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Abstract: In SCIS 2017, Choi and Kim introduced the new linearly homomorphic ring signature
scheme (CK17 scheme) based on the hardness of SIS problem, which overcomes the limitation of
Boneh and Freeman’s scheme to implement homomorphic signatures to the real world scenario under
multiple signers setting for a message. They replace the original sampling algorithm SamplePre() by
Gentry et al. with Wang and Sun’s sampling algorithm GenSamplePre() to achieve the multiple-signer
functionality but their work is lack of the rigorous security proof. Thus, this paper revisits the CK17
scheme and makes an advanced definition which is subring-identical linearly homomorphic signature,
and suggests a security requirements on it. Then, we show the correctness and subring-identical linear
homomorphism of the proposed scheme.
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1 Introduction

1.1 Background and Motivation

Ring signature is a kind of group-oriented signatures
which allow a member of a group to sign a message on
behalf of the whole group. Ring signature provides the
anonymity of the signer since the verifier cannot reveal
who is the real signer in the group. In a ring signature
scheme, a designated signer forms a ring of any set of
possible signers including himself. The message signer
can then generate a ring signature using his secret key
and public keys of other members of the ring. Ring
signature can be applied to many applications such as
anonymous information source, cryptocurrency, etc.

Cloud computing system is one possible application
area of a ring signature scheme. As the infrastructure
of cloud computing systems increases, one of uprising
security challenges is how the cloud server provides au-
thenticity for the function of encrypted message via a
signature scheme. Moreover, the cloud server should
have the power to generate the proper signature for a
computation of messages without permission of a single
signer of each message.

If the signature satisfies this condition, we say that
the signature has the homomorphic property. Espe-
cially, a signature is called linearly homomorphic when
it supports constructing the proper signature for the
linear combination of messages [1, 2] and fully homo-
morphic when it supports constructing the proper sig-
nature for any function of messages [3, 4].

In 2017, Choi and Kim considered the convincing sce-
nario that some information on cloud system is signed
by a group instead of an individual. They define the lin-
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early homomorphic ring signature and suggest a lattice-
based linearly homomorphic ring signature scheme over
binary fields by adopting Wang and Suns preimage
sampling algorithm GenSamplePre(). But no security
proof is given in their paper.

Thus, we revisits the CK17 scheme and suggests an
advanced definition which is subring-identical linearly
homomorphic signature with security requirements.

1.2 Related Work

In 2011, Boneh and Freeman [1] published their sem-
inal work on linearly homomorphic signature over bi-
nary fields based on lattices with new lattice-based
hard problems called k-SIS problem. Boneh and Free-
man [2] also suggested that some bounded homomor-
phic signature can be constructed using ideal lattices
from Gentry’s fully homomorphic encryption [5].

After Boneh and Freeman’s work, lattices have be-
come a main tool to make linearly and fully homomor-
phic signatures. Zhang et al. [6] introduced the notion
of a homomorphic aggregate signature which doesn’t
need to have the same secret key to combine multi-
ple messages. Then, they suggested a linearly homo-
morphic aggregate signature using the random basis
generation algorithm RandBasis() by Cash et al. [7] to
generate multiple secret keys.

Jing [8] separately suggested an efficient homomor-
phic aggregate signature with linear homomorphism as
they concatenate a public key of each signer and use
the extending trapdoor basis algorithm ExtBasis() by
Cash et al. [7]. Both Zhang et al. [6] and Jing’s [8] con-
tributions are making multi-key linearly homomorphic
signatures.

Choi and Kim [9, 10] suggested the concept of the
linearly homomorphic multisignature and linearly ho-
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momorphic ring signature. In these works, Choi and
Kim suggested the first construction of multi-key multi-
party linearly homomorphic signatures to the best of
our knowledge.

Besides the linearly homomorphic signatures, Gor-
bunov et al. [3] suggested the first fully homomorphic
signature scheme with a homomorphic trapdoor func-
tion but there is only one secret key. Then, Fiore et
al. [4] suggested a fully homomorphic signature scheme
with multi-key (i.e., multiple secret keys) setting.

1.3 Outline of the Paper

Section 2 gives a notation and a background on a
lattice and lattice-based cryptography by defining lat-
tices and hard problems on lattices to lattice-based al-
gorithms for trapdoor generation and sampling. Then,
formal definition and security requirement of subring-
identical linearly homomorphic ring signature with de-
tailed construction is given in Section 3.

We give the security proof of our proposed scheme
in Section 4 and make a concluding remark with future
work in Section 5.

2 Preliminaries

2.1 Notation

We denote vectors as small bold letters (e.g., x, y)
and matrices as big bold letters (e.g., A, B).

Let R and Z express the set of real numbers and the
set of integers, respectively and small alphabet letters
express real numbers (e.g., a, b, c).

For any integer q ≥ 2, Zq denotes the ring of integers
modulo q and Zn×mq denotes the set of n×m matrices
with entries in Zq. When A ∈ Zn×m1

q , B ∈ Zn×m2
q ,

we write the concatenation of A and B as [A | B] ∈
Zn×(m1+m2)
q .
Let f(a, b) be a function f on a and b. We say a

function f : Z→ R+ is negligible when f = O(n−c) for
all c > 0 and denoted by negl(n). A function g(m) =
dme is the ceiling function from R to Z such that g(m)
is the smallest integer which is greater than or equal to
m.
‖x‖ represents the Euclidean norm of x and ‖B‖

represents the maximum of Euclidean norms of the
columns of B. For instance, when B = {b1|b2| · · · |bm},
‖B‖ = maxi ‖bi‖. Then, we denote B̃ = (b̃1|b̃2| · · · |b̃m)
for the Gram-Schmidt orthogonalization of columns of
B and denote ‖B̃‖ = maxi ‖b̃i‖ for Gram-Schmidt norm
of B.

2.2 Lattice-based Algorithms

Briefly, lattice is a fascinating tool in modern cryp-
tography and a lattice Λ can be defined as a discrete
subgroup of Rm with its basis S. A basis S of Λ is a set
of linearly independent vectors S = {b1,b2, · · · ,bm}
which spans the lattice Λ and S = (b1|b2| · · · |bm) is a
basis matrix of lattice Λ.

Integer lattices are defined as a subgroup of Zm in-
stead of Rm. For a matrix A ∈ Zn×mq , we can denote

lattices as a set Λu
q (A) = {e ∈ Zm|A · e = u mod q}

and as a set Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q} when
u = 0.

Lattice-based cryptography has a lot of advantages
that their security is based on the average-case hard-
ness problems like Small Integer Solution (SIS) problem
and Learning With Errors (LWE) problem, which re-
main secure against quantum computing attacks and
can be reduced to the worst-case hardness problem in
lattices like Shortest Vector Problem (SVP) and Clos-
est Vector Problem (CVP). Among them, SIS problem
is defined as below.

Definition 1. (SIS problem) Given a matrix A ∈
Zn×mq with m ≥ n log q and its corresponding lattice

Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q, }, it is hard to find

a small vector e ∈ Λ⊥q (A), such that ‖e‖ ≤ β for some

β ≥
√
n log q and A · e = 0 (mod q), whose coefficients

are either −1, 0, or 1.

If we have the short “trapdoor” basis, all hard prob-
lems in lattice become solvable efficiently. Alwen and
Peikert [11] introduced the trapdoor generation algo-
rithm TrapGen(n,m, q) which generates a matrix A ∈
Zn×mq with its “trapdoor” matrix T ∈ Zm×m satisfying
the following functionality:

TrapGen(n,m, q) :
For the security parameter n, m = d6n log qe and
an integer q, this algorithm outputs a matrix A ∈
Zn×mq and its trapdoor T such that T is a basis

of Λ⊥q (A) with low Gram-Schmidt norm ‖T̃‖ ≤
30
√
n log q.

Without loss of generality, we assume that a matrix
A extracted from TrapGen(n,m, q) has a full rank. In
our construction, a matrix A and its trapdoor T are
used as a public key and a secret key, respectively.

Cash et al. [7] introduced the technique to randomly
generate the basis from the matrix and to extend the
basis to higher dimension in the concept of bonsai trees
using the following algorithms.

RandBasis(T, s) :
For the trapdoor matrix T of A ∈ Zn×mq and

a parameter s ≥ ‖T‖ · ω(
√

log n), this algorithm
outputs a basis T′ for Λ⊥q (A) with ‖T′‖ ≤ s·

√
m.

ExtBasis(T, B) :
For the trapdoor matrix T of A ∈ Zn×mq and the

matrix B = A‖A′ ∈ Zn×(m+m′)
q , this algorithm

outputs a basis S for Λ⊥q (B) with ‖S̃‖ = ‖T̃‖ in
polynomial time, i.e., Gram-Schmidt norm of S
is equal to that of T.

The extending trapdoor basis algorithm ExtBasis(T,B)
can be implemented to get a short basis of the higher-
dimensional lattice from the lower-dimensional lattice.
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2.3 Discrete Gaussian Distribution

For any subset L ⊂ Zm, a Gaussian function on
Rm with center c and parameter γ can be defined as

ργ,c(x) = exp

(
−π‖x-c‖2

γ2

)
for any vector c ∈ Rm and

any positive parameter γ > 0 and a density function of
discrete Gaussian distribution on a subset L, center c,
and parameter γ can be defined as

DL,γ,c(x) =
ργ,c(x)∑

y∈L ργ,c(y)
.

For the simplicity, we denote ργ(x) and DL,γ(x) when
center c = 0.

Gentry et al. [12] proved that this distribution can

be sampled efficiently for γ ≥ ‖T̃‖ ·ω(
√

log n) where T
is a trapdoor matrix of an n-dimensional lattice Λ as
follows:

SamplePre(A, T, γ, u) :
For the matrix A ∈ Zn×mq , its trapdoor matrix
T ∈ Zm×mq , a real number γ > 0, and a vector
u ∈ Zn, this algorithm outputs a sample σ from a
distribution that is statistically close to DΛu

q (A),γ .

The smoothing parameter ηε(Λ) of Λ enables every
coset of Λ to get roughly equal mass in the following
Lemmas 1 and 2.

Lemma 1. [12] Let q be a prime and n,m be integers
with m > 2n log q. Let f be some ω(

√
logm) function.

Then, there is a negligible function ε(m) such that for
all but at most q−n fraction of matrix A ∈ Zn×mq , we

have ηε(m)(Λ
⊥
q (A)) < f(m).

Lemma 2. [1] Let Λ ⊂ Rn be a lattice. Suppose
ρ ≥ ηε(Λ) for some negligible ε. Then, we have

Pr

[
0 ≤ ‖v‖ ≤ 2ρ

√
n

2π
: v← DΛu

q (A),γ

]
≥ 1−negl(n).

Lemma 1 declares that a sample vector from SamplePre
(A, T, γ,u) with proper parameters can be extracted
uniformly and Lemma 2 determines the upper bound
on the length ‖v‖ of a sample vector v from the Gaus-
sian distribution DΛu

q (A),γ .

Wang and Sun [13] suggested a new preimage sam-
pling algorithm GenSamplePre(AR,AS ,TS ,v, γ) to con-
struct a ring trapdoor function and a ring signature on
lattice. They use the idea of the lattice basis delegation
technique by Cash et al. [7].

Let k, k1, k2, k3, k4 be positive integers as k = k1 +
k2 + k3 + k4. We write AS = [AS1

| AS2
| AS3

| AS4
]

∈ Zn×kmq where ASi
∈ Zn×kimq for each i and AS =

[AS1
| AS3

] ∈ Zn×(k1+k3)m
q with its trapdoor TS . Then,

one can sample a preimage from a vector y as below:

GenSamplePre(AR,AS ,TS , γ,y) :

a. Sample eR2
∈ Zk2mq and eR4

∈ Zk4mq .

b. Let z = y−AR2
eR2
−AR4

eR4
and sample

eS = [eR1
| eR3

] ∈ Z(k1+k3)m
q from SamplePre

(AS ,TS , γ, z).

c. Output e = [eS1
| eS2

| eS3
| eS4

].

3 Subring-Identical Linearly Homomor-
phic Ring Signature

3.1 Definition

In a ring signature, a signer chooses any subset of
all possible signers including himself/herself to form a
ring, without getting their permission [14]. Thus, ring
signature provides the anonymity of the signer since the
signature of the message only convinces that one mem-
ber in the ring signed the message without revealing
a signer’s identity. We define the linearly homomor-
phic ring signature using a new preimage sampling al-
gorithm GenSamplePre(AR,AS ,TS ,v, γ) by Wang and
Sun [13] as below:

Definition 2. (linearly homomorphic ring signature).
A linearly homomorphic ring signature LHRS is a tu-
ple of PPT algorithms LHRS = (R.Setup, R.Sign,
R.Combine, R.Verify) with the following function-
ality:

R.Setup(n, params) :
Given the security parameter n and public pa-
rameters params, this algorithm outputs a pub-
lic key pk and a secret key sk.

R.Sign(pk, sk, id,R, v) :
Given a key pair (pk, sk) of a signer where pk ∈
R, a tag id, a public key R of the ring, and a
vector v, this algorithm outputs a signature σ of
the vector v under sk.

R.Combine(R, id, {(αi, σi)}li=1) :
Given a public key R of the ring, a tag id, and
pairs {(αi, σi)}li=1 where αi ∈ F2 = {0, 1} and σi
is the signature of a vector vi for each i, this algo-
rithm outputs a signature σ for a vector Σli=1αivi.

R.Verify(R, id, y, σ) :
Given a public key R of the ring, a tag id, a vec-
tor y, and a signature σ, this algorithm outputs
either 0 (reject) or 1 (accept).

To check the correctness, we must have

a. For all key pairs (pki, ski) where pki ∈ R, tags
id, and all vectors y, the verification algorithm
Verify(R, id,y, σ) outputs 1 for all valid signa-
tures σ ← R.Sign(pki, ski, id, R,y).

b. Whenever we operate a linear combination of some
vectors {vi}li=1, we can output the valid signa-
ture for that linear combination.

In this paper, we define a new concept called subring-
identical linearly homomorphic ring signature by re-
stricting the availability of linear homomorphism to
identical subrings.
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Definition 3. (subring-identical linearly homomorphic
ring signature). A subring-identical linearly homomor-
phic ring signature SILHR is a tuple of PPT algo-
rithms SILHR = (SI.Setup, SI.Sign, SI.Combine,
SI.Verify) with the following functionality:

SI.Setup(n, params) :
Given the security parameter n and public pa-
rameters params, this algorithm outputs a pub-
lic key pk and a secret key sk.

SI.Sign(pk, sk, id,R, v) :
Given a key pair (pk, sk) of a designated signer
where pk ∈ R, a tag id, a public key R of the
ring, and a vector v, a signer chooses the subring
S to make the signature. Then, this algorithm
outputs a ring signature σ of the vector v under
sk and a label labS for a subring S ⊂ R.

SI.Combine(R, id, {(αi, σi)}li=1, labS) :
Given a public key R of the ring, a tag id, pairs
{(αi, σi)}li=1 where αi ∈ F2 = {0, 1} and σi, and
a label labS for a subring S ⊂ R is the signature
of a vector vi for each i, this algorithm outputs
a signature σ for a vector Σli=1αivi.

SI.Verify(R, id, y, σ, labS) :
Given a public key R of the ring, a tag id, a vector
y, a signature σ, and a label labS for a subring
S ⊂ R this algorithm outputs either 0 (reject) or
1 (accept).

To check the correctness, we must have

a. For all key pairs (pki, ski) where pki ∈ R, tags
id, and all vectors y, the verification algorithm
Verify(R, id,y, σ, labS) always outputs 1 for all
valid signatures σ ← SI.Sign(pki, ski, id, R,y).

b. Whenever we operate a linear combination of some
vectors {vi}li=1 from the identical subring S, we
can output the valid signature for that linear com-
bination.

If the scheme holds the above property, we say that
the scheme is subring-identical linearly homomorphic.

3.2 Security Requirements

The security requirements of our scheme adopts un-
forgeability and weakly context hiding property from
linearly homomorphic signatures as well as anonymity
from other ring signature. Here, based on the former
research on ring signatures by Bender et al. [15], we de-
fine the security requirements of linearly homomorphic
ring signature. For unforgeability, we define unforge-
ability against fixed-ring attack.

Definition 4. (unforgeability against fixed-ring attack).
A linearly homomorphic ring signature is unforgeable
against fixed-ring attack if the advantage of any PPT
adversaryA, in the following security game is negligible
in the security parameter n.

Setup :
The challenger C generates key pairs {pki, ski}

r
i=1

← SI.Setup (n,params) where r is the size of
the ring R, then sends public keys R = {pki}

r
i=1

to A.

Queries :
Proceeding adaptively, A queries the signing query
SI.Sign(pks, sks, ids, R,vs) to extract σs.

Output :
A outputs a tag id∗ ∈ {0, 1}n, a non-zero vector
y∗, a signature σ∗, and a label labS∗ .

A wins the game if the signature σ∗ is valid and
SI.Sign(·, ·, id∗, R,y∗) is never queried, i.e., either (1)
id∗ is never queried or (2) id∗ = idi for some signing
query but y∗ is not queried by the adversary.

Definition 5. (weakly context hiding). A linearly ho-
momorphic ring signature is weakly context hiding if
the advantage of any PPT adversary A, in the follow-
ing security game is negligible in the security parameter
n.

Setup :
The challenger C sets (pk, sk)← SI.Setup(n,params)
and sends both public key pk and secret key sk
to A.

Challenge :
A outputs two vector spaces V0, V1 with basis vec-

tors {v(0)
i }

k

i=1 and {v(1)
i }

k

i=1, respectively. and

linear functions on both {v(0)
i })

k

i=1 and {v(1)
i }

k

i=1
which satisfies

fj

(
v

(0)
1 ,v

(0)
2 , · · · ,v(0)

k

)
= fj

(
v

(1)
1 ,v

(1)
2 , · · · ,v(1)

k

)
for all j = 1, 2, · · · , s.
C chooses b ∈ {0, 1} and a tag id ∈ {0, 1}n and
signs the vector space Vb with a tag id.
Then, C uses SI.Combine(pk, id, {(αi, σi)}ki=1, labS)
algorithm to derive signatures σj of the function

fj

(
v

(b)
1 ,v

(b)
2 , · · · ,v(b)

k

)
for all j = 1, 2, · · · , s.

A gets signatures σj . The function fj can be se-
lected adaptively after choosing V0 and V1.

Output :
A outputs a bit b′.

A wins the game if b = b′.

Definition 6. (anonymity). A linearly homomorphic
ring signature is anonymous if the advantage of any
PPT adversary A, in the following security game is
negligible in the security parameter n. (i.e., success

probability of the adversary is close to
1

2
.)

Setup :
The challenger C generates key pairs {pki, ski}

r
i=1

← SI.Setup (n,params) where r is the size of
the ring R, then sends public keys {pki}

r
i=1 to A.
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Queries :
A specifies the pair (i, R,v) where i is a signer
index, R is a set of public keys of the ring R, and
v is a vector to be signed. Then, the challenger
C chooses a tag idi ← {0, 1}n uniformly and gives
idi with a signature σi ← SI.Sign(pki, ski, idi, R,v).

Challenge :
A requests a challenge by sending (i0, i1, S

∗,v∗)
to C, where i0 and i1 are signer indices, S∗ is a
public key of the subring S∗ ⊂ R which contains
pki0 and pki1 , and v∗ is a vector to be signed.
Then, C chooses a bit b← {0, 1} and a tag id∗ ←
{0, 1}n and sends a challenge signature σb ←
SI.Sign(pkib , skib , id

∗, R,v∗) to A.

Output :
A outputs a bit b′.

A wins the game if b = b′

3.3 Concrete Design

To design lattice-based linearly homomorphic ring
signature scheme, Choi and Kim [10] let each member
of the ring take their own public key and secret key
by trapdoor generation function TrapGen() during the
setup phase. Then, they concatenated the public key
of each member to make the common public key. In
the signing phase, CK17 scheme modified the preim-
age sampling algorithm from well-known SamplePre()
to GenSamplePre() to make the ring homomorphic sig-
nature.

We further modify algorithms R.Sign, R.Combine,
and R.Verify of original paper by Choi and Kim [10] to
adjust our new definition of subring-identical linearly
homomorphic ring signature scheme.

SI.Setup(n, g, params) :
Given a security parameter n, a number of all
possible signers g, and public parameters params
=(N, k, L, m, q, γ), do the following:

1. Run TrapGen(n,m, 2q) to generate a matrix
{Ai}gi=1 ∈ Zn×m2q and its corresponding trap-

door basis {Ti}gi=1 of Λ⊥2q(Ai) such that

‖T̃i‖ ≤ 30
√
n log 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle and choose the
ring R = {1, 2, · · · , r}.

3. Output the public key pki = (Ai, H) and
the secret key ski = Ti for each signer i of
the ring and R is a subset of public keys of
all possible signers including pki to form a
ring R.

SI.Sign(pki, ski, id, R, v) :
For a key pair (pki, ski) = (Ai,Ti) of a desig-
nated signer i where pki ∈ R when the size of the
ring is r, a tag id ∈ {0, 1}n, and a vector vi ∈ Fn2 ,
do the following:

1. Choose the subring S ⊂ R that generates
the signature of the given vector.

2. Set a matrix AR = [A1 | A2 | · · · | Ar | H(id)]

∈ Zn×(r+1)m
2q .

3. Run ExtBasis(Ti,S) to get the trapdoor T
for the subring S.

4. Output a signature σ ← GenSamplePre(AR,
AS ,TS , γ, q·v) and a label labS for a subring
S ⊂ R.

SI.Combine(R, id, {(αj , σj)}lj=1, labS) :
Given a public key R of the ring of size r, a hash
function H, a tag id ∈ {0, 1}n, and set of sig-
natures {σj}rj=1 with identical subring S, output

σ =
∑r
j=1 σi ∈ Z(r+1)m.

SI.Verify(R,H, id, y, σ, labS) :
Given a public key R of the ring with the size r,
a hash function H, a tag id ∈ {0, 1}n, a vector
y ∈ Fn2 , a signature σ ∈ Z(r+1)m, and a label labS
for a subring S ⊂ R, do the following:

1. Set a matrix AR = [A1 | A2 | · · · | Ar | H(id)]

∈ Zn×(r+1)m
2q .

2. Get a subring S ⊂ R from the label labS
and parse σ into [eS1

| eS2
| eS3

| eS4
] where

S1∪S3 = S where S is the set of public keys
of the signers in S.

3. If ‖eS‖ ≤ L · γ
√

(r + 1)m and AR · σ =
q · y mod 2q, output 1 (accept). Otherwise,
output 0 (reject).

4 Security Proof

4.1 Correctness and Linear Homomorphism

To verify the correctness of the proposed signature
scheme, we must show that the correctness condition
in Definition 3 holds for any public key all key pairs
{pki, ski}

r
i=1 where pki ∈ R and r ≤ L is the number

of the ring R.

Theorem 1. Suppose q be a prime, n,m be integers
with m > 2n log q, and γ > 30

√
n log 2q · ω(

√
log n).

Then, the proposed scheme LHRS always outputs a
valid signature.

Proof. Assume that a signature σ is extracted from
SI.Sign algorithm with the designated signer i ∈ R
with a key pair (pki, ski) where pki ∈ R.

In SI.Sign(pki, ski, id, R,v) algorithm, GenSamplePre
(AR, AS ,TS , γ, q ·v) algorithm outputs a sample eS2

∈
Zk2mq and eS4

∈ Zk4mq uniformly, then compute q · z =
q·v−AR2

·eR2
−AR4

·eR4
and sample eS = [eR1

| eR3
] ∈

Z(k1+k3)m
q from SamplePre(AS ,TS , γ, q ·z). The signa-

ture σ becomes the concatenation of all eSi
’s as σ =

[eS1
| eS2

| eS3
| eS4

].
Since eS is extracted from SamplePre(AS ,TS , γ, z)

algorithm, AS ·eS = q·z mod 2q and ‖eS‖ ≤ γ
√

(r + 1)m
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from the definition of GenSamplePre(AR, AS ,TS , γ, q ·
v) algorithm.

Here, q ·v = q ·z+AR2
·eR2

+AR4
·eR4

= AS ·eS +
AR2

· eR2
+ AR4

· eR4
= AR · σ mod q.

Thus, the proposed signature scheme is correct.

Theorem 2. Suppose q be a prime, n,m be integers
with m > 2n log q, and γ > 30

√
n log 2q · ω(

√
log n).

Then, the proposed scheme SILHR is subring-identical
linearly homomorphic.

Proof. Assume that we combine l messages m1,m2,
· · · ,ml into mlin =

∑l
j=1 mj .

For all σj ← SI.Sign(pki, ski, id, R,v), we extract

eSj where ‖eSj‖ ≤ γ
√

(r + 1)m and AR · σj = q ·
mj mod 2q.

For a signature σlin =
∑l
j=1 σj ← SI.Combine

(R, id, {(αj , σj)}lj=1, labS), we extract eSlin
and ‖eSlin

‖
≤
∑l
j=1 ‖eSj‖ ≤ l · γ

√
(r + 1)m ≤ L · γ

√
(r + 1)m if

l ≤ L with high probability by Lemma 2 and AR ·σ =
q ·mlin mod 2q.

i.e., SI.Verify (R,H, id,mlin, σlin, labS) = 1 and
the proposed signature satisfies the linearly homomor-
phic property if l ≤ L. Hence, the proposed signature
scheme is subring-identical linearly homomorphic.

4.2 Other Security Requirements

For the security requirements of our proposed scheme
SILHR, we give a proof sketch of unforgeability, weakly
context hiding property, and anonymity in Theorems
3, 4, and 5, respectively.

Theorem 3. For the proposed signature SILHR, the
proposed signature is unforgeable against fixed-ring at-
tack in the random oracle model when SISq,(r+1)m,2γ

problem is infeasible.

Proof. (sketch) Let A1 be an adversary that has the
advantage ε0 of the challenge-response game in Defi-
nition 4. We construct a polynomial time algorithm
B1 to simulate the attacking environment for A1. Both
A1 and B1 have the input qA, which is the total num-
ber of queries issued by A1 and B1 interacts with A1

as below:

Setup: B1 guesses the size of the challenge ring r ∈
[qE ] and obtains an instance ASt

∈ Zn×(r+1)m
q .

Then, B1 parses it into Aj ∈ Zn×mq where 1 ≤
j ≤ r + 1. We assume that all ring members are
in the set [r + 1] without loss of generality.
B1 runs TrapGen to generate a tuple {i,Ai,Ti

and replace Ai into Aj if i = j. All Ai’s after
replacement will be sent to A1.

Query Phase: B1 answers hash queries and signing
queries requested by A1.

Challenge A1 outputs a forgery {id∗,y∗, σ∗, labS∗}.
If S∗ 6= St, B1 aborts. Otherwise, B1 checks
whether (1) id∗ is never queried or (2) id∗ = idi
for some signing query but y∗ is not queried by
the adversary.

In the above process, if A1 outputs a valid signa-
ture σ∗ with a tuple {id∗,y∗, labS∗}, B1 solves the SIS
instance of SISq,(r+1)m,2γ .

Theorem 4. For the proposed signature SILHR, weakly
context hiding property holds for our signature.

Proof. (sketch) Let A2 be an adversary that has the
advantage ε0 of the challenge-response game in Defini-
tion 5. Assume A2 has the output {V0, V1, f1, · · · , fs}
of this challenge-response game, where {v(0)

i }
k

i=1 and

{v(1)
i }

k

i=1 are basis vectors of V0 and V1, respectively.
We know that

uj = fj

(
v

(0)
1 ,v

(0)
2 , · · · ,v(0)

k

)
= fj

(
v

(1)
1 ,v

(1)
2 , · · · ,v(1)

k

)
Let σ0

i and σ1
i be the challenger’s signatures of vi for

V0 and V1, respectively.
σ∗j,0 and σ∗j,1 are signatures on uj computed using

SI.Combine algorithm.
We claim that the samples {σ∗j,0}

s

j=1
and {σ∗j,1}

s

j=1

are sampled from statistically close distributions so that
the adversary cannot guess b with non-negligible prob-
ability if γ is sufficiently large.

Lemma 3. For the proposed signature SILHR, let
(i0, i1, R, v) be a tuple such that v ∈ {0, 1}∗ is a mes-
sage to be signed with the ring R, i0 and i1 are in-
dices with Ai0 ,Ai1 ∈ R. If SISq,(r+1)m,2γ is hard,
σi0 ← SI.Sign (pki0 , ski0 , id, R, v) and σi1 ← SI.Sign
(pki1 , ski1 , id, R, v) are computationally indistinguish-
able.

Proof. (sketch) From SI.Sign and GenSamplePre, sam-
ples from Gaussian distribution is computationally in-
distinguishable from random. Hence, the ring signa-
tures σi0 and σi1 are computationally indistinguishable

to random vectors in Z(r+1)m
q .

Theorem 5. For the proposed signature SILHR, the
proposed signature provides anonymity.

Proof. (sketch) Let A3 be an adversary that has the
advantage ε0 of the challenge-response game in Defi-
nition 6. We construct a polynomial time algorithm
B3 to simulate the attacking environment for A3. Both
A3 and B1 have the input qA, which is the total num-
ber of queries issued by A3 and B3 interacts with A3

as below:

Setup: B3 runs TrapGen to generate a tuple {i,Ai,Ti

and sends all Ai to A3.

Query Phase: B3 answers hash queries and signing
queries requested by A3.

Challenge A3 provides a tuple {i0, i1S∗,v∗} such
that v∗ is a message to be signed with the ring
S∗, i0 and i1 are indices with pki0 , pki1 ∈ S∗. B3

chooses a bit b∗ ← {0, 1} and computes the chal-
lenge signature σb∗ with SI.Sign and provides
σb∗ to A3. Then, A3 outputs a guess b′ ∈ {0, 1}.
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In the above process, B3 behaves like a real anonymity
security experiment. Thus, if A3 guesses correctly with
non-negligible probability, A can distinguish two signa-
tures from different identities with non-negligible prob-
ability, which contradicts Lemma 3.

5 Conclusion and Future Work

We have revisited the lattice-based linearly homo-
morphic signature scheme over binary fields by Choi
and Kim in SCIS 2017 [10]. We define the new con-
cept called subring-identical linearly homomorphic sig-
nature scheme and give a proof sketch of their require-
ments.

As future work, we plan to extend the linear homo-
morphism of our scheme to any subring and check how
to embed this scheme to real-world cloud computing
systems. Also, one of challenging problems along with
this paper is to define and construct a homomorphic
ring signature with resistance to chosen-subring attack
and insider corruption [15].
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