAE for extracting features, and a K-
means clustering algorithm for clustering task. Kolias et
al. [54] tested many existing machine learning models on
the dataset in a heuristic manner. The lowest detection rate
is observed particularly on impersonation attack reaching
an accuracy of 22% only. The comparison of previous ap-
proaches on impersonation detection are summarized in Ta-
ble 10.

DR refers to the number of attacks detected divided by
the total number of attack instances in the test dataset while
FAR is the number of normal instances classified as an at-
tack divided by the total number of normal instances in the
test dataset. From Table 10, it is observed that SAE can im-
prove the performance of IDS compared to KKSG15 [54].
It is verified that SAE achieved high-level abstraction of
complex and huge Wi-Fi network data. The SAE’s model
free properties and learnability on complex and large-scale
data fit into the open nature of Wi-Fi networks. Among all
IDS, the one using SAE as a classifier achieved the lowest
impersonation attack detection rate with 65.178% only. It
shows that SAE can be a classifier but not excellent as the
original role of SAE is a feature extractor. The usability

of SAE as a feature extractor validated by AK16b [13] and
ACTYK17 [11] which achieved highest DR. Even more, by
a combination of SAE extractor and weighted selection [11],
the best performance of DR and FAR among other was
achieved. Besides that, an interesting fact is that SAE can
assist K-means clustering algorithm to achieve better per-
formance with DR of 92.180% [15]. However, it is required
to analyze further to reduce the FAR since it achieved the
highest FAR which is undesirable in IDS.

6. Summary and Further Challenges

In summary, DL is a derivative of ML models, where ex-
ploits the cascaded layers of data processing stages in a hi-
erarchical structure for unsupervised feature learning and
pattern classification. The principle of DL is to process
hierarchical features of the provided input data, where the
higher-level features are composed of lower-level features.
Furthermore, the DL models can integrate a feature extrac-
tor and classifier into one framework which learns feature
representations from unlabeled data autonomously, and thus
the security experts don’t need to craft the desired features
manually [68].

The goal of the DL model is to learn and output fea-
ture representation which makes those models are more
suitable for feature engineering. Feature engineering here
includes feature/representation learning and feature selec-
tion [69]. The ability to model the traffic behavior from the
most characterizing raw input internal dynamics is crucial
to show the correlation between anomaly detection perfor-
mance and the traffic model quality [70].

Based on our previous work, we recommend the fol-
lowings for future directions in IDS researches, but are not
limited to:

1. Training load in DL methods are usually huge. There-
fore, how to apply this DL model in a constrained-
computation device is a really challenging task.

2. Incorporating DL models as a real-time classifier will
be challenging.

3. Improving unsupervised approach since huge labeled
data are difficult to obtain. Therefore an IDS leveraging
unsupervised approach is desirable.

4. Building an IDS that is able to detect zero-day attacks
with high detection rate and low false alarm rate.

5. A comprehensive measure not only detection but also
prevention is needed in the future.

6. A time series analysis by using LSTM-networks
promise a good anomaly detector. However, again,
the training workload still high for real-time analysis.
Therefore, lightweight models of this network are de-
sirable as shown in [49].

7. CNN has achieved the outstanding results in many re-
search areas, especially in image recognition fields.
However, in IDS researches, not so many researches
can get the expected benefit by using CNN. By apply-
ing a proper text-to-image conversion, we expect to get
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the full potential of CNN as shown in image recogni-
tion researches before.

8. Developing a machine learning-based alert classifica-
tion IDS will become a good challenge for next work.
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