Crypto-PPML 2019 @UCSB, CA, USA

A Survey on Deep Learning Techniques for

Privacy-Preserving

Kwangjo Kim, Harry Chandra Tanuwidjaja, and Rakyong Choi

Korea Advanced Institute of Science and Technology (KAIST)

August 18, 2019

KAIST

CONTENTS

1. Introduction

- 2. Classical Privacy-Preserving Technologies
- 3. Deep Learning in Privacy-Preserving Technologies
- 4. X-based Hybrid Privacy-Preserving Deep Learning
- 5. Comparison
- 6. Conclusion and Future Work

KAIST

History of Deep Learning : Idea	Crypto-PPML 2019		
 1943: Neural networks 1957: Perceptron 1974-86: Backpropagation, RBM, RNN 1889-98: CNN, MNIST, Bidirectional RNN 2006: Deep Learning 2009: Image Net 2012: AlextNet, Dropout 2014: GAN (Generative Adversarial Network) 2014: DeepFace 2016: AlphaZeo 2018: AlphaZeo, Capsule Networks 2018: BERT(Bidirectional Encoder Representation 	s from Transformers) by Go	کی د AlphaGo oge	
	3 39	https://deeplea	rning.mit.edu KAIST

Why we need Privacy-Preserving Deep Learning?	Crypto-PPML 2019
Advances of machine learning	
Users (Data Owner) submit data to the trustful clo	ud server
who want to get useful statics of users	
- Data privacy during training 🛛 💦 🚟	
-Solution?	
• Privacy Preserving Deep Learning (PPDL)	
(4) 39	KAIST

Classical Privacy-Preserving Technology	Crypto-PPML 2019
 Homomorphic Encryption Support operations on encrypted data without private key Not directly applicable to DL 	Homomorphic Encryption
 Secure Multi-party Computation Joint computation of f(), keeping each input to be secret 	Multi-party computations (MPC)
 Differential Privacy Keeping privacy before and after PP Release statistics without revealing data 	$ \left\{ \begin{array}{c} \begin{array}{c} \\ \end{array} \right\} \xrightarrow{p_{\text{prine}}} \rightarrow \left[\mathbf{k} \right] \xrightarrow{\mathbf{k}} \\ \\ \\ \end{array} \\ \left\{ \begin{array}{c} \\ \end{array} \right\} \xrightarrow{p_{\text{prine}}} \rightarrow \left[\mathbf{k} \right] \xrightarrow{\mathbf{k}} \xrightarrow{\mathbf{k}} \\ \\ \\ \end{array} \\ \left\{ \begin{array}{c} \\ \end{array} \right\} \xrightarrow{p_{\text{prine}}} \xrightarrow{p_{\text{prine}}} \xrightarrow{\mathbf{k}} \mathbf$
(5 3)	KAIST

Deep Learning Layers(2/5)	Crypto-PPML 2019
• Activation Layer	
-Non-linear function that applies mathematical proc	ess on the
output of convolutional layer.	
-Activation function: ReLU, Sigmoid, Tanh	
-Non-linear -> high complexity	
× Activation Function	(f(x))
10 3)	KAIST

Deep Learning Layers(3/5)	Crypto-PPML 2019
• Pooling Layer	
–A sampling layer, whose purpose is to reduce the si	ze of data
-Cannot use max pooling in HE	
-Solution? Average pooling	
1 6 3 5 6 1 0 2 5 3 2 9 7 4 0 6	
1 39	KAIST

Deep Learning Layers(4/5)	Crypto-PPML 2019
 Fully Connected Layer 	
-Each neuron in this layer is connected to neuron in	previous layer
-The connection represents the weight of the feature	re like a compl
ete graph	67°
-Dot product function	2
-Can be used directly in HE	óló
	Output
(12) 10	KAIST

X-based Hybrid PPDL	Crypto-PPML 2019
•HE-based Hybrid PPDL	
 Secure MPC-based Hybrid PPDL 	
 Differential Privacy-based Hybrid PPDL 	
14 13	KAIST

HE-based Hybrid PPDL(8/10)	Crypto-PPML 2019
- Tapas	
Accelerate parallel computation using encrypted data in PaaS environment.	
 Current problem: large amount of processing time needed. 	
Main contribution:	
 New algorithm to speed up binary computation in Binary Neural Network (BNN). 	steets (1?)
Their technique can be parallelized by evaluating gates at the same Level	
for three representations at the same time -> time improved drastically	prediction on
8	
L	oerver
A sanyal, MJ, Kusher, A. Gasch, and V. Kanade, TAMS: Inclus to Accelerate (Encrypted) Prediction as a service. arXiv preprint, at	KAIST

HE-based Hybrid PPDL(9/10)	Crypto-PPML 2019
FHE DINN	
Reduce complexity problem in HE+NN	
 Deeper network, more complexity 	
 Use bootstrapping -> linear complexity of NN 	
• How to do it?	
- Discretize the weight, bias value, and the domain of activation function.	
- Using sign activation function to limit the growth of signal in the range	of [-1,1]
F. Bourse, M. Minelli, M. Minihold, and P. Paillier, "Fast Homomorphic Evaluation of Deep Discretized Neural Networks," Spring	ger, Cham, 2018
24 39	KAIST

HE-based Hybrid PPDL(10/10)

Crypto-PPML 2019

E2DM

- PPDL framework that performs matrix operations on HE system
- Encrypts a matrix homomorphically, then do arithmetic operations on it.
- Reduce complexity of matrix multiplication
 - O(d) complexity for dot product between two d x d matrices instead of $O(d^2)$ complexity.
- Leverage CNN with one convolutional layer, two fully connected layers, and a square activation function.

X. Jiang, M. Kan, K. Luder, and Y. Song. "Secure Outsourced Matrix Computation and Application to Neural Networks," in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1209-1222, ACM, 2018.

Scenario	Proposed Schemes	DL Technique	Accuracy (%)	Run Time (s)	Data Transfer (Mbytea)	PoC	РоМ	•
Cloud	ML Confidential [30]	DNN	Bad (95.00)	Bad (255.7)		Yes	No	
Service	Cryptonets [33]	CNN	Good (98.95)	Bad (097)	Bad (595.5)	Yes	No	
	PP on DNN [34]	CNN	Good (99.30)			Yes	No	
<	E2DM [46]	CNN	Good (98.10)	Good (28.59)	Good (17.48)	Yes	Yes	>
Image	CryptoDL [28]	CNN	Good (99.52)	Bad (320)	Bad (336.7)	Yes	No	
Recognitio	PP All Convolutional Net [29]	CNN	Good (98.97)	Bad (477.6)	Bad (361.6)	Yes	No	
Content Sharing	Distributed PP Multi-Key FHE [38]	CNN	Good (99.73)	(*)		Yes	No	
D. P	Gazelle [42]	CNN	*	Good (0.01)	Good (0.5)	Yes	Yes	
Pass	Tapas [43]	BNN	Good (98.60)	Good (147)	i t	Yes	Yes	
	FHE-DNN [44]	DiNN	Bad (96.35)	Good (1.64)		Yes	Yes	

MPC-based Hybrid PPDL(3/4)	Crypto-PPML 2019
• MiniONN	
 PP framework that transforms a NN into an oblivious NN. 	
Two kind of transformations:	
- piecewise linear activation function	
- oblivious transformation for smooth activation function	
 Supports all activation functions that have: 	
- monotonic range	
 piecewise polynomial, or 	
 can be approximated into polynomial function. 	
J. Liu, M. Juuti, Y. Lu, and N. Asokan, "Oblivious Neural Network Predictions via MiniONN Transformations," in Proceedings of the 2017 A ter and Communications Security, pp. 613–631, ACM, 2017.	EM SIGSAC Conference on Compu
31 39	KAIST

MPC-based Hybrid PPDL(4/4)	Crypto-PPML 2019
ABY3	
 PPDL framework based on three-party computation 	
 Can switch between arithmetic, binary, and Yao's 3PC 	
 Use binary sharing on three-party Garbled Circuit 	
 Arithmetic sharing when training linear regression model 	
Outperform MiniONN by four order of magnitude faster	
P. Mohassel and P. Rindal, "XBY 3: a Mixed Protocol Framework for Machine Learning," in Proceedings of the 2018 ACM SIGSAC Conferentions Security, pp. 35-52. ACM, 2018.	e on Computer and Communica
(32) 39	KAIST

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ed DL Technique	Accuracy (%) Good (98.95)	Run Time (s) Bad	Data Transfer (Mbytes) Bad	PoC	PoM		
Cloud DeepSecure [39] CNN Good (98.95) Bad (10,649) Bad (722,000) No Yes Image SecureML [35] DNN Bad (93.40) - No Yes MiniONN Good Good Good Good Yes PaaS [41] NN (98.95) (1.04) (47.60) No Yes [45] NN Bad Good Good Good Food Yes	Ire CNN	Good (98.95)	Bad	Bad		_		
Image Secure/ML DNN Bad - - No Yes Mini/ONN (33.4) Odd Good Good Good No Yes PaaS [41] NN (39.45) (1.04) (47.60) No Yes ABY3 NN Bad Good Good Good No Yes [45] NN (94.00) (0.01) (5.20) No Yes	1		(10,049)	(722,000)	No	Yes		
MimiONN NN Good Good Good Fill PaaS [41] NN (98.95) (1.04) (47.60) No Yes ABY3 Bad Good Good Kood Yes [45] NN (94.00) (0.01) (5.20) No Yes	L DNN	Bad (93.40)	-	-	No	Yes		
ABY3 NN Bad Good Good No Yes [45] NN (94.00) (0.01) (5.20) No Yes	N NN	Good (98.95)	Good (1.04)	Good (47.60)	No	Yes	\supset	
	NN	Bad (94.00)	Good (0.01)	Good (5.20)	No	Yes		
		N NN NN	N (93.40) N Good (98.95) NN Bad (94.00)	N (93.40) (80.95) Good (89.95) Good (1000) NN Bad (94.00) Good (0.01)	N (03.40) (89.95) Good (104) Good (104) Good (17.60) NN Bad Good (5.20) Good (5.20)	N (03.40) (89.95) Good (89.95) Good (1.01) Good (17.60) No NN Bad Good Good No NN Bad Good Good No NN (94.00) (0.01) (5.20) No	N (03.40) (98.95) (1.04) (1.60) (1.60) (1.60) No Yes NN Bad Cood Good Good No Yes NN (94.00) (0.01) (5.20) No Yes	N (03.40) (89.55) (1.04) (1.04) (47.60) (47.60) No Yes N NN Bad Cood Good Koo Yes NN Bad Cood Good Good Koo Yes

DP-based Hybrid PPDL	Crypto-PPML 2019
 Private Aggregation of Teacher Ensembles(PATE) 	
Teacher phase and student phase	
 Possible failure that reveals some part of training data 	
Not accessible by adversary teacher 1 teacher 1 teac	vary ••• Queries ing precent approaches," Comp
uter Security Foundations Symposium, pp. 1-6, 2017.	KAIST

Compar	Comparison-All							Crypto-PPML 2019					
E2DM giv	ves th	e bes	st pe	erforr	na	nce:	Proposed Schemes	DL Technique	Accuracy (%)	Run Time (s)	Data Transfer (Mbytes)	PoC	PoM
• High acc	• High accuracy • PoC				ML Confidential [30]	DNN	Bad (95.00)	Bad (255.7)		Yes	No		
							Cryptonets [33]	CNN	Good (98.95)	Bad (097)	Bad (595.5)	Yes	No
 Fast run 	time		PoM				PP on DNN [34]	CNN	Good (99.30)		1	Yes	No
 Small dat 	Small data transfer				E2DM [46]	CNN	Good (98.10)	Good (28.59)	Good (17.48)	Yes	Yes		
							CryptoDL [28]	CNN	Good (99.52)	Bad (320)	Bad (336.7)	Yes	No
Proposed Schemes	DL Technique	Accuracy (%)	Run Time (s)	Data Transfer (Mbytes)	PoC	PoM	PP All Convolutional Net [29]	CNN	Good (98.97)	Bad (477.6)	Bad (361.6)	Yes	No
DeepSecure [39]	CNN	Good (98.95)	Bad (10,649)	Bad (722,000)	No	Yes	Distributed PP Multi-Key	CNN	Good (99.73)		- 14	Yes	No
SecureML [35]	DNN	Bad (93.40)	. •3		No	Yes	FHE [38] Gazelle	CNN		Good	Good	Yes	Yes
MiniONN [41]	NN	Good (98.95)	Good (1.04)	Good (47.60)	No	Yes.	Tapas	BNN	Good (05.60)	Good (147)	(0,3).	Yes	Yes
ABY3 [45]	NN	Bad (94.00)	Good (0.01)	Good (5.20)	No	Yes	FHE-DNN [44]	DiNN	Bad (96.35)	Good (1.64)		Yes	Yes
					36	39						KΛ	ST

Conclusion and Future Work	Crypto-PPML 2019
Discussed state of the art of privacy-preserving deep lear	ning
 Layers modified in PPDL: 	
• pooling layer, activation layer, and batch normalization layer	
- Future Work:	
\diamond Achieving more than 99% accuracy with good PoC and PoM	
Lots of Challenges still remain	
Aminanto, Muhamad Erza, Rakyong Choi, Harry Chandra Tanuwidjaja, Paul D. Yoo, and Kwangjo Kim. "Deep abstractio ction for Wi-Fi impersonation detection." IEEE Transactions on Information Forensics and Security 13, no. 3 (2018): 623	n and weighted feature sele 1-636.
37 33	KAIST

