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Abstract: The Telegram which is a very popular messenger uses a special mode called IGE(Infinite Garble
Extension). IGE mode is not included in standard mode of operation recommended by National Institute of
Standards and Technology(NIST) in 2001. Block cipher encrypts fixed length of plaintext into the corresponding
fixed-length of ciphertext using a secret key shared by two parties and utilizes lots of mode of operation for
various length of plaintext. Even though Telegram uses non-standard IGE mode, Telegram is claimed to be
secure and demonstrate their security is stronger than other IM’s. Thus, we need to verify the security of IGE
mode depending on underlying block ciphers. In this paper, we show that IGE mode block cipher used in
Telegram assuming sPRF is not IND-qCPA, but assuming qPRF is IND-qCPA.
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1 Introduction
1.1 Post-quantum cryptography

Quantum computers can perform quantum computation
using quantum-mechanics happend in quantum states like
superposition and entanglement different to the classical com-
puters. Quantum computation uses quantum bits ( i.e., qubits)
compared to binary bits in classical computations. In gen-
eral, a quantum computer with n qubits can be in an ar-
bitrary superposition of up to 2n different state simultane-
ously [1]. This indicates that qubits can hold exponentially
more information than their classical counterpart.

Though the actual quantum computer is not developed
yet, many experiments executing on small number of quan-
tum bits imply that the quantum computer will be realized
soon. In real, quantum computer is expected to be devel-
oped within 15 years. Quantum computers are becoming
more and more likely including the recent success of IBM
in building 50 qubits.

Modern cryptosystem such as AES, RSA, Diffie-Hellman
(DH) and Elliptic Curve Cryptosystem(ECC) are very pop-
ular and widely used for secure applications. The compu-
tational security of public key cryptosystem based on the
difficulty of the number theory relies on mathematical hard
problems such as the integer factorization problem(IFP), the
discrete logarithm problem(DLP), and the elliptic-curve dis-
crete logarithm problem(ECDLP). However these problems
can be solved within polynomial time using a powerful quan-
tum computer by Shor’s algorithm [2]. Thus we need to pre-
pare for cryptosystem secure against the quantum comput-
ing attack which we say quantum-safe cryptosystem such
like lattice-based, hash-based, code-based, multivariate, and
isogeny cryptography.

In symmetric key cyrptosystem, data search algorithm
called Grover’s algorithm [3] can find the correct member
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given unstructured database in complexity O(
√
N) com-

pared to O(N) in classical world. The suggested counter-
measure against quantum computer attack needs to double
the key size; use 256 bit key instead of 128 bit key in AES.

1.2 Motivation
Block ciphers, one of the symmetric key cryptosystem,

can only encrypt a fixed length of a message. But for prac-
tice we need to encrypt or decrypt for arbitrary-length of
message. To meet this, block cipher offers lots of mode
of operation like Electronic Codebook(ECB), Output Feed-
back(OFB), Cipher Feedback(CFB), Cipher Block Chain-
ing(CBC), and XEX-based tweaked-codebook mode with
ciphertext stealing(XTS), etc. Some mode of operations can
increase the message space or provide semantic security de-
pending on the mode of operation.

Telegram, one of the famous instant messaging(IM) ser-
vices, uses Infinite Garble Extension(IGE) [4] mode in their
customized protocol called MTProto. IGE mode is not clas-
sified as standard mode of operation by National Institute of
Standards and Technology(NIST) [5]. However, this Tele-
gram is claimed to be secure even though they use IGE
mode. Even Telegram got great score by Electronic Fron-
tier Foundation(EFF) in 2014 [6] by evaluating the security
requirements among secure IM’s. Different to other IM’s,
Telegram has special policy to open their source code, pro-
tocol, and API in order to be made by the public scrutiny
of the security experts from the world. This demonstrates
indirectly to show that their security is sufficiently strong
than other IM’s. However the overall security of Telegram
can be vulnerable against the quantum adversaries. Thus we
need to verify the security of Telegram against the quantum
adversaries, especially IGE mode used for underlying block
ciphers.

In this paper, we focus on the quantum security of IGE
mode in block cipher. We will show that (i) if the block
cipher is assumed to be standard-secure Pseudo Random
Function(sPRF), the block cipher of IGE mode is not IND-
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qCPA(similar with IND-CPA in classical setting except that
the adversary A has the quantum access). (ii) if the block
cipher is assumed to be quantum-secure Pseudo Random
Function(qPRF), the block cipher of IGE mode is IND-qCPA.

1.3 Organization
The rest of this paper is organized as follows: Chapter

2 describes preliminaries about our definitions and notation
used in this paper. The overview of Telegram, its IGE mode
and security are described in Chapter 3. The security proof
for sPRF and qPRF is explained in Chapters 4 and 5, respec-
tively. Finally, the conclusion and future work are discussed
in Chapter 6.

2 Preliminaries
2.1 Notation
y ← A(x) means an algorithm A that takes the input x

outputs a value and this value is assigned to y. We write
AH when A can access to an oracle H . (A ← B) denotes
the set of all function from A to B. We write x $←− A if x is
uniformly randomly chosen from the setA. a ‖ b represents
concatenations of two strings and {0, 1}n represents the n-
bit strings. a � b means the inner product of two vectors a
and b.

We use η(t) to denote a function with a security param-
eter t. If we say a quantity is negligible(denoted negl.) we
mean that it is in o(ηc) or 1−o(ηc) for all c > 0. We use the
notation A ≈ B to say that quantity A has negl. difference
with quantity B.

For an n-bit string a and binary variable b, a · b = a if
b = 1 else a · b = 0n. For a string x = x1x2x3 · · ·xn
where xi is the i-th bit, we use function lastbit(x) = (xn),
droplastbit(x) = x1x2x3 · · ·xn−1.

2.2 Quantum Computation
A quantum system A is a complex Hilbert space H with

inner product 〈·|·〉. The state of a quantum system is given
by a vector |ψ〉 of unit norm (〈ψ|ψ〉 = 1). Given quantum
systems H1 and H2, the joint quantum system is given by
the tensor product H1 ⊗H2. Given |ψ1〉 ∈ H1 and |ψ2〉 ∈
H2, the product state is given by |ψ1〉|ψ2〉 ∈ H1 ⊗ H2.
Given a quantum state |ψ〉 and an orthonormal basis B =
|b0〉, . . . , |bd−1〉 for H, a measurement of |ψ〉 in the basis
B results in the value bi with probability |〈bi|ψ〉|2, and the
quantum state collapses to the basis vector |bi〉. If |ψ〉 actu-
ally a state in a joint systemH⊗H′, then |ψ〉 can be written
as

|ψ〉 =

d−1∑
i=0

αi|bi〉|ψ′i〉

for some complex values αi and states |ψ′i〉 over H′. Then,
the measurement over H obtains the value i with proba-
bility |αi|2 and in this case the resulting quantum state is
|bi〉|ψ′i〉. A unitary transformation over a d-dimensional
Hilbert space H is a d × d matrix U such that UU† = Id,
where U† represents the conjugate transpose. A quantum
algorithm operates on a product spaceHin⊗Hout⊗Hwork
and consists of n unitary transformations U1, . . . ,Un in this

space. Hin represents the input to the algorithm, Hout the
output, and Hwork the work space. A classical input x to
the quantum algorithm is converted to the quantum state
|x, 0, 0〉. Then, the unitary transformations are applied one-
by-one, resulting in the final state

|ψx〉 = Un . . .Ui|x, 0, 0〉.

The final state is then measured, obtaining the tuple (a, b, c)
with probability |〈a, b, c|ψx〉|2. The output of the algorithm
is b. We say that a quantum algorithm is efficient if each of
the unitary matrices Ui come from some fixed basis set, and
n, the number of unitary matrices, is polynomial in the size
of the input.

Quantum-accessible Oracles. We will implement an or-
acle O : X → Y by a unitary transformation O where

O|x, y, zi〉 = |x, y +O(x), z〉

where + : X × X → X is some group operation on X .
Suppose we have a quantum algorithm that makes quantum
queries to oracles O1, . . . ,Oq . Let |ψ0〉 be the input state
of the algorithm, and let U0, . . . ,Uq be the unitary trans-
formations applied between queries. Note that the transfor-
mations U′is can be the products of many simpler unitary
transformations. The final state of the algorithm will be

UqOq . . .U1O1U0|ψ0〉

We can also have an algorithm that makes classical queries
toOi. In this case, the input to the oracle is measured before
applying the transformation Oi. We call a quantum oracle
algorithm efficient if the number of queries q is polynomial,
and each of the transformations Ui between queries can be
written as the product polynomially many unitary transfor-
mations from some fixed basis set.

2.3 IND-CPA, IND-qCPA
Definition 1 (IND-CPA). A symmetric encryption scheme
ΠIGE =(Gen,Enc,Dec) is indistinguishable under chosen
message attack(IND-CPA secure) if no classical polynomial
time adversary A can win in the PrivKCPA

A,π game, except
with probability at most 1/2 + negl.

PrivKCPA
A,π (t) game:

Key Gen: The challenger picks a random key

k
$←− Gen and a random bit b.

Query: Adversary A chooses two messages m0,m1

and sends them to the challenger.

Challenger chooses r $←− {0, 1}∗ and responds with
c∗ = Enck(mb; r)

Guess: Adversary A produces a bit b′, and wins
if b = b′

There are different kinds of definition of IND-qCPA, but
we use one in [7]. In the IND-qCPA, the quantum adversary
can queries in superposition but the challenge queries are
classical as in classical world.
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Definition 2 (IND-qCPA [7]). A symmetric encryption scheme
ΠIGE =(Gen,Enc,Dec) is indistinguishable under a quan-
tum chosen message attack(IND-qCPA secure) if no efficient
quantum adversary A can win in the PrivKqCPA

A,π game,
except with probability at most 1/2 + negl.

PrivKqCPA
A,π (t) game:

Key Gen: The challenger picks a random key

k
$←− Gen and a random bit b.

Queries A is allowed to make two types of queries:

- Challenge Queries: A sends two messagesm0,m1

to challenger and challenger responds with c∗ =
Enck(mb; r).

- Encryption Queries: For each query, the challenger

chooses randomness r $←− {0, 1}∗, and encrypts
each message in the superposition using r as
randomness:∑
m,c

ψm,c|m, c〉 →
∑
m,c

|m, c⊕ Enck(m; r)〉

Guess: Adversary A produces a bit b′, and wins
if b = b′

2.4 Standard and quantum security
Definition 3 (Standard-secure PRF [8]). A function PRF is
a standard-secure PRF if no efficient quantum adversary
A making classical queries can distinguish between a truly
random function and a function PRFk for a random k. That
is, for every such A, there exist a negligible function ε =
ε(t) such that

|Prk←K[APRFk() = 1]−PrO←KX [AO() = 1]| < ε

Definition 4 (Quantum-secure PRF [8]). A function PRF is
a standard-secure PRF if no poly-time quantum adversary
A making quantum queries can distinguish between a truly
random function and a function PRFk for a random k.

2.5 One way to hiding(O2H) Lemma
This lemma below is devised from Unruh in 2015 [9].

This lemma shows that given a uniformly random value s,
to show that H(x) is also uniformly random (indistinguish-
able from random) we need to show that : when adversary
queries to oracle, abort the query to H at random point,
measure the input to that query(disturbing superposition in
quantum), then the probability the input equals x is negligi-
ble. This lemma is used in Section 5.2 to set up the bound-
ary of probability.

Lemma 1 (One way to hiding(O2H) Lemma [9]). Let H :
{0, 1}t → {0, 1}t be a random oracle. Consider an oracle
algorithm AO2H that makes at most qo2h queries to H . Let
B be an oracle algorithm that on input x does the following:

pick i $←− {1, · · · , qo2h} and y $←− {0, 1}t, runAHO2H(x, y)
until (just before) the ith query, measure the argument of
the query in the computational basis, output the measure-
ment outcome. (When AO2H makes less than i queries, B
outputs ⊥/∈ {0, 1}t.) Let,

P 1
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t),

x
$←− {0, 1}t, b′ ← AHO2H(x,H(x))],

P 2
AO2H

:= Pr[b′ = 1 : H
$←− ({0, 1}t → {0, 1}t),

x
$←− {0, 1}t, y $←− {0, 1}t, b′ ← AHO2H(x, y)],

PB := Pr[x′ = x : H
$←− ({0, 1}t → {0, 1}t),

x
$←− {0, 1}t, x′ ← BH(x, i)].
Then,

|P 1
AO2H

− P 2
AO2H

| ≤ 2qo2h
√
PB .

3 Telegram
3.1 Overview

Telegram is known as one of the most popular non-profit
cloud-based instant messaging(IM) services for secure com-
munications. Telegram had 100 million monthly active users
sending 15 billion messages per day in 2016 [10]. People
can send messages and exchange photos, video and other
files. They offers two modes; regular chat and secret chat
mode. In regular chat mode, all messages can be read by
server and stored. But secret chat uses an end-to-end en-
cryption(E2EE). In this mode, because all messages are en-
crypted by the end users, server can’t read original messages
and the messages is not stored in the middle. Telegram
uses a symmetric encryption scheme called MTProto. MT-
Proto uses Diffie-Hellman (DH) key exchange, Secure Hash
Algorithm 1(SHA-1), Key Derivation Function(KDF), and
AES-256 in IGE [4] mode.

3.2 Infinite Garble ExtensionIGE mode
IGE [4] mode was initially introduced by Campbell in

1978 to prevent spoofing attacks. It has the property that
errors are propagated forward, that is, any difference in ci-
phertext changes (i.e., garbles) the decryption of all subse-
quent ciphertext.

Definition 5 (IGE scheme). For a given function E : K ×
{0, 1}t → {0, 1}t we define the symmetric encryption scheme
ΠIGE =(Gen,Enc,Dec) as follows:

Gen: Pick a random key k $←− K.
Enc: For a given message M = m0m1 · · ·mn, where

m0
$←− {0, 1}t and n is a polynomial in t; Enck(M) :=

c0c1 · · · cn,where c0
$←− {0, 1}t and ci = E(k, ci−1⊕mi)⊕

mi−1 for 0 < i ≤ n.
Dec: For a given cipher-text C = c0c1 · · · cn and the key

k; mi := E−1(k, ci ⊕mi−1)⊕ ci−1 for 0 < i ≤ n.

When encrypt the messagem0, the initialisation vector(IV)
can be defined using a second key k0 then the ciphertext will
be c0 = E(k0,m0) or a random value like definition 5. But
we just take the latter without loss of generality.

3.3 Security of Telegram
Since the lack of privacy protection has been issued con-

stantly, now the majority of IM services provide E2EE based
on verified cryptographic protocols. Telegram is particu-
larly regarded as one of the most secure services in public
and has over 100 million active users. Based on Telegram’s
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Figure 1: Diagram of IGE mode for encryption. [11]

Figure 2: Diagram of IGE mode for decryption. [11]

customized protocol called MTProto, it provides client-to-
server encryption in cloud chats for syncing all connected
devices and E2EE in secret chats for only two devices that
used to initiate or accept the secret chat.

Meanwhile, Telegram’s MTProto has been criticized until
now and Jakobsen et al. [11, 12] theoretically demonstrated
Telegram 2.7.0 (visited GitHub in April 2015) is not indis-
tinguishability under chosen-ciphertext attack (IND-CCA)
and integrity of ciphertexts (INT-CTXT). From the fact that
MTProto does not check neither the length nor the content
of the padding during block cipher decryption, two attacks
were tried: (a) adding a random block at the end of the
ciphertext and (b) replacing the last block with a random
block. The first weakness can be fixed easily by adding the
process to check the length of the padding during decryption
and discard the message when it is longer than expected. As
for mitigating the second weakness, the encryption process
should be changed, which makes communications between
patched and unpatched clients difficult. Thus, it is desirable
to replace the current scheme with the entirely different, bet-
ter one that guarantees authenticated encryption(AE).

However still Telegram is claimed secure protocol. Though
they use IGE mode, it is not broken in their implementa-
tion. The fact that they do not use IGE as MAC together
with other properties of their system makes the known at-

Figure 3: Secure messaging scorecard. [6]

tacks on IGE irrelevant. IGE mode itself is vulnerable to
adaptive CPA, however, the adaptive attack is impossible in
Telegram. Because the adaptive attacks are only for the case
when the same key is used in several messages, but the key
is dependent on the message content in Telegram.

Also, Electronic Frontier Foundation(EFF) announced “Se-
cure Messaging Scorecard” [6] in 2014 depicted in Figure
3, and Telegram got 4 out of 7 in cloud chat and 7 out of
7 in secret chat whereas Facebook chat got only 2 out of
7. Telegram opens their source code, protocol and API and
holds crypto contest to crack Telegram’s encryption so that
people can see how everything works and welcome security
experts to audit their system and get feedback.

4 Insecurity of IGE mode assuming sPRF BC
4.1 Standard-secure PRF

For the first step to construct a sPRF, Anand et al. [13]
construct a specific block cipher as follows:

BCk(x) := EH(k)(droplastbit(x⊕ (k ‖ 1) · lastbit(x)))

where E is a sPRF and H refers to a random oracle. Actu-
ally this block cipher is not a block cipher because it is not
decryptable. (This block cipher’s input is x and key k which
is n and n− 1 bit respectively, but the outcome is n− 1 bit
in both cases. But we will use some trick to change this
incomplete construction to complete block cipher explained
later in the second step.)

This block cipher has the special property, which is im-
portant in next section, (k ‖ 1)-periodic:

- Case 1 :
x is even, lastbit(x) = 0, lastbit(x⊕ (k ‖ 1)) = 1,
BCk(x ⊕ (k ‖ 1)) = EH(k)(droplastbit(x ⊕ (k ‖
1)⊕ (k ‖ 1))) = EH(k)(droplastbit(x))
= EH(k)(droplastbit(x ⊕ (k ‖ 1) · lastbit(x))) =
BCk(x)

- Case 2 :
x is odd, lastbit(x) = 1, lastbit(x⊕ (k ‖ 1)) = 0,
BCk(x ⊕ (k ‖ 1)) = EH(k)(droplastbit(x ⊕ (k ‖
1))) = EH(k)(droplastbit(x⊕(k ‖ 1)·lastbit(x))) =
BCk(x)

Thus we can use this property:

BCk(x) = BCk(x⊕ (k ‖ 1)) (1)

The second step for sPRF is to make that BCk(x) to be
decryptable. To do that, additional function t is appended in
following construction.

Construction 1:
BCk(x) := EH(k)1

(droplastbit(x⊕(k ‖ 1)·lastbit(x)))
‖ tH(k)2

(x⊕ (k ‖ 1) · lastbit(x))⊕ lastbit(x)

where E : {0, 1}n−1 × {0, 1}n−1 → {0, 1}n−1 is a
sPRF, t : {0, 1}n × {0, 1}n → {0, 1} is a sPRF,
H : {0, 1}n → {0, 1}n × {0, 1}n is a random oracle,

and the key k $←− {0, 1}n−1
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Figure 4: Attack on 1 block IGE using Simon’s algorithm

We can easily know this construction is permutation by prov-
ing that given BCk(x) = y and k, we can recover x:
z := x⊕ (k ‖ 1) · lastbit(x), then lastbit(z) = 0
(if x is even, lastbit(x) = 0, z = x, lastbit(z) = 0, else

lastbit(x) = 1, z = x⊕ (k ‖ 1), lastbit(z) = 0)
Since the function E is sPRF, we can get the input of E

using droplastbit(y) and H(k)1. Of course the input of E
is droplastbit(x⊕ (k ‖ 1) · lastbit(x)) = droplastbit(z).
By simply appending 0-bit to droplastbit(z), we can get z.
And z is fed into t with key H(k)2 to get 1 bit:
tH(k)2

(z ⊕ (k ‖ 1) · lastbit(z)) = tH(k)2
(z)

This 1 bit is xored with lastbit(y),we can get lastbit(x):
tH(k)2

(z)⊕ lastbit(y)
= tH(k)2

(z)⊕ tH(k)2
(z)⊕ lastbit(x) = lastbit(x)

So we can finally compute x from z = x ⊕ (k ‖ 1) ·
lastbit(x) and lastbit(x). Thus this construction is injec-
tive and invertible.

The remaining part is to prove the construction is a sPRF
and it is proved in [13]

4.2 Attack on IGE Mode using Quantum Circuit
We will use the block cipher BC as described in Section

4.1 (Construction 1) for the ΠIGE scheme. As proved, this
BC is sPRF, not qPRF. That is, the BC is secure under the
condition that quantum adversary has only classical access
to the BC. In this section, we will show the attack using
Simon’s algorithm to recover the key k.

Lemma 2. There exists a standard-secure pseudo-random
function such that ΠIGE is not IND-qCPA secure.(In the
quantum random oracle model)

Proof. Let the ΠIGE scheme use the block cipher BC. And
we know that the quantum adversary can attack ΠIGE using
the encryption queries on messages with two blocks. First,
the quantum adversary stores random n-bit strings, n-zero
strings(0n) and equal superposition of messages in m0,m1

and m2 blocks of register M , respectively. The quantum
adversary initializes the quantum ciphertext register C with
string |03n−1〉|+〉. Now the adversary can make encryption
queries to the ΠIGE scheme and will get responses with the
corresponding ciphertext in quantum register C. This attack
is described in Figure 4.

After the quantum register M and C are applied encryp-
tion algorithm Enc of ΠIGE , the message and ciphertext
registers becomes(up to normalization):

|M,C〉 =
∑
m2
|m0〉|0n ‖ m2〉|c0〉|BCk(c0)⊕m0〉

|droplastbit{BCk(BCk(c0)⊕m0 ⊕m2)}〉|+〉

Put y := BCk(c0)⊕m0, then we have :

∑
m2
|m0〉|0n ‖ m2〉|c0〉|y〉

|droplastbit{BCk(y ⊕m2)}〉|+〉

The quantum adversary now xors c0 to the message reg-
ister by using a CNOT gate(m2 is xored with c1). Then the
quantum registers change:∑

m2

|m0〉|0n ‖ m2 ⊕ y〉|c0〉|y〉

|droplastbit{BCk(y ⊕m2)}〉|+〉 (2)

Also BCk is (k ‖ 1)-periodic, we can use the property
mentioned in Section 4.1 :

BCk(x) = BCk(x⊕ (k ‖ 1))

Then the quantum registers are :∑
m2
|m0〉|0n ‖ m2 ⊕ y〉|c0〉|y〉

|droplastbit{BCk(y ⊕m2 ⊕ (k ‖ 1))}〉|+〉

We can modified above equation, we get :

=
∑
m2

|m0〉|0n ‖ m2 ⊕ y ⊕ (k ‖ 1)〉|c0〉|y〉

|droplastbit{BCk(y ⊕m2)}〉|+〉 (3)

Put γ = m2 ⊕ y in Eqs. (2) and (3) change Eqs. (4) and
(5) respectively :

∑
γ

|m0〉|0n ‖ γ〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉 (4)

∑
γ

|m0〉|0n ‖ γ⊕(k ‖ 1)〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

(5)
Hence the adversary has the state(up to normalization),∑

γ |m0〉|0n〉
(
|γ〉+ |γ ⊕ (k ‖ 1)〉

)
|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

Now the adversary applies n Hadamard gates to the third
block of plaintext(m2) and get the following state(up to nor-
malization):∑

γ

∑
z((−1)

γ�z
+ (−1)

{γ⊕(k‖1)}�z
)

|m0〉|0n〉|z〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

=
∑
γ

∑
z (−1)

γ�z
(1 + (−1)

(k‖1)�z
)

|m0〉|0n〉|z〉|c0〉|y〉|droplastbit{BCk(γ)}〉|+〉

Now if the adversary measures n-bit of message register
result is two cases. One is that the adversary can get a vector
z such that (k ‖ 1)�z = 0. The other is when (k ‖ 1)�z =
1, the superposition collapses to 0 thus the adversary can get
nothing. By doing this attack repeatedly, adversary can get
n independent vectors v′is. Remaining part is that using the
Gaussian elimination, adversary can retrieve n−1 bits of k,
thereby breaks the ΠIGE scheme.
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Figure 5: IGE mode using random function H

5 Security of IGE mode assuming qPRF BC
5.1 Techniques

In the previous section, the IGE mode assuming sPRF
can be broken by Simon’s algorithm and even the adversary
can retrieve the secret key. Thus assuming only the sPRF
is weak in quantum setting. However, if we use the qPRF
we can overcome this problem which will be described in
this section. When proving the random property in cryptog-
raphy, we usually use the hybrid-game method. That is the
one part of the cryptosystem that we want to prove random-
ness is changed with random one, and show this change is so
small that we can ignore in the whole cryptosystem.By re-
peating this, we change original one step-by-step with ran-
domness. Because the change is very small, the total change
is also small thus we can prove that the cryptosystem is in-
distinguishable from truly random function.

When proving IND-qCPA security, the quantum Adver-
sary A has to distinguish between IGE mode block cipher
and truly random function in the challenge queries. That
means, the adversaryA has to distinguish between Enc(m0)
and Enc(m1) :

First, the function that is used in block cipher is quantum
secure PRF, we can substitute the PRF with truly random
function H as shown in Figure 5.

Second, when the quantum adversaryAmakes challenge
queries, we replace the ciphertext with random one one by
one. Last, we show the difference is negligible, thus the
quantum adversary A gains only negligible advantage.

But the problem is that how we can show the last one,
proving the difference is negligible. For example, we have
to show that c2 = H(m2 ⊕ c1) ⊕ m1(c1 is random) is
indistinguishable from randomly chosen c2. In the classi-
cal setting, we can say that since c1 is random, m2 ⊕ c1
is also random, the probability that m2 ⊕ c1 collides with
otherH-queries is negligible, soH(m2⊕c1) is random, the
H(m2⊕c1)⊕m1 is random. However this is not in quantum
setting; The quantum adversary A queries in superposition,
we can not say H was not queried before. Instead, we use
other method, One-way to Hiding(O2H) Lemma mentioned
in Section 2.5.

5.2 IND-qCPA security of IGE mode

Define Enci,HIGE(M) := c0c1 · · · cn, where cj
$←− {0, 1}t

for j ≤ i and cj = H(mj⊕cj−1)⊕mj−1 for i < j ≤ n. We
want to prove using O2H lemma that for the quantum Ad-
versary A who can access to oracle Enci,HIGE , the probabil-
ity theA distinguish the output of Enci,HIGE from Enci+1,H

IGE

is negligible in t, where t is the security parameter. For the
sake of simplicity, we use Enci,H instead of Enci,HIGE .

Figure 6: Adversary has to distinguish outputs of (a) and (b)
in Eq.(6). R represents randomly chosen value.

Lemma 3. For any i with i : 0 ≤ i ≤ p(t) − 1, and every
quantum adversary A that makes at most qA queries,∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci,H(Mb))]

−Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};
M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci+1,H(Mb))]
∣∣∣

≤ O(p(t)
3qA

3

2t )

where p(t) is the maximum number of blocks in the message
M and t is the length of each message block.

Put ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t),

b
$←− {0, 1};M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci,H(Mb))]

−Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};
M0,M1 ← AEnci,H

; b′ ← AEnci,H

(Enci+1,H(Mb))]
∣∣∣

For a given message M = m0m1 · · ·mn, let

Ẽnc
i

H(Mb, c0, . . . , ci) := ĉ1ĉ2 · · · ĉn where

ĉj =

{
cj 0 ≤ j ≤ i
H( ˆcj−1 ⊕mj)⊕mj−1 i < j ≤ n

Then we have,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci
$←− {0, 1}t;

b′ ← AEnci,H

(Ẽnc
i

H(Mb, c0, . . . , ci))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci+1
$←− {0, 1}t;

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(6)

We put ci := x⊕mi+1
b , ci+1 := y⊕mi

b wheremi
b,m

i+1
b

is the ith, (i+ 1)
th block of the message Mb respectively

and x, y $←− {0, 1}t. This means that ci, ci+1 are uniformly
random as x, y are randomly chosen. Therefore,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci−1
$←− {0, 1}t,

x
$←− {0, 1}t, ci := x⊕mi+1

b ;

b′ ← AEnci,H

(Ẽnc
i

H(Mb, c0, . . . , ci))]−
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Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci−1
$←− {0, 1}t;

x
$←− {0, 1}t, ci := x⊕mi+1

b ,

y
$←− {0, 1}t, ci+1 := y ⊕mi

b,

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(7)

Figure 7: Adversary has to distinguish outputs of (a) and (b)
in Eq.(7)

By definition of Ẽnc
i

H , we have Ẽnc
i

H(Mb, c0, . . . , ci) =

Ẽnc
i+1

H (Mb, c0, . . . , ci+1) with ci+1 := H(x)⊕mi
b. Hence,

ε(t) =
∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci−1
$←− {0, 1}t,

x
$←− {0, 1}t, ci := x⊕mi+1

b , ci+1 := H(x)⊕mi
b;

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]−

Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnci,H

; c0, . . . , ci−1
$←− {0, 1}t;

x
$←− {0, 1}t, ci := x⊕mi+1

b , y
$←− {0, 1}t,

ci+1 := y ⊕mi
b,

b′ ← AEnci,H

(Ẽnc
i+1

H (Mb, c0, . . . , ci+1))]
∣∣∣

(8)

Figure 8: Adversary has to distinguish outputs of (a) and (b)
in Eq.(8).

Now, the difference is when ci+1 is H(x) or uniformly
random value y, and we can use the O2H lemma. We define
an adversary AO2H that makes oracle queries to random
function H ← ({0, 1}t → {0, 1}t) with given input x and
y does the following:

AdversaryAHO2H(x, y) :

M0,M1 ← AEnci,H

, b
$←− {0, 1}

c0, . . . , ci−1
$←− {0, 1}t; ci = x⊕mi+1

b ;
ci+1 = y ⊕mi

b;

compute C := Ẽnc
i+1

H (Mb, c0, . . . , ci+1)

b′ ← AEnci,H

(C)
return b′ = b

Because the AO2H can query to H , AO2H also can an-
swer the adversaryA’s query. Let q be a number thatAO2H

query, then q 5 p(t)qA. Also, let q1, q2, q3 be a number that
AO2H query before the challenge query, during challenge
query and after challenge query, respectively. Then we can
get another equation below from Eq. (8).

ε(t) =
∣∣∣Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t,

b̃← AHO2H(x,H(x)]−

Pr[b̃ = 1 : H ← ({0, 1}t → {0, 1}t), x $←− {0, 1}t,

y
$←− {0, 1}t, b̃← AHO2H(x, y)]

∣∣∣
(9)

LetB be an oracle algorithm described in the O2H Lemma,
then we have that ε(t) 5 2q

√
PB :

PB = Pr[x = x′ : j
$←− {1, . . . , q}, x $←− {0, 1}t,

H ← ({0, 1}t → {0, 1}t), x′ ← BH(x, j)]

=
1

q
·Pr[x = x′ : x

$←− {0, 1}t, H ← ({0, 1}t → {0, 1}t),

x′ ← BH(x, j)] =
1

q
· P jB

P jB is different depending on when is the j-th queries to
H(before, during, or after challenge query). And this proba-
bility can be calculated similarly as described in [13] except
that the quantum encryption oracle when j ≥ q1 + q2 is dif-
ferent from original depicted in Figure 9. Following [13],

we have P jB = O(
j3

2t
), hence by the definition of PB we

have, PB ≤ O(
q3

2t
). Therefore, we have :

Figure 9: Composition of Encryption Oracle using H ora-
cle.
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ε(t) ≤ 2q
√
PB ≤ q

√
O(
q3

2t
) = O(

q3

2t
)

Theorem 1. If the function E is a quantum-secure PRF
then ΠIGE is IND-qCPA secure.

Proof. For any efficient adversaryA making qA encryption
queries using Lemma 3 and triangle inequality we have,∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Enc0,H(Mb))]

−Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};
M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Encp(t),H(Mb))]
∣∣∣

≤ nO(p(t)
3qA

3

2t )

Outputs of Encp(t),H(Mb) are the case when the cipher-
text are chosen completely randomly. Therefore,∣∣∣Pr[b = b′ : H ← ({0, 1}t → {0, 1}t), b $←− {0, 1};

M0,M1 ← AEnc0,H

; b′ ← AEnc0,H

(Enc0,H(Mb))]−
1

2

∣∣∣
≤ p(t) ·O(p(t)

3qA
3

2t )

The adversary can’t distinguish Enc0,H from Enc func-
tion of Π by definition of qPRF. Therefore,∣∣∣Pr[PrivKqCPA

A,Π (t) = 1]− 1

2

∣∣∣ ≤ O(p(t)
3qA

3

2t ) + negl(t).

as qA is polynomial in t we deduce that,∣∣∣Pr[PrivKqCPA
A,Π (t) = 1]− 1

2

∣∣∣ ≤ negl(t).

6 Conclusion and future work
We have shown that quantum security of the IGE mode

in block cipher against the quantum adversary A. When as-
suming sPRF, the IGE mode block cipher does not satisfy
IND-qCPA. But assuming qPRF, the IGE mode block cipher
is proven IND-qCPA. When we assume the sPRF, especially
periodic, we can even recover the secret key k in polynomial
time using Simon’s algorithm. By making query to oracle,
we can get easily information about the secret key. Assum-
ing qPRF, however, the block cipher of IGE mode is proven
secure thus the quantum adversaryA can not distinguish the
block cipher from truly random function efficiently.
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