
Copyright c©2018 The Institute of Electronics,
Information and Communication Engineers

SCIS 2018 2018 Symposium on
Cryptography and Information Security

Niigata, Japan, Jan. 23 - 26, 2018
The Institute of Electronics,

Information and Communication Engineers

Prey on Lizard:
Mining Secret Key on Lattice-based Cryptosystem

Seongho Han∗ Nakjun Choi∗ Hyeongcheol An∗

Rakyong Choi† Kwangjo Kim∗†

Abstract: With the development of quantum computers, post-quantum cryptography has been
researched in the last decades. Lattice-based cryptography is one of the most fascinating candidates
of post-quantum cryptography. This is due to the average and worst case provable security on lattice
such as Learning with Errors(LWE) and Learning with Rounding(LWR). Lattice-based encryption
scheme called Lizard based on LWE and LWR by Cheon et al. was suggested as a candidate public key
cryptosystem for long-term security according to call-for-post quantum cryptography by NIST recently.
Lizard was suggested to have great performance and high level of security. However, Lizard could be
exploited because of its C implementation. In this paper, we investigate the way to break Lizard by
side channel attacks such as timing and fault attacks. From these attacks, we can find secret key from
source code. Finally, we propose countermeasures to protect Lizard from our attacks.

Keywords: Lattice-based Cryptography, Learning with Errors, Learning with Rounding, Timing
Attack, Fault Attack

1 Introduction

1.1 Motivation

Public key cryptography provides authentication, in-
tegrity, and non-repudiation for secure services. RSA
cryptosystem is one of the most well-known cryptosys-
tems. RSA relies its security on the difficulty of Integer
Factorization Problem(IFP). According to the current
computational power of classical computers, it is be-
lieved to be impossible to decompose the 2048-bit key
into two prime factors within a feasible time. However,
when a quantum computer is developed, security can-
not be guaranteed by Shor’s algorithm [1] which solves
IFP in polynomial time.

In response to the developments of quantum com-
puter, NIST proposed a project to develop a new quantum-
resistant cryptosystem [2]. Lattice-based cryptogra-
phy is one of the most prominent candidates for post-
quantum cryptography. Lattice-based cryptography is
based on the hardness of Small Integer Solution(SIS) or
Learning with Errors(LWE) problems. In 2005, Regev
[3] suggested LWE problem and its reduction to worst-
case hardness problem. LWE problem can be appli-
cable to many lattice-based cryptographic protocols.
For example, NTRUEncrypt is accepted as the IEEE
standard [4]. Because of the speed of NTRUEncrypt
cryptosystem and low memory-use, it can be applied
to mobile devices and smart cards. In addition to the

∗ Graduate School of Information Security, KAIST. 291,
Daehak-ro, Yuseong-gu, Daejeon, South Korea 34141.
{hansh09, cnj8160, anh1026, kkj}@kaist.ac.kr)

† School of Computing, KAIST. 291, Daehak-ro, Yuseong-gu,
Daejeon, South Korea 34141. {thepride, kkj}@kaist.ac.kr

NTRU system, many systems such as BLISS [5] and
BCNS [6] have been proposed.

Although LWE-based public key encryption has many
advantages, the encryption phase is relatively slow com-
pared to the decryption process since large parameter
sizes are required for leftover hash lemmas or expensive
Gaussian sampling. Banerjee and Peikert [7] proposed
Learning with Rounding(LWR) in 2011 to solve this
issue. Unlike LWE, LWR is deterministic and allows
faster encryption.

Lizard proposed by Cheon et al.[8] combines both
LWE and LWR problems. Lizard uses faster and fewer
ciphertexts than Regev’s scheme [9] or Lindner-Peikert’s
scheme [10] proposed in 2011. In terms of security,
Lizard guarantees IND-CPA under appropriate param-
eters. However, some vulnerabilities were found in the
implementation process of Lizard.

In this paper, we exploit the vulnerability of Lizard.
We recovered the key in real time through side channel
attacks such as timing and fault attacks. We found a
correlation between encryption time and the length of
the message from timing attack. Secret key was actu-
ally recovered by fault attack. Fault attacks are usually
performed on hardware, but in this paper, we carried
software fault attacks including skipping, zeroing, and
randomizing which are proposed by Bindel [11].

We propose a countermeasure to prevent attacks. As
a countermeasure against the timing attack, we should
make the size of all ciphertexts equal. We successfully
prevent timing attack from implementing this counter-
measure. To prevent fault attack, we need to insert
error-checking procedure in the implementation.

1



1.2 Outline of the Paper

In Section 2, we describe LWE and LWR, and then
explain Lizard in brief. Section 3 introduces previous
work about side channel attacks on lattice-based cryp-
tography. We describe experimental setup in Section
4. In Section 5, we describe timing attack and fault
attack. We propose countermeasures for our attacks
in Section 6, discuss further remarks in Section 7, and
make a conclusion in Section 8.

2 Background

2.1 Learning with Errors (LWE)

LWE is a lattice-based cryptographic problem against
quantum computers. Since Regev [3] proposed LWE,
a number of cryptographic protocols have been intro-
duced. LWE problem is categorized into search-LWE
and decisional-LWE.

LWE distribution is defined as follows: For a secret
vector s ∈ Znq , LWE distribution As,χ over Znq × Zq is
sampled by choosing a ∈ Znq uniformly at random and
e← χ, and outputting:

(a, b = 〈s, a〉+ e mod q) (1)

Search-LWE: given m independent samples (ai, bi) ∈
Znq × Zq drawn from As,χ for a uniformly random s ∈
Znq , find s.

Decisional-LWE: givenm independent samples (ai, bi) ∈
Znq ×Zq where every sample is distributed from either:

(1) As,χ for a uniformly random s ∈ Znq
(2) The uniform distribution
Distinguish whether samples are from (1) LWE dis-

tribution or (2) uniform distribution (with non-negligible
advantage)

In many cases, decisional-LWE problem is used as
the basis for a cryptosystem. The difficulty of the
decisional-LWE problem is ensured by the worst case
hardness of the standard lattice problem: the decisional
version of the shortest vector problem (GapSVP), and
the shortest independent vectors problem (SIVP).

2.2 Learning with Rounding (LWR)

LWR problem [7] is a derandomized version of LWE
problem. That is, the error term is chosen determinis-
tically. LWR problem is also categorized into search-
LWR and decisional-LWR like LWE problem.

LWR distribution is defined as follows: For a secret
vector s ∈ Znq , LWR distribution As,χ over Znq × Zp is
sampled by choosing a ∈ Znq uniformly at random and
e← χ, and outputting

(a, bp
q
· (〈s, a〉 mod q)e) ∈ Znq × Zp (2)

Search-LWR is defined as follows: given m indepen-
dent samples (ai, bi) ∈ Znq × Zp drawn from As,χ for a
uniformly random s ∈ Znq , find s.

On the other hand, decisional-LWR is defined as fol-
lows: given m independent samples (ai, bi) ∈ Znq × Zp
where every sample is distributed according to either:

(1) As,χ for a uniformly random s ∈ Znq
(2) The uniform distribution
Distinguish whether samples are from (1) LWR dis-

tribution or (2) uniform distribution (with non-negligible
advantage)

For the appropriate variables, decisional-LWR is at
least as difficult as decisional-LWE.

2.3 Lizard

Lizard [8] is a public key encryption scheme that
combines LWE and LWR by removing several least
significant bits of each computed vector. The public
key consists of m instances of n-dimensional LWE sam-
ples, and (n+1) instances of m-dimensional LWR sam-
ples where l is the dimension of plaintext vectors. The
scheme is designed as follows:

Setup

1) Choose positive integers m,n, q, p, t and l.

2) Choose long-term secret key distribution Ds
over Zn, ephemeral secret key distribution Dr
over Zm, and parameter σ for discrete Gaussian
distribution χσ.

3) Output params←− (m,n, q, p, t, l,Ds,Dr, σ)

Key Generation

1) Generate a random matrixA← Zm×nq . Choose
a secret matrix S = (s1 ‖ · · · ‖ sl) by sampling
column vectors si ∈ Zn independently from the
distribution Ds.

2) Generate an error matrix E = (e1 ‖ · · · ‖ el)
from χm×lσ . Let B ← AS + E ∈ Zm×lq where the
operations are held in modular q.

3) Output the public key pk ← (A ‖ B) ∈ Zm×(n+l)q

and secret key sk ← S ∈ Zn×l

Encryption

1) For a plaintext m = (mi)1≤i≤l ∈ Zlt, choose an
m-dimensional vector r ∈ Zm from the distribu-
tion Dr.

2) Compute the vectors c′1 ← AT r and c′2 ← BT r
over Zq.

3) Output the vector c ← (c1, c2) ∈ Zn+lp , where

c1 ← b(pq ) · c′1e ∈ Znp , c2 ← b(pt ·m+(pq ) · c′2e ∈ Zlp

Decryption

1) For a ciphertext c = (c1, c2) ∈ Zn+1
p , compute

and output the vector m′ ← b tp (c2 − ST c1)e.

2) Check whether m = m′

This scheme is IND-CPA secure under the hardness
assumption of LWEn,m,q,χσ

(Ds) and LWRm,n+1,q,p(Dr).
Lizard ensures 128-bit security level. Security level

is measured by BKZ algorithm used for Newhope [12]
and Frodo [13].

2



3 Previous Work

In general, breaking cryptographic algorithms by soft-
ware attack is considered to be a great success but diffi-
cult to achieve. But side channel attacks are beneficial
to find various weaknesses. Lizard is a relatively re-
cent scheme introduced in 2016. To the best of our
knowledge, the attack for Lizard has not been pub-
lished yet. So we need to look for the possible attacks
for quantum-resistant schemes like Lizard.

In this section, we introduce several side channel at-
tacks on post quantum algorithms such as NTRU.

3.1 Timing Attacks on NTRUEncrypt

Hoffstein et al.[14] proposed a ring-based public key
cryptosystem (NTRU) for the first time in 1996. NTRU
is a post quantum cryptography consisting of two algo-
rithms: NTRUEncrypt for encryption and NTRUSign
for digital signatures. Because it is based on lattice, a
lot of previous researchs [15, 16] focused on attacking
lattice itself has been done. In addition to this, a side
channel attack against NTRU has also been attempted.

Silverman et al.[17] introduced a timing attack on
NTRUEncrypt based on variation in the number of
hash calls made on decryption. As part of the attack,
the attacker performs some amount of precomputation,
then submit a small number of constructed ciphertexts
for decryption and measures the decryption times. Af-
ter that, the attacker compares the precomputed result
with the measured time. If there are few hash calls in
the decryption process, it will take less time, otherwise
it will take more time. Using these results can greatly
reduce the time required to recover the key. The au-
thors find that an attacker could recover a single key
with about k

2 -bit of effort. Additionally, they proposed
a simple way to prevent these attacks by ensuring that
all operations take a constant number of SHA calls.

3.2 Fault Attacks on NTRUEncrypt

Kamal et al.[18] introduced a fault analysis on NTRU-
Encrypt cryptosystem in 2011. In 2012, they [19] also
proposed a fault analysis on NTRUSign digital signa-
ture scheme. In NTRUEncrypt, they assumed that the
attacker can inject fault to a small number of coeffi-
cients of the polynomial input during decryption pro-
cess. Figure 1 describes this decryption process in [18].
After injecting a small number of coefficients, the at-
tacker can calculate the output of the faulty decryption
process. Then the right secret key is determined by
performing the encryption process on the ciphertext.
Finally, compare it with the original message. They
proposed two approaches to prevent these fault attacks.
The first is to use algorithm level redundancy. And the
second is to add parity bits on decryption process.

3.3 Power Analysis Attacks on NTRUEncrypt

Wang et al.[20] attempted power analysis attacks on
NTRU-based wireless networks. Figure 2 illustrates
the result of the power analysis attack in [20]. The
first and second graphs shows the two average trace

Figure 1: The decryption process after inducing faults:
a) before the centerlift operation or b) after the center-
lift operation.

and the last graph shows their differential trace. Be-
cause there are clear differences, the attacker can easily
recover the secret key. To defend against these threats,
they presented three countermeasures; random delays,
masking, and dummy operations.

Figure 2: Differential Power Analysis on NTRU

Song et al.[21] also presented a power analysis at-
tacks on NTRUEncrypt in 2009 and Lee et al.[22] de-
scribed its countermeasures in detail in 2010. Atici [23]
proposed the same attacks for RFIDs.

3.4 Other Side Channel Attacks

Kamal et al.[19] applied the scan-based side chan-
nel attack to NTRUEncrypt in 2012. They focused
on scan-based Design-for-Test (DFT). Using this tech-
nique, they can obtain the secret information from cryp-
tographic hardware devices. Recently Paterson [24]
proposed a cold-boot attack on NTRU. Cold Boot At-
tack [25] is an attack that exploits the fact that if an
attacker freezes dynamic RAM, the data is held for a
while. Paterson investigated NTRU to see if the se-
cret key was stored in memory, and developed an algo-
rithm that effectively recovered the key. Like these sys-
tems, post quantum algorithms can be easily attacked
by some side channel attacks. Since Lizard scheme has
been released recently, such attacks have not been con-
sidered in the implementation of Lizard yet. But like
NTRU, we can guess that Lizard can be vulnerable to
such side channel attacks.

3



4 Experimental Setup

In this section we describe our experimental environ-
ment in detail and specify the values of the parameters
that we have changed arbitrarily by injecting faults.
And we define an attack model for our attacks.

4.1 Environment

Our experimental environment is as follows: Intel(R)
Xeon(R) CPU E3-1220 v3 @ 3.10GHz, RAM 16.0GB,
Ubuntu Linux 64-bit v16.04.3. The compiler is visual
studio code and uses gcc v5.4.0. We used the source
code of Lizard scheme in Github1. There are five sets
of parameters: Classical, Recommended, Homadd,
ClassicalP lainText32bit, and CCA. We chose the
Recommended parameter set, where dimensions for LWE,
LWR, and messages are 536, 1024, and 256, respec-
tively. We performed a timing attack with these pa-
rameters. However, in case of fault attack, we trans-
formed this setting into 10, 10, and 20 dimensions for
smooth inverse operation.

4.2 Attack Model

Our attack model is assumed to be whitebox model.
So we assume that the attacker knows everything ex-
cept some secret elements. Due to the characteristic of
LWE and LWR-based Lizard schemes, the secret ma-
trix S and the error matrix E are not disclosed in the
Key Generation part. Also, when the message is m-
bit in the encryption part, m-dimensional vector r is
not disclosed. However, all other parameter values are
public and the attacker has full knowledge of the source
code. This assumption allows a very strong power to
the attacker.

5 Attack

In this section, we perform timing and fault attacks
on Lizard. Since there was a time difference accord-
ing to the amount of computation, the timing attack
could be successfully performed. In addition, our at-
tack model has no difficulty in performing a fault attack
because we can freely access the source code. So we at-
tempted three types of fault attacks and described the
results for each.

5.1 Timing Analysis

We first checked the existence of time differences that
could be distinguished in Lizard. In general, timing at-
tacks are very useful when there are control statements
like if() statements in the algorithm. The amount of
computation of the scheme varies greatly depending
on whether or not these control conditions are exe-
cuted. As a result, the difference between the encryp-
tion and decryption time of the original message or
the ciphertext become clear. By analyzing these parts,
an attacker can easily obtain a secret key. But unfor-
tunately, Lizard implementation does not use control
statements like if() statements. So we could not get

1 https://github.com/LizardOpenSource/Lizard c.git

Figure 3: Part of the encryption algorithm

the time difference in the original message of the same
dimension.

However, the size of the matrix varies depending on
the length of the message, so there is a difference in the
amount of computation. Figure 3 shows part of the en-
cryption algorithm. In this figure, LWE L on line 363
means the dimension of the original message. Since
there is no control statement in the middle, the num-
ber of calls to for() statement increases as the number
of bits increases. This parameter is also used for other
parts of the encryption and decryption algorithms, but
it is also not affected by the control statement. For
that reason we checked the computation time accord-
ing to the message length. Because the measured time
was very small, we used the clock gettime() statement
to represent the time up to the nano unit instead of the
clock() statement. Also we used averaged values after
10,000 runs considering the sensitivity of the unit. Fig-
ure 4 shows the result. The encryption time when the
message length was 10-bit was about 7.892µs and the
decryption time was about 1.833µs. When the length
of the message increased to 256-bit, the encryption time
increased to about 14.215µs and the decryption time to
about 7.510µs. The encryption time was almost dou-
bled and the decryption time was almost quadrupled.
Also, we can observe that the computation time in-
creases almost linearly with the increase of message
lengths.

However, when the length of the message is 200-
bit, the encryption time is slightly reduced. We re-
peatedly measured the time, but still the same result

Figure 4: Encryption and Decryption times in Lizard

4



was obtained. We tried to find the reason for this is-
sue, but we could not find any implementation issues.
We presumed that this comes from a systematic prob-
lem. In all parts of Lizard, they use a rand() statement
that is currently considered unsafe, which may have af-
fected the outcome. In the future work, we will replace
these rand() statements with other secure statements
and check the results accordingly.

Although there is one exception, the attacker can use
the timing attack to verify that the computation time
difference depends on the length of the message.

5.2 Fault Analysis

We performed the first-order fault analysis on Lizard.
Unlike usual fault attacks, we performed attack on soft-
ware implementation. There are three kinds of software-
based fault attacks: Skipping, Zeroing, and Random-
ization.

Skipping fault: It consists of skipping selected
lines of the program code. It seems to be unre-
alistic, but it could be achieved via CPU clock
glitching [26] in real world.

Zeroing fault: It can be performed by setting a
whole variable or a part to zero. Although it
may be doubtful if attack can be realized, zeroing
faults have been realized in practice [27].

Randomization fault: Attacker randomly changes
the value of a variable which is processing in the
algorithm. The attacker benefits from knowing
that it has been changed within a certain range
although the value of the variable is not discov-
ered after the attack. This attack targets the
whole variable or only some bytes or bits of it
[28] depending on the attacker’s capabilities.

We successfully discovered secret key from skipping
faults and zeroing faults on Lizard. Secret key cannot
be restored from public key for randomization faults,
so this part remains for future work. Detail of results
is described in each section.

5.2.1 Skipping Faults

We performed the skipping faults on three parts:
random number generation, addition, and modulus re-
duction. For skipping the random number generation,
we could skip random matrix A, error matrix E, secret
key S, and secret vector r.

As shown in Figure 5, line 380 is responsible for gen-
erating random matrix A. From skipping line 380, we
could get plaintext from ciphertext directly. We found
the fact that C code automatically set A to zero when-
ever we skip the generation part. Thus the result is
clear since ciphertext c1 should be zero when A equals
to zero and so plaintext can be obtained from comput-
ing m′ ← b tp (c2 − ST c1)e. The reason for the cipher-

text c1 equal to zero is deduced from c′1 ← AT r and
c1 ← b(pq ) · c′1e ∈ Znp .

Next, we performed the skipping attacks on gener-
ation of error matrix E. Line 390 is related to gener-
ation of E as shown in Figure 6. From skipping line
390, we recovered secret key sk in a reasonable time
using Gauss elimination. This result is derived from
the equation B = AS + E. Then the plaintext pt is
obtained from ciphertext ct using secret information.
Recovered secret key and real secret key is shown in
Figure 7. We can observe that secret keys have the
same value. We executed experiment with parameter
n=10, m=10, l=20 for visible results. It is certain that
same result is obtained for original parameters.

Figure 5: Code for random matrix A generation

Figure 6: Code for error matrix E generation

Figure 7: Results for computing S = A−1B and secret
key sk with skipping faults on error matrix E

Also skipping secret key S was performed. Line 399
is responsible for generating secret matrix S as shown
in Figure 8. The result is same as skipping random
matrix A since ST c1 is zero and m′ is obtained from
m′ ← b tp (c2 − ST c1)e.

Line 471 is related to generating secret vector r as
shown in Figure 9. The result of skipping r is same as

5



Figure 8: Code for secret key sk generation

Figure 9: Code for secret vector r generation

skipping A or skipping S as the value of c1 is obtained
from c′1 ← AT r and c1 ← b(pq ) · c′1e ∈ Znp .

There are three addition part in Lizard C implemen-
tation. One is in generating matrix B, another is in
computing ciphertext c2, and the other is in computing
plaintext m’. Plaintext m’ is recovered from skipping
addition in generation of B. In contrast to result of
skipping addition in B, recovering the plaintext from
skipping addition in encryption phase is not possible
since ciphertext c2 stores plaintext as default value.
This causes a correctness error in decryption phase.
Obviously, the result is same for skipping addition in
decryption phase.

Skipping the modulus reduction was not effective for
recovery of plaintext. It does not reveal any secret
information.

5.2.2 Zeroing Faults

We performed zeroing fault attack on random ma-
trix A, error matrix E, secret key S, and secret vector
r. All the results are same as skipping the random
number generation. This is induced by the fact that C
code automatically initializes variables to zero when-
ever skipping the generation part as mentioned earlier.

5.2.3 Randomization Faults

We performed randomization attack on secret ma-
trix, error matrix, modulus, and randomness. It is
clear that randomizing modulus and randomness is not
effective since the value of the faulty modulus would
remain unknown and random values are just random
themselves. It was not successful to exploit vulnerabil-
ity from randomizing secret matrix and error matrix.
This part remains for future work.

Figure 10: Comparing encryption time before and after
message padding.

Figure 11: Correctness check of secret key

6 Countermeasures

We showed the results of the timing and fault attack
in Sections 4 and 5. Thus, Lizard scheme can be at-
tacked by a side channel attack, and a proper method
is needed to prevent it. So we present how to effectively
defend against timing and fault attacks in this section.

6.1 Defending Timing Attacks

As mentioned in the previous section, the vulnera-
bility of timing attacks comes from time differences in
the computation process. Therefore, it is necessary to
make all computation times the same to prevent such
a time difference.

Message padding technique is a good method for the
same computation time. In brief, this method is to
add a padding bit to the original message so that the
length of input message is always identical. We set the
maximum input bit to 256-bit to apply this method to
Lizard. Then, when the actual input is received, com-
pare it with the maximum input bit. If this is less than
the maximum input bit, add the padding bit to the
difference so that it always maintains 256-bit of input.
Figure 10 shows a comparison of encryption times be-
fore and after message padding. we can observe that
the same encryption time appears after doing message
padding. This means that the timing attack has been
successfully defended.

But this technique is not perfect. If the input bit ex-
ceeds the maximum input bit, another time difference
may occur. To prevent this situation, defender may
increase the maximum input bit to 512 or larger. How-
ever, Lizard would become inefficient because Lizard
will perform many operations on short inputs. Thus
balance between security and performance is necessary.

6



6.2 Defending Fault Attacks

We devised a countermeasure at software source as
fault analysis is performed for software implementa-
tion. Fault attacks cannot be prevented because of its
feature, so we proposed the detection of these attacks.
We checked the correctness of secret key for the case
modifying secret matrix S as shown in Figure 11. Then
we verify that it outputs zero matrix when zeroing fault
attack or skipping fault attack on secret matrix is per-
formed. As randomization fault attack does not make
secret value zero, the result value is different from other
attacks. Still this method is effective to detect random-
ization attack. Similar methods can be used for detect-
ing attacks on random matrix A, error matrix E, and
secret vector r.

To provide a long-term security, we should make an
algorithm level redundancy.

7 Discussion

During our experiment, we found some results that
were difficult to understand. We will suggest them in
this section.

7.1 rand() Function

Lizard uses rand() function for all random number
generation process. However, there is a major flaw in
C rand() function. rand() function is a pseudo-random
generator, so it outputs same result every time after a
small number of runs. It is caused by low entropy of
seed value. To counter this situation, srand() function
is used to increase the entropy of seed. Still it is not
suitable for random number generator used in cryptog-
raphy. There are only 225 possible values for the seed if
an attacker knows the year in which key is generated.
Then an attacker can find secret value through brute
force attack in a reasonable time. In our experiment,
there is no clear evidence that rand() function is vulner-
able. We estimate that there is a significant weaknesses
in rand() function, so it is recommended that designer
use dev/urandom function for true randomness.

7.2 gen r idx() Function

In the gen r idx() function, Lizard scheme performs
0x7ff times right shifting operation for random value
tmp. However, tmp is set to range from 0 to 231 by the
rand() function, and since 0x7ff has a value of 2047,
the right shifting operation is performed 2047 times.
Therefore, a value of 0 is always stored in neg start
where this operation result is stored. After that, the re-
sult of executing right shift operation 4095 times in tmp
is stored in odd-numbered array of r idx. As above, 0
is always stored in the variable. Using this, the prob-
ability that the attacker will hit the vector r is dou-
bled. These results need to be modified appropriately
because it is clear that the algorithm implementer did
not intended such result. A very simple solution is to
remove the shift operation.

7.3 gen sk CPA() Function

In the gen sk CPA() function, the operation to gen-
erate the secret key adds two random 0 or 1 and then
subtracts 1. In this case, the probability of -1 or 1 be-
ing chosen as secret keys is 25 percent each, but the
probability of 0 being chosen is 50 percent. This is an
inconsistent result, making it easier for an attacker to
guess the secret key value. So we need to change the
output possibility of -1, 0, 1’s identically.

8 Conclusion

This paper tries to find vulnerability of lattice-based
encryption scheme Lizard. We performed software-
based side channel attacks on Lizard including timing
and fault attacks to recover secret key. For timing at-
tack, we could not directly find secret key since Lizard
does not have control statements like if() statements.
However, we could find the time difference based on
timing attack as the amount of computation depends
on the size of the message input bit. This time dif-
ference can lead to various problems such as deducing
the approximate length of the secret key. We also per-
formed three types of fault attacks on Lizard; skipping,
zeroing and randomization. Our attack model allows
fault attack to be easily performed because we assume
that the attacker can access to the source code. As a
result, we successfully obtained the secret key through
skipping and zeroing fault attacks, but it was not ef-
fective by randomization attack.

To prevent timing attack, we proposed a message
padding technique. If the padding is added to the mes-
sage input bits to maintain a constant bit, the compu-
tation time is relatively constant, so no time difference
occurs. As a countermeasure for fault attacks, we need
to check the correctness of secret values. This protec-
tion scheme was successful for all three fault attacks.

As future work, we will find vulnerability derived
from the use of rand() function and will propose a
countermeasure for this weakness. Also, we will modify
gen r idx() and gen sk CPA() function in Lizard imple-
mentation to correct the errors. Finally, we will make
an algorithm level redundancy for the long-term secu-
rity.

Acknowledgement

This work was partly supported by Institute for In-
formation & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT)
(No. 2017-0-00555, Towards Provable-secure Multi-
party Authenticated Key Exchange Protocol based on
Lattices in a Quantum World) and National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. NRF-2015R1A2A2A01006812,
Design and Security Analysis of Novel Lattice-based
Fully Homomorphic Signatures Robust to Quantum
Computing Attack).

7



References

[1] P. W. Shor, “Algorithms for quantum computation:
Discrete logarithms and factoring,” in Proceedings,
35th Annual Symposium on Foundations of Computer
Science, FOCS’94, pp. 124–134, IEEE, 1994.

[2] “Proposed submission requirements and evalu-
ation criteria for the post-quantum cryptog-
raphy standardization process.” http://csrc.

nist.gov/groups/ST/post-quantum-crypto/

documents/call-for-proposals-draft-aug-2016.

pdf.

[3] O. Regev, “On lattices, learning with errors, random
linear codes, and cryptography,” Journal of the ACM,
JACM’09, vol. 56, no. 6, p. 34, 2009.

[4] “IEEE P1363: Standard Specifications For Pub-
lic Key Cryptography.” http://grouper.ieee.org/

groups/1363/, 2014.

[5] L. Ducas, A. Durmus, T. Lepoint, and V. Lyuba-
shevsky, “Lattice signatures and bimodal gaussians,”
in Advances in Cryptology, CRYPTO’13, pp. 40–56,
Springer, 2013.

[6] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila,
“Post-quantum key exchange for the TLS protocol
from the ring learning with errors problem,” in IEEE
Symposium on Security and Privacy, IEEE S&P’15,
pp. 553–570, IEEE, 2015.

[7] A. Banerjee, C. Peikert, and A. Rosen, “Pseudoran-
dom functions and lattices,” Advances in Cryptology,
EUROCRYPT’12, pp. 719–737, 2012.

[8] J. H. Cheon, D. Kim, J. Lee, and Y. S. Song, “Lizard:
Cut off the tail!//practical post-quantum public-key
encryption from LWE and LWR.,” IACR Cryptology
ePrint Archive, vol. 2016, p. 1126, 2016.

[9] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trap-
doors for hard lattices and new cryptographic con-
structions,” in Proceedings of the fortieth annual
ACM symposium on Theory of computing, STOC’08,
pp. 197–206, ACM, 2008.

[10] R. Lindner and C. Peikert, “Better key sizes (and at-
tacks) for LWE-Based encryption.,” in Cryptographers
Track at the RSA Conference, CT-RSA’11, vol. 6558,
pp. 319–339, Springer, 2011.

[11] N. Bindel, J. Buchmann, and J. Kramer, “Lattice-
based signature schemes and their sensitivity to fault
attacks,” in Cryptology ePrint Archive, Report
2016/415, 2016. http://eprint.iacr.org/2016/415.

[12] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe,
“Post-quantum key exchange—a new hope,” in 25th
USENIX Security Symposium, USENIX Security’16,
pp. 327–343, 2016.

[13] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig,
V. Nikolaenko, A. Raghunathan, and D. Stebila,
“Frodo: Take off the ring! practical, quantum-secure
key exchange from LWE,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Com-
munications Security, ACM CCS’16, pp. 1006–1018,
ACM, 2016.

[14] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A
ring-based public key cryptosystem,” in International
Algorithmic Number Theory Symposium, ANTS’98,
pp. 267–288, Springer, 1998.

[15] D. Coppersmith and A. Shamir, “Lattice attacks on
NTRU,” in Advances in Cryptology, EUROCRYPT’97,
vol. 1233, pp. 52–61, Springer, 1997.

[16] N. Howgrave-Graham, “A hybrid lattice-reduction and
meet-in-the-middle attack against NTRU,” Advances
in Cryptology, CRYPTO’07, pp. 150–169, 2007.

[17] J. H. Silverman and W. Whyte, “Timing attacks on
NTRUEncrypt via variation in the number of hash
calls,” in Cryptographers Track at the RSA Confer-
ence, CT-RSA’07, pp. 208–224, Springer, 2007.

[18] A. A. Kamal and A. Youssef, “Fault analysis of the
NTRUEncrypt cryptosystem,” IEICE transactions on
fundamentals of electronics, communications and com-
puter sciences, IEICE TFECCS’11, vol. 94, no. 4,
pp. 1156–1158, 2011.

[19] A. A. Kamal and A. M. Youssef, “A scan-based side
channel attack on the NTRUEncrypt cryptosystem,”
in Availability, Reliability and Security, 2012 Seventh
International Conference on, ARES’12, pp. 402–409,
IEEE, 2012.

[20] A. Wang, X. Zheng, and Z. Wang, “Power analysis
attacks and countermeasures on NTRU-based wire-
less body area networks,” KSII Transactions on Inter-
net and Information Systems, TIIS’13, vol. 7, no. 5,
pp. 1094–1107, 2013.

[21] J.-E. Song, D.-G. Han, M.-K. Lee, and D.-H. Choi,
“Power analysis attacks against NTRU and their coun-
termeasures,” Journal of the Korea Institute of Infor-
mation Security and Cryptology, JKIISC’09, vol. 19,
no. 2, pp. 11–21, 2009.

[22] M.-K. Lee, J. E. Song, D. Choi, and D.-G. Han,
“Countermeasures against power analysis attacks for
the NTRU public key cryptosystem,” IEICE transac-
tions on fundamentals of electronics, communications
and computer sciences, IEICE TFECCS’10, vol. 93,
no. 1, pp. 153–163, 2010.

[23] A. Atici, L. Batina, B. Gierlichs, and I. Verbauwhede,
“Power analysis on NTRU implementations for rfids:
First results,” 2008.

[24] K. G. Paterson and R. Villanueva-Polanco, “Cold boot
attacks on NTRU,” in International Conference in
Cryptology in India, INDOCRYPT’17, pp. 107–125,
Springer, 2017.

[25] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Ap-
pelbaum, and E. W. Felten, “Lest we remember: cold-
boot attacks on encryption keys,” Communications of
the ACM, CACM’09, vol. 52, no. 5, pp. 91–98, 2009.

[26] J. Blömer, R. G. Da Silva, P. Günther, J. Krämer,
and J.-P. Seifert, “A practical second-order fault at-
tack against a real-world pairing implementation,” in
Fault Diagnosis and Tolerance in Cryptography 2014
Workshop on, FDTC’14, pp. 123–136, IEEE, 2014.

[27] P. Q. Nguyen and O. Regev, “Learning a paral-
lelepiped: Cryptanalysis of GGH and NTRU signa-
tures,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
EUROCRYPT’06, pp. 271–288, Springer, 2006.

[28] J. von Neumann, “Various techniques used in con-
nection with random digits, paper no. 13 in monte
carlo method,” NBS Applied Mathematics Series, NBS
AMS’61, no. 12, 1961.

8


