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Post-Quantum Security of IGE Mode Encryption in Telegram∗

Jeeun LEE†a), Sungsook KIM†, Seunghyun LEE†, Nonmembers, and Kwangjo KIM†b), Member

SUMMARY IGE mode used in Telegram’s customized protocol has not
been fully investigated in terms of post-quantum security. In this letter, we
show that IGEmode is IND-qCPA insecure by Simon’s algorithm, assuming
that the underlying block cipher is a standard-secure pseudorandom function
(sPRF). Under a stronger assumption that the block cipher is a quantum-
secure pseudorandom function (qPRF), IND-qCPA security of IGE mode
is proved using one-way to hiding lemma.
key words: IGE mode, IND-qCPA, quantum-accessible random oracle,
standard/quantum-secure pseudorandom function

1. Introduction

Telegram, a popular instant messaging (IM) service, uses
AES-256 with Infinite Garble Extension (IGE) mode [1] in
their customized protocol called MTProto [2]. Although
Telegram is widely known as one of the most secure IM
services, IGE mode is not a standard mode of operation rec-
ommended by the National Institute of Standards and Tech-
nology (NIST) [3], nor by the European Union Agency for
Network and Information Security (ENISA) [4]. This moti-
vates us to thoroughly examine the security of IGE mode en-
cryption. The classical security of IGEmode was previously
reviewed in [5]. To the best of our knowledge, this letter eval-
uates the post-quantum security of IGE mode against quan-
tum adversaries who use the quantum computers to break
our system for the first time.

2. Preliminaries

We consider the post-quantum security notion of indistin-
guishability under quantum chosen-plaintext attack (IND-
qCPA) [6] in the quantum-accessible random oracle model
(QaROM). The model uses an attack scenario where the ad-
versary has a quantum encryption oracle access, with clas-
sical challenge queries allowed only. The following is a
mathematically formulated definition [7], where ÔEnck maps
basis state |m, c〉 to |m, c ⊕ Enck (m)〉.

Definition 2.1 (IND-qCPA): A symmetric encryption sche-
me Π = (Gen,Enc,Dec) is said to be IND-qCPA secure if
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the advantage of any quantum polynomial-time adversary
A = (AM,AD), where AM and AD are a message gener-
ator and a distinguisher, respectively, winning the game is
negligible in security parameter λ.

AdvIND−qCPA
A,Π (λ) B 2

�����
SuccIND−qCPA

A,Π −
1
2

�����
= negl(λ),

where SuccIND−qCPA
A,Π is as follows:

Pr
[
k

$
←− Gen(1λ); (m0,m1, |state〉)

$
←− A

ÔEnck
M ; b

$
←− {0, 1};

cb
$
←− Enck (mb); b′ ← A ÔEnck

D (cb, |state〉) : b′ = b
]
.

In order to prove IND-qCPA security of IGE mode, we need
certain assumptions regarding the existence of pseudoran-
dom functions, analogous to the classical case—namely, ex-
istence of standard-secure pseudorandom function (sPRF)
and quantum-secure pseudorandom function (qPRF) [8].
The former allows quantum adversaries but limits the queries
to be classical, whereas the latter allows both quantum ad-
versaries and quantum queries, i.e. quantum superposition
of inputs. The formal definitions are as follows:

Definition 2.2 (IGE Mode): For a given permutation E :
K × {0, 1}t → {0, 1}t , a symmetric encryption scheme with
IGE mode ΠIGE = (Gen,Enc,Dec) is defined such that

• k
$
←− Gen(1λ): For a given security parameter λ, generate

key k ∈ K .

• c
$
←− Enck (m): Before encryption,m0 and c0 are randomly

selected from {0, 1}t as initialization vectors. For a given
message m B m0m1 · · ·mn, where n is a polynomial in t,
encryptm using k, and output a ciphertext c B c0c1 · · · cn,
where ci ← Ek (ci−1 ⊕ mi) ⊕ mi−1 for i ∈ (0, n].

• m← Deck (c): For a given ciphertext c, decrypt c using k,
and output amessagem, wheremi ← E−1

k (mi−1⊕ci)⊕ci−1
for i ∈ (0, n].

Definition 2.3 (sPRF and qPRF): A pseudorandom func-
tion PRF : K × X → Y, where K , X, and Y are key
space, domain, and range, respectively, is said to be sPRF
(or qPRF) if no efficient quantum adversaryA making clas-
sical (or quantum) queries can distinguish between a truly
random function f and the function PRFk for a random k,

�����
Pr

f ∈YX

[
A f () = 1

]
− Pr

k∈K

[
APRFk () = 1

] �����
= negl(λ).

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



LETTER
149

In order to consider quantum adversaries and quantum
queries, the concept of one-way to hiding (O2H) [9] is intro-
duced in the security proofs.

Lemma 2.1 (O2H): Let H : {0, 1}t → {0, 1}t be a random
oracle. Consider an oracle algorithm AO2H that makes at
most qO2H queries to H. Let B be an oracle algorithm that
on input x does the following: pick i

$
←− {1, . . . , qO2H} and

y
$
←− {0, 1}t , run AH

O2H(x, y) until the i-th query, measure
the argument of the query in the computational basis, and
output the measurement outcome. Let

P1
AO2H

B Pr
[
H

$
←− ({0, 1}t → {0, 1}t ); x

$
←− {0, 1}t ;

b′ ← AH
O2H(x,H(x)) : b′ = 1

]
,

P2
AO2H

B Pr
[
H

$
←− ({0, 1}t → {0, 1}t ); x

$
←− {0, 1}t ;

y
$
←− {0, 1}t ; b′ ← AH

O2H(x, y) : b′ = 1
]
,

PB B Pr
[
H

$
←− ({0, 1}t → {0, 1}t ); x

$
←− {0, 1}t ;

x ′ ← BH(x, i) : x ′ = x
]
.

Then,
���P

1
AO2H

− P2
AO2H

��� ≤ 2qO2H
√

PB .

3. IND-qCPA Insecurity of IGE Mode Using a sPRF

In order to show that a sPRF is not sufficient for IND-qCPA
security of IGE mode, a specific block cipher BCk () is con-
structed as follows:

BCk (x) B EH(k)1 (DropLastBit(x ⊕ (k‖1) · LastBit(x)))
‖tH(k)2 (x ⊕ (k‖1) · LastBit(x)) ⊕ LastBit(x),

where E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 and t : {0, 1}n ×
{0, 1}n → {0, 1} are sPRFs, H : {0, 1}n → {0, 1}n × {0, 1}n

is a random oracle, and k
$
←− {0, 1}n−1 is the key. Here,

for a string x B x1x2 · · · xn, where xi is the i-th bit of x,
LastBit(x) = xn and DropLastBit(x) = x1x2 · · · xn−1. For an
l-bit string a and a binary variable b, a · b = a if b = 1, 0l
otherwise.
In [10], BCk () is proved to be a sPRF but not a qPRF using
O2H lemma, for any quantum adversary with a classical
access to BCk () and a quantum access to the random oracle
H. We use this block cipher BCk for the construction ofΠIGE.

Theorem 3.1: There exists a sPRF such that ΠIGE is IND-
qCPA insecure in the QaROM.

Proof. As in previous attacks [10], we use Simon’s al-
gorithm [11] to attack IGE mode. The quantum adversary
prepares six quantum registers, three of which store mes-
sages and the rest three store ciphertexts, as shown in Fig. 1.
The adversary then stores the superposition of all possible

Fig. 1 Attack on 1-block IGE using Simon’s algorithm.

messages, i.e.
∑

m2 2−n/2 |m2〉, in the message registers using
a Hadamard gate. After an encryption query is made, the
corresponding reply is stored in the ciphertext registers as
follows:

|ψ2〉 =
∑

m2 2−n/2 |m0〉|0n〉|m2〉|c0〉|BCk (c0) ⊕ m0〉

|DropLastBit(BCk (BCk (c0) ⊕ m0 ⊕ m2))‖+〉,

where |+〉 B 2−1/2 (|0〉 + |1〉). Now c1 is XOR’ed to m2
using a CNOT gate. More formally,

|ψ3〉 =
∑
α 2−n/2 |m0〉|0n〉|α〉|c0〉|α ⊕ m2〉

|DropLastBit(BCk (α))‖+〉,

where α B BCk (c0)⊕m0⊕m2. In order to use BCk’s special
property of being (k‖1)-periodic, we consider another mes-
sage input

∑
m2 2−n/2 |m2 ⊕ (k‖1)〉. By a similar calculation

as before, and using BCk (x) = BCk (x ⊕ (k‖1)),

|φ3〉 =
∑
α 2−n/2 |m0〉|0n〉|α ⊕ (k‖1)〉|c0〉|α ⊕ m2〉

|DropLastBit(BCk (α ⊕ (k‖1)))‖+〉
=

∑
α 2−n/2 |m0〉|0n〉|α ⊕ (k‖1)〉|c0〉|α ⊕ m2〉

|DropLastBit(BCk (α))‖+〉.

Since |ψ3〉 = |φ3〉 = (|ψ3〉 + |φ3〉)/2, |ψ3〉 is rewritten as

|ψ3〉 =
∑
α 2−(n+1)/2 |m0〉|0n〉

[
{|α〉 + |α ⊕ (k‖1)〉} /

√
2

]

|c0〉|α ⊕ m2〉|DropLastBit(BCk (α))‖+〉.

The state after applying Hadamard gate on |m2〉 is

|ψ4〉 = 2−(n+1)/2(−1)α�z
∑

z |m0〉|0n〉
[
(1 + (−1)(k ‖1)�z ) |z〉/

√
2

]

|c0〉|α ⊕ m2〉|DropLastBit(BCk (α))‖+〉,

where � denotes bitwise inner product. Finally, if we mea-
sure the m2 register, we either get a vector z such that
(k‖1) � z = 0, or an empty string. We repeat the same
attack until we get n − 1 independent vectors, thereby recov-
ering n − 1 bits of k and breaking ΠIGE. �

4. IND-qCPA Security of IGE Mode Using a qPRF

In order to show that IND-qCPA security of IGE mode is
conditional on the existence of a qPRF, we use O2H lemma
and prove the bound for any quantum adversary that attacks
the system. We define Enci,H(m) B c0c1 · · · cn, where cj

$
←−
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{0, 1}t for j ∈ [0, i] and cj ← H(cj−1 ⊕ mj ) ⊕ mj−1 for
j ∈ (i, n]. In Lemma 4.1, we prove that the probability of
distinguishing the output of IGE mode’s Enci,H from that of
Enci+1,H is negligible in security parameter t.

Lemma 4.1: For any i ∈ [0, p(t)) and every quantum ad-
versary A that makes at most qA queries in the QaROM,

����Pr
[
H← ({0, 1}t → {0, 1}t ); (m0,m1) ← AEnci,H ;

b
$
←− {0, 1}; b′ ← AEnci,H (Enci,H(mb)) : b′ = b

]
−

Pr
[
H← ({0, 1}t → {0, 1}t ); (m0,m1) ← AEnci,H ;

b
$
←− {0, 1}; b′ ← AEnci,H (Enci+1,H(mb)) : b′ = b

] ����
C δ(t) ≤ O

(
2−t/2p(t)2qA2

)
,

where p(t) is the maximum number of blocks in the message
m and t is the length of each message block.

Proof. Using the proof technique as [10], we
prove IGE mode case as follows: For a given message
m B m0m1 · · ·mn, let Ẽnc

i

H(m, c0, c1, . . . , ci) B ĉ1ĉ2 · · · ĉn,
where ĉj = cj for j ∈ [0, i] and ĉj = H(ĉj−1 ⊕ mj ) ⊕ mj−1
for j ∈ (i, n]. Then we put ci B x ⊕ mb

i+1 and
ci+1 B y ⊕ mb

i , where mb
i is the i-th block of the mes-

sage mb and x, y
$
←− {0, 1}t . By definition of Ẽnc

i

H,
Ẽnc

i

H(mb, c0, c1, . . . , ci) = Ẽnc
i+1
H (mb, c0, c1, . . . , ci+1) with

ci+1 B H(x) ⊕ mb
i . We define an adversary AO2H that

makes oracle queries to the random function H is defined
to be the output of the procedure described below for given
inputs x and y:

AH
O2H(x, y) B (m0,m1) ← AEnci,H ; b

$
←− {0, 1}; c0, · · · , ci−1

$
←− {0, 1}t ; ci B x ⊕ mb

i+1; ci+1 B y ⊕ mb
i;

compute c B Ẽnc
i+1
H (mb, c0, . . . , ci+1);

b′ ← AEnci,H (c); return b′ = b.

Now we have the equation, by O2H lemma,

δ(t) =
����Pr

[
H← ({0, 1}t → {0, 1}t ); x

$
←− {0, 1}t ;

b̃← AH
O2H(x,H(x)) : b̃ = 1

]
−

Pr
[
H← ({0, 1}t → {0, 1}t ); x

$
←− {0, 1}t ;

y
$
←− {0, 1}t ; b̃← AH

O2H(x, y) : b̃ = 1
] ����

=
���P

1
AO2H

− P2
AO2H

��� ≤ 2qO2H
√

PB .

Note that AO2H can answer A’s queries as it has oracle
access to H. Let qO2H be the number of H-queries made by
AO2H, then it is clear that qO2H ≤ 3p(t)qA . Let q1, q2, and q3
denote the number of queries that AO2H makes to H before,
during, and after the challenge query, respectively. Let B

be an oracle algorithm described in O2H lemma and PB be
P j
B
/qO2H. In all three cases depending upon whether the

j-th H-query was made before, during, or after the challenge
query, we may show that PB ≤ O(2−tqO2H

2). Therefore, we
have

δ(t) ≤ 2qO2H
√

PB
= O(2−t/2qO2H

2) = O(2−t/2p(t)2qA2). �

Theorem 4.2: If the function E is a qPRF, then ΠIGE is
IND-qCPA secure in the QaROM.

Proof. Using the proof technique as [10], we prove IGE
mode case as follows: LetA be a quantum adversarymaking
qA queries. Note that Encp(t),H(mb) is independent of its
argument mb. Then by Lemma 4.1 and triangle inequality,

����Pr
[
H← ({0, 1}t → {0, 1}t ); (m0,m1) ← AEnc0,H

;

b
$
←− {0, 1}; b′ ← AEnc0,H

(Enc0,H(mb)) : b′ = b
]
−

Pr
[
H← ({0, 1}t → {0, 1}t ); (m0,m1) ← AEncp (t ),H

;

b
$
←− {0, 1}; b′ ← AEncp (t ),H

(Encp(t),H(mb)) : b′ = b
] ����

≤ p(t)O
(
2−t/2p(t)2qA2

)
.

One can see that Encp(t),H(mb) outputs ciphertext as a com-
pletely random string. Hence, the output b′ is independent
of b. Therefore,

����Pr
[
H← ({0, 1}t → {0, 1}t ); (m0,m1) ← AEnc0,H

;

b
$
←− {0, 1}; b′ ← AEnc0,H

(Enc0,H(mb)) : b′ = b
]
−

1
2

�����
≤ p(t)O

(
2−t/2p(t)2qA2

)
.

Since Enc0,H is indistinguishable from Enc of ΠIGE by defi-
nition of qPRF, and as qA is polynomial in t, we deduce

AdvIND−qCPA
A,ΠIGE

(t) ≤ O
(
2−t/2p(t)3qA2

)
+ negl(t) = negl(t).

That is, ΠIGE is IND-qCPA secure. �

5. Concluding Remarks

We examined the post-quantum security of IGE mode as
a follow-up study of its classical security. Among many
post-quantum security notions, we considered IND-qCPA
security against the quantum adversary who has a quantum
encryption oracle access, with classical challenge queries
allowed only. When the underlying block cipher is assumed
to be a sPRF only, IGE mode is broken by attacks using
Simon’s algorithm. However, assuming a qPRFblock cipher,
IGE mode is proven to be secure.
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