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Abstract: Telegram is known as one of the most popular instant messaging (IM) services for secure
communications. It features end-to-end encryption (E2EE) in secret chats based on their customised
protocol called MTProto. This brand new protocol is believed as a safe alternative among the public,
however, it is in doubt and has not been fully reviewed by cryptanalytic experts. It is theoretically
demonstrated in 2015 that MTProto does not meet indistinguishability under chosen ciphertext attack
(IND-CCA) and integrity of ciphertexts (INT-CTXT). In this paper, we start to analyse the security
vulnerabilities of E2EE in simplified Telegram in a heuristic manner and suggest typical building blocks
for E2EE in general IM system.
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1 Introduction

As smartphones came into widespread use in the
late 2000s, a number of instant messaging (IM) ser-
vices such as WhatsApp, KakaoTalk, LINE, Facebook
Messenger, and Telegram have burst onto mobile app
stores. The various IM clients can be classified into
three types according to their provided encryption pro-
tocols: no encryption, client-to-server encryption, and
client-to-client or end-to-end encryption (E2EE). Since
the lack of privacy protection has been issued con-
stantly, now the majority of IM services provide E2EE
based on verified cryptographic protocols. Telegram is
particularly regarded as one of the most secure services
in public and has over 100 million active users. Based
on Telegram’s customised protocol called MTProto, it
provides client-to-server encryption in cloud chats for
syncing all connected devices and E2EE in secret chats
for only two devices that used to initiate or accept the
secret chat. This brand new protocol, however, is ac-
tually in doubt and has not been fully scrutinised by
cryptanalytic experts yet. Given that there already ex-
ist other protocols that thoroughly audited and univer-
sally praised as secure, avoiding criticism for MTProto
seems unlikely unless extensive investigation is done.

One of the most popular cryptographic protocols is
Signal Protocol (formerly known as the Axolotl Pro-
tocol) developed by Open Whisper Systems in 2013
[1] and currently implemented into Signal, WhatsApp,
Google Allo, and Facebook Messenger. As of October
2016, its latest version is considered as sound and has
no major flaws according to the researchers from three
different universities [2]. Meanwhile, Telegram’s MT-
Proto has been criticised until now and Jakobsen et
al. theoretically demonstrated Telegram 2.7.0 (visited
GitHub in April 2015) is not indistinguishability un-
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der chosen-ciphertext attack (IND-CCA) and integrity
of ciphertexts (INT-CTXT) secure [3, 4]. From the
fact that MTProto does not check neither the length
nor the content of the padding during block cipher de-
cryption, two attacks were tried: (a) adding a random
block at the end of the ciphertext and (b) replacing
the last block with a random block. The first weakness
can be fixed easily by adding the process to check the
length of the padding during decryption and discard
the message when it is longer than expected. As for
mitigating the second weakness, the encryption pro-
cess should be changed, which makes communications
between patched and unpatched clients difficult. Thus,
it is desirable to replace the current scheme with the
entirely different, better one that guarantees authenti-
cated encryption (AE).

In this paper, we mainly focus on MTProto’s vul-
nerabilities in terms of IND-CCA and INT-CTXT. In
Section 2, the notion of special mode of operation and
AE is provided. Section 3 describes the overall pro-
cess of MTProto and Section 4 introduces two known
attacks from the view of IND-CCA and INT-CTXT.
Then, the implementation of simplified MTProto and
typical building blocks for E2EE in IM system are ex-
plained in Sections 5 and 6, respectively. Finally, con-
cluding remarks will be made in Section 7.

2 Preliminaries

2.1 Modes of Operation: IGE mode

Block ciphers like DES and AES are one of the im-
portant cryptographic primitives and widely used to
encrypt bulk data. Since their operations only work on
a fixed-length group of bits called a block, there can be
many approaches to combine repeated operations for
multiple blocks (i.e., modes of operation). As a simple
example, Electronic Codebook (ECB) mode divides the
message into blocks and encrypts each of them indepen-
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Figure 1: Encryption and decryption in IGE mode

dently, hence the same ciphertext blocks are generated
from the same plaintext blocks. This property makes
the system highly vulnerable and insecure against traf-
fic analysis. Of several modes of operation more secure
than ECB mode, Infinite Garble Extension (IGE) mode
is used in Telegram’s MTProto.

IGE mode was initially introduced by Campbell in
1978 to prevent spoofing attacks [5]. It has the property
that errors are propagated forward indefinitey, that is,
any difference in ciphertext changes (i.e., garbles) the
decryption of all subsequent ciphertext [6]. The blocks
are chained as follows:

ci ← fK(mi ⊕ ci−1)⊕mi−1

for encryption and

mi ← f−1K (ci ⊕mi−1)⊕ ci−1

for decryption as in Figure 1 [3] where fK and f−1K

are block cipher encryption and decryption function
with key K, respectively. From this equation, the first
output block c1 needs two non-existent inputs, c0 and
m0. The initialisation vector (IV) is defined using a
second random key K0: c0 = fK0

(m0) or arbitrary
given parameters.

After over 30 years now IGE mode is rarely used
and replaced with other AE modes because recovering
message with carefully chosen errors is possible.

2.2 Authenticated Encryption

Although the previous modes of operation give con-
fidentiality for block ciphers, much better modes that
simultaneously provide confidentiality, integrity, and
authenticity known as AE were developed. In 2000,
Bellare and Namprempre introduced the notion of AE
to guarantee both confidentiality of the message and
integrity of the sender while transmission over an inse-
cure channel like mobile network [7]. As a very natural
way to construct AE, they suggested a generic compo-
sition paradigm on secure encryption and secure MAC
protocols such as AES and HMAC. They used indistin-
guishability under chosen-plaintext attack (IND-CPA),

Table 1: Security results for the composite AE schemes

IND IND NM INT INT

-CPA -CCA -CPA -PTXT -CTXT

E&M insecure insecure insecure secure insecure

MtE secure insecure insecure secure insecure

EtM secure secure secure secure secure

non-malleability under chosen-plaintext attack (NM-
CPA), or indistinguishability under chosen-ciphertext
attack (IND-CCA) for confidentiality like the classi-
cal block ciphers as security requirements of AE, then
introduced two notions for integrity, namely integrity
of plaintexts (INT-PTXT) and integrity of ciphertexts
(INT-CTXT) assuming that the adversary A is allowed
a chosen-message attack as below:

Definition 1 (INT-PTXT). AE satisfies INT-PTXT
security if the advantage of any probabilistic polynomial-
time adversary A to produce a ciphertext c = E(m),
where m is not previously produced by the sender, is
negligible.

Definition 2 (INT-CTXT). AE satisfies INT-CTXT
security if the advantage of any probabilistic polynomial-
time adversary A to produce a ciphertext c = E(m)
not previously produced by the sender is negligible, re-
gardless of whether the underlying plaintext m is new
or not.

From the above security requirements, they designed
and analysed three composition methods on encryp-
tion and MAC protocols, namely Encrypt-and-MAC
(E&M), MAC-then-Encrypt (MtE), and Encrypt-then-
MAC (EtM) as below:

E&M: For encryption with authentication, we encrypt
a plaintext m as Enc(m) where Enc is an encryp-
tion algorithm of secure encryption protocol and
append a tag t of m using MAC, i.e., a ciphertext
E(m) = Enc(m)‖t. For decryption with verifica-
tion, we check the validity of the tag as well as
the decryption of the ciphertext.

MtE: For encryption with authentication, we encrypt
a plaintext m as Enc(m) and append a tag t of
Enc(m) instead of m, i.e., a ciphertext E(m) =
Enc(m)‖tenc where tenc is a tag of Enc(m). For
decryption with verification, we first verify the
tag and then decrypt the ciphertext.

EtM: For encryption with authentication, we append
a tag t ofm first, then encrypt an appended plain-
text m‖t, i.e., a ciphertext E(m) = Enc(m‖t).
For decryption with verification, we first decrypt
the ciphertext to get the plaintext and the tag.

Table 1 [7] describes security results for the compos-
ite AE schemes when the given MAC is assumed to
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be strongly unforgeable and shows that EtM can only
reach the highest definition of security in AE.

Aside from this research, Bellare & Rogaway and An
& Bellare suggested ‘encode-then-encipher’ [8] and ‘en-
cryption with redundancy’ [9] approaches, respectively,
but both of them are rather insecure and inefficient
than the general composition paradigm [10]. Thus, we
focus on a generic composition paradigm for the rest of
the paper.

3 MTProto in Secret Chats

MTProto has two different encryption prootcols for
cloud chats and secret chats. Cloud chats use client-to-
server encryption for syncing all connected devices and
secret chats use E2EE for only two devices that used
to initiate or accept the secret chat. Throughout this
paper, we mainly focus on MTProto in Secret Chats
using E2EE denoted by ‘MTProto’ simply.

MTProto uses Diffie-Hellman (DH) key exchange,
Secure Hash Algorithm 1 (SHA-1), Key Derivation Func-
tion (KDF), and AES-256 in IGE mode as crypto-
graphic primitives and the overall process is described
in Figure 2 [11].

3.1 Key Generation

The DH key exchange is used for generating an ephe-
meral key. After key exchange, the sender and the re-
ceiver share the same 2048-bit symmetric key K. In
order to protect past communications, secret key is re-
generated once a key has been used for more than 100
messages or more than a week.

The payload x is generated by concatenating some
auxiliary information, random bytes, message, and pad-
ding such that |x| mod B = 0 where B is the block
length. Then the payload except padding is computed
by hash function SHA-1 whose output named tag.

This tag is hashed again by KDF for generating AES
key and IV. The input of KDF is (K, tag) and the out-
put is (k, c0,m0) of the length (κ,B,B) where κ = 256
bits and B = 128 bits.

3.2 Encryption

The AES-256 in IGE mode is used for encryption.
Let x1, ..., xl be the l blocks of the payload, each of
length B, then ciphertext is computed as below:

ci ← Fk(mi ⊕ ci−1)⊕mi−1

where F is a pseudorandom permutation, e.g., AES.
The final output of the encryption is c including

other information.

c = (tag, c1, ..., cl)

3.3 Decryption

Given ciphertext c, tag is used again in KDF. Using
(tag,K), KDF output is (k, c0,m0) same as encryption.
Also, the IGE mode is used again for decryption and
the payload x is recovered.

mi ← F−1k (ci ⊕mi−1)⊕ ci−1

Figure 2: MTProto in E2EE

The payload except padding is computed by hash
function and checks whether the result is same as tag
in ciphertext c. If so, we can verify that the message
in payload is original plaintext.

4 Known Attacks on MTProto

Jakobsen et al. theoretically demonstrated that MT-
Proto does not meet IND-CCA and INT-CTXT in 2015
[3, 4]. Based on random padding vulnerabilities that
MTProto does not check neither the length nor the
content of the padding during AES-256 in IGE mode
decryption, two attacks were tried: padding length ex-
tension and last block substitution.

4.1 Attack 1: Padding Length Extension

From Definition 2, they created a new ciphertext
to break INT-CTXT security of MTProto. In order
to understand INT-CTXT security, let us restate why
MTProto is not IND-CCA secure using Lemma 1.

Lemma 1. For a probabilistic polynomial-time adver-
sary A, A always wins the following game, i.e., MT-
Proto is not IND-CCA secure under the following game.

1. A outputs different messages M0 and M1 of the
same length.

2. The challenger C chooses b ∈ {0, 1} randomly and
outputs the ciphertext Cb ← E(Mb).

3. A appends a 128-bit random block cr to Cb and
ask C to decrypt C ′ = Cb‖cr.

4. C returns M ′ where M ′ = Mb for any b.

5. A guesses b as 0 if M ′ = M0, 1 otherwise.
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This attack is possible since extra padding on cipher-
text yields only the extension of the padding of plain-
text without changing the plaintext. Obviously, A gets
a ciphertext C ′ = E(Mb) for Mb and this ciphertext has
not been previously produced by the sender because of
the random padding.

Corollary 1. MTProto protocol is not INT-CTXT se-
cure from Lemma 1.

To be secure against this attack, it is necessary to
check the length of padding in M ′ by modifying the
decryption process. Decryption algorithm will discard
the message if the length of padding is larger than the
block size.

4.2 Attack 2: Last Block Substitution

Since the padding is not authenticated in the process
of MTProto, it is possible to make a collision with a
non-negligible probability as Lemma 2, by modifying
the last 128-bit (16-byte) blocks.

Lemma 2. For a probabilistic polynomial-time adver-
sary A, A wins the following game with a probability
at most 2−8, i.e., MTProto is not INT-CTXT secure
under the following game.

1. A outputs a message M whose length in bytes is
equal to b mod 16.

2. The challenger C hashes M into the message key
msg key ← SHA-1(M) to provide integrity of the
plaintext.

3. Before encryption, 16−b random bytes of padding
r are added to M , then sends C = E(M‖r).

4. Amodifies last 16-byte blocks of C to get C ′ 6= C.

5. A outputs C ′.

Proof. From the above game, C decrypts C ′ as M ′‖r′.
Then, only the last byte of M ′ is different from M by
the non-malleability of IGE mode.

Thus, they claim that it is possible to have M ′ = M
with the probability at most 2−8 when A chooses a
message M with the length in bytes equal to 1 mod 16,
i.e., they can generate a valid ciphertext C ′ 6= C with
the probability at most 2−8.

To make the protocol secure against this attack, it
is sufficient to add padding to the computation of the
authentication tag. But, since this requires to change
the whole encryption with authentication process, it
becomes impossible to communicate with the older ver-
sions of the protocol due to version compatibility.

5 Implementation

For experimental demonstration of random padding
vulnerabilities introduced in Section 4, we simplify MT-
Proto as a first step while preserving the major compo-
nents, DH key exchange, SHA-1 of payload, customised

Figure 3: Procedure of key generation and exchange

KDF, and encrypted communication through the net-
work with AES-256 in IGE mode. Compared to the
original protocol, there are two insignificant differences:
we (a) use RFC-3526 primes and generators in DH key
exchange [12] and do not generate them everytime, and
secondly, (b) consider the payload as only the length
and the content of message. These are trivial and neg-
ligible when testing random padding vulnerabilities.

Simplified MTProto was developed in macOS Sierra
and Ubuntu 16.10 using Python 3.5.2. It is designed
to mock the communication between Alice and Bob
through the Internet. In our experimental setup, the
communication was simulated on a private network be-
tween host and virtual machine.

5.1 Key Generation

Figure 3 describes the procedure of key generation
and exchange. Bob acts as a server and listens for
incoming connections from the network. When Alice
wants to talk to Bob, she initiates a Transmission Con-
trol Protocol (TCP) connection to Bob and sends her
DH public key. Then Bob accepts Alice’s connection
and receives her public key. Bob also generates his
own DH key and sends the public key back to Alice.
Since Alice and Bob both know each other’s public key,
they can now derive a shared secret key and start en-
crypted communication. After they started a secret
chat, one sends a message and generates a message
key from SHA-1 of payload. The AES key and IV for
AES-256 in IGE mode are derived by KDF using DH
key and message key, and the pseudocode of KDF is
shown in Algorithm 1 where the chraracter + denotes
the string concatenation, msg key is the last 16 bytes
of SHA-1 of the payload and dh key is the shared se-
cret key between Alice and Bob. This encryption key
varies message by message in MTProto, as well as in
our implementation.

Algorithm 1: Pseudocode of KDF
def kdf(dh_key , msg_key ):

a = sha1(msg_key + dh_key [0:32])
b = sha1(dh_key [32:48] + msg_key + dh_key [48:64])
c = sha1(dh_key [64:96] + msg_key)
d = sha1(msg_key + dh_key [96:128])
aes_key = a[0:8] + b[8:20] + c[4:16]
aes_iv = a[8:20] + b[0:8] + c[16:20] + d[0:8]
return (aes_key , aes_iv)
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Figure 4: Screenshot of a simplified MTProto execution

5.2 Message Encryption and Decryption

When Alice or Bob writes a message, MTProto at-
taches some information about the message at first and
calls it as a payload. For simplicity, we put only 32-
bit field of a message length to the payload. Then the
padded payload is encrypted using AES-256 in IGE
mode.

After obtaining the key and IV, we append a few
bytes of random padding to the end of the payload to
make it align with 16-byte blocks. For the encryption
and decryption, we use aes ige enc() and aes ige de

c() as shown in Algorithm 2. Since AES in IGE mode
is not used much in practice, it is not even included in
popular cryptographic libraries. We implemented the
IGE mode by manipulating the input and output of
AES in ECB mode using PyCrypto 2.6.1 library [13] in
Python. key and iv are the values derived from kdf()

and M is the aligned payload with padding.

Algorithm 2: Pseudocode of AES-256 in IGE mode

def aes_ige_enc(key , iv, M):
aes = AES.new(key) # ECB mode
c_prev = iv [0:16]
m_prev = iv [16:32]
C = bytes()
for i in range(0, len(M), 16):

m = M[i:i+16]
aes_ecb_enc_in = xor(m, c_prev)
aes_ecb_enc_out = aes.encrypt(aes_ecb_enc_in)
c = xor(aes_ecb_enc_out , m_prev)
m_prev = m
c_prev = c
C += c

return C

def aes_ige_dec(key , iv, C):
aes = AES.new(key) # ECB mode
c_prev = iv [0:16]
m_prev = iv [16:32]
M = bytes()
for i in range(0, len(C), 16):

c = C[i:i+16]
aes_ecb_dec_in = xor(c, m_prev)
aes_ecb_dec_out = aes.decrypt(aes_ecb_dec_in)
m = xor(aes_ecb_dec_out , c_prev)
m_prev = m
c_prev = c
M += m

return M

After the encrypted bytes of padded payload is re-
turned by aes ige enc(), the data sent through the
network include the fingerprint for DH key, msg key

and the encrypted payload. When Bob or Alice re-
ceives the data, the message is decrypted in reverse or-
der. The fingerprint is verified first, and the key and IV
for AES are derived by KDF using msg key and shared
secret key. Then finally the message is decrypted by
aes ige dec().

The screenshot of a simplified MTProto execution is
shown in Figure 4. Our implementation can be also ex-
tended to have a dedicated server for relaying messages
between users as Telegram cloud servers do. In this
case, we can demonstrate an attacker in the server who
can see all exchanges between Alice and Bob. While the
communication is encrypted, we can possibly test the
known attacks or find new exploit using the implemen-
tation.

6 Discussion

As an example to construct building blocks for E2EE
in IM system, we suggest a typical construction shown
in Table 2. These four building blocks are (a) Math
Layer, (b) Cryptographic Primitive Layer, (c) Key Man-
agement Layer, and (d) Security Service Layer. Math
Layer contains basic arithmetic for cryptographic prim-
itives. Cryptographic Primitive Layer executes popular
cryptographic primitives for secure E2EE. Key Man-
agement Layer is to execute key generation, distribu-
tion, and agreement including any key-related opera-
tions. Finally, Security Service Layer provides required
security features for specific IM.

This will be used to handle additional attacks or
measure cryptographic strength easily while maintain-
ing the core design of cryptographic protocols.

7 Concluding Remarks

Although Telegram is particularly regarded as one of
the most secure IM services in public, their own pro-
tocol called MTProto has not been fully reviewed by
cryptanalytic experts. There are many questionable
choices in the cryptographic protocol design, for exam-
ple, SHA-1 whose collisions already found in 2005 [14],
customised KDF, non-standard padding algorithm, and
IGE mode which does not provide authenticity.
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Table 2: Building blocks for E2EE in IM

Security
Service Layer

Authenticated encryption

Forward secrecy

Backward compatibility

MAC, HMAC

Multiple encryption

Modes of operation, etc.

Key
Management
Layer

Key generation

Key distribution

Key agreement

KDF, etc.

Cryptographic
Primitive
Layer

Symmetric: AES

Asymmetric: RSA, ElGamal, ECC

Hash: SHA-1, SHA-3, etc.

Math Layer

Multiple precision arithmetic

Finite field arithmetic

Modular exponentiation

Elliptic curve arithmetic, etc.

Among them, we focused on random padding vulner-
abilities and known attacks, padding length extension
and last block substitution related to AE. Since this
weaknesses were demonstrated theoretically in 2015, we
tried to simulate attacks through encrypted communi-
cations between Alice and Bob. It is required to con-
struct building blocks for E2EE in general IM system
so that additional attacks or cryptographic strength
measure can be handled easily while maintaining the
core design of cryptographic protocols. As a first step,
simplified MTProto was developed for further tests of
random padding vulnerabilities.

Designing new cryptographic protocols is very hard
and it generally takes a long time to assure their reli-
ability. Telegram asserts that they made MTProto in
secure way in spite of some weaknesses of cryptographic
primitives. Even its algorithm designed well and looks
fine, it might still have flaws so we should be more
careful. Given that there already exists other proto-
cols universally praised as secure, MTProto should be
extensively investigated to avoid criticism.
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