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Abstract: This paper extends the lattice-based linearly homomorphic signature to have multiple
signers with the security proof. In our construction, we assume that there are one trusted dealer and
either single signer or multiple signers for a message. The dealer pre-shares the message vector v during
the set-up phase and issues a pre-shared vector vi to each signer. Then, from partial signatures σi of vi
signed by each signer, one obtains a valid signature σ of v by combining all partial signatures σi of vi.
We use well-known lattice-based algorithms like trapdoor generation algorithm and extracting basis
algorithm to distribute different secret keys to each signer. Our signature holds multi-unforgeability
and weakly context hiding property and is shown to be provably secure in the random oracle model
under k-Small Integer Solution problem assuming the soundness of Boneh and Freeman’s signature.
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1 Introduction

1.1 Background and Motivation

In the improvement of cloud systems, one of upris-
ing security challenges is how the cloud server computes
a function of encrypted messages without decryption.
Despite of Gentry’s seminal work on fully homomorphic
encryption on ideal lattices [1] to enable the server to
calculate any function of encrypted message without
decryption, there is another security issue in cloud sys-
tem; how the cloud server gives authenticity for the
function of encrypted message. A digital signature is a
well-known cryptographic primitive that gives authen-
ticity to the server and non-repudiation. This primitive
guarantees that the information is not modified during
its transmission, processing and storage.

Separately, lattices are a fascinating tool in mod-
ern cryptography. Lattice-based cryptography has a
lot of advantages that their security is based on the
average-case hardness problems and such problems re-
main secure against quantum computing attacks. With
these advantages, there have been many cryptographic
primitives based on lattices such as fully homomorphic
encryption [2, 3], multilinear maps [4] and fully homo-
morphic signatures [5–7].

For authenticity of cloud systems, the cloud server
should generate the proper signature for a computa-
tion of messages without permission from the signer
of each message. If the signature satisfies this condi-
tion, we say that the signature has the homomorphic
property. Especially, a signature is called linearly ho-
momorphic when it supports constructing the proper
signature for the linear combination of messages [5, 6]
and fully homomorphic when it supports constructing
the proper signature for any function of messages [7].
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1.2 Our Contribution

Considering the real world, some information on cloud
system is signed by an organization instead of an in-
dividual. There should be at least two people to au-
thenticate the message where each person has his/her
secret key. In this situation, we need multiple sign-
ers with different secret keys for a single message and
the corresponding signature is valid only if all users are
trustworthy.

There are some progress on homomorphic signatures
with multiple secret keys for each message like homo-
morphic aggregate signatures which support multiple
secret keys for different messages [8]. But we have
a lack of knowledge on homomorphic signatures with
multiple secret keys for a single message. In this paper,
we suggest a new linearly homomorphic signature with
multiple signers.

By adopting the lattice-based algorithm called ex-
tracting basis algorithm, we achieve the novel lattice-
based signature that is proper for the aforementioned
situation. In particular, we give a security proof on our
signature under k-Small Integer Solution (k-SIS) prob-
lem assuming the soundness of Boneh and Freeman’s
signature [5]; our signature satisfies multi-unforgeability
and weakly context hiding property. With all function-
alities provided by linearly homomorphic signature, our
signature provides another functionality that signature
derived from multiple signers also satisfies the linearly
homomorphic property.

1.3 Related Work

In 2011, Boneh and Freeman [5] published their sem-
inal work on linearly homomorphic signature over bi-
nary fields based on lattices with new lattice-based
hard problems called k-SIS problem. After that, lat-
tices have become a main tool to make linearly and
fully homomorphic signatures.
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After that, Boneh and Freeman [6] suggested that
building some bounded homomorphic signature is pos-
sible using ideal lattices from Gentry’s fully homomor-
phic encryption [1]. Zhang et al. [8] and Jing [9] sepa-
rately suggested the homomorphic aggregate signature
with linear homomorphism which doesn’t need to have
the same secret key to combine multiple messages. Re-
cently, fully homomorphic signature becomes available
by Gorbunov, Vaikuntanathan, and Wichs [7].

On the other hand, there are a lot of lattice-based
digital signatures with multiple signers. Gordon et
al. [10] introduced the first construction of a lattice-
based group signature with a new algorithm for sam-
pling a basis for an orthogonal lattice and its trapdoor.
Feng et al. [11] proposed a threshold signature whose
signing algorithm proceeds sequentially through each
member of the group to be highly interactive. Cayrel
et al. [12] proposed a lattice-based threshold ring signa-
ture, in which at least t members are required to create
an anonymous signature. In this system, each member
has its own public key, and verification time grows lin-
early with the number of members. Also, Bendlin et
al. [13] suggested a threshold variant of Gentry et al.’s
signature [14].

But, there is no linearly homomorphic signature with
multiple signers for a single message in the open liter-
ature to the best of our knowledge.

1.4 Outline of the Paper

Section 2 describes a background on lattices includ-
ing Small Integer Solution (SIS) problem, some lattice-
based algorithms used in our signature, and the formal
definition of linearly homomorphic signature with de-
tailed construction in Appendix A. We give a formal
definition of the linearly homomorphic signature with
multiple signers and present our construction in Section
3. In Section 4, we discuss the security requirements of
the proposed signature with rigorous proof in Appendix
B. And we give a concluding remark with future work
in Section 5.

2 Preliminaries

2.1 Notation

We denote vectors using small bold letters (e.g., x,
y) and denote matrices as big bold letters (e.g., A, B).

Let R and Z express the set of real numbers and the
set of integers, respectively and small alphabet letters
mean real numbers (e.g., a, b, c).

For any integer q ≥ 2, Zq denotes the ring of in-
tegers modulo q and Zn×mq denotes the set of n × m
matrices with entries in Zq. When A ∈ Zn×m1

q , B
∈ Zn×m2

q , we write the concatenation of A and B as

A‖B ∈ Zn×(m1+m2)
q .

Let f(a, b) be a function f on a and b. We say a
function f : Z→ R+ is negligible when f = O(n−c) for
all c > 0 and denoted by negl(n). A function g(m) =
dme is the ceiling function from R to Z such that g(m)

is the smallest integer which is greater than or equal to
m.
‖x‖ represents the Euclidean norm of x and ‖B‖

represents the maximum of Euclidean norms of the
columns of B. For instance, when B = {b1|b2| · · · |bm},
‖B‖ = maxi ‖bi‖. Then, we denote B̃ = (b̃1|b̃2| · · · |b̃m)
for the Gram-Schmidt orthogonalization of columns of
B and denote ‖B̃‖ = maxi ‖b̃i‖ for Gram-Schmidt norm
of B.

2.2 Lattices and How to Delegate a Basis

Briefly, lattices Λ can be defined as a discrete sub-
group of Rm with its basis S. A basis S of Λ is a set
of linearly independent vectors S = {b1,b2, · · · ,bm}
which spans the lattice Λ and S = (b1|b2| · · · |bm) is a
basis matrix of lattice Λ.

Integer lattices are defined as a subgroup of Zm in-
stead of Rm. For a matrix A ∈ Zn×mq , we can denote
lattices as a set Λu

q (A) = {e ∈ Zm|A · e = u mod q}
and as a set Λ⊥q (A) = {e ∈ Zm|A ·e = 0 mod q} when
u = 0.

Alwen and Peikert [15] introduced the trapdoor gen-
eration algorithm TrapGen(n,m, q) which generates
a matrix A ∈ Zn×mq with its “trapdoor” matrix T ∈
Zm×m satisfying the following functionality:

TrapGen(n,m, q) :
For the security parameter n, m = d6n log qe and
an integer q, this algorithm outputs a matrix A ∈
Zn×mq and its trapdoor matrix T such that T is

a basis of Λ⊥q (A) with low Gram-Schmidt norm

‖T̃‖ ≤ 30
√
n log q.

Without loss of generality, we assume that a ma-
trix A extracted from TrapGen(n,m, q) has a full
rank. In our signature, we extract the public keys
{Ai}gi=1 and secret keys {Ti}gi=1 from trapdoor gener-
ation algorithm TrapGen(n,m, q) and extracting ba-
sis algorithm ExtBasis(T,B) like Cash et al.’s work
[16]. Then, we extract a new basis Si from the new
matrix B = A‖A′, where A′ ∈ Zn×m′

q , using the
ExtBasis(T,B) and generate the signature σi using
Gaussian sampling algorithm SamplePre(A,T, γ,u)
from Gentry et al.’s work [14]. We leave the discussion
on Gaussian sampling algorithm in the next section
and focus ourselves on how extracting basis algorithm
operates.

ExtBasis(T, B) :
For the trapdoor matrix T of A ∈ Zn×mq and the

matrix B = A‖A′ ∈ Zn×(m+m′)
q , this algorithm

outputs a basis S for Λ⊥q (B) with ‖S̃‖ = ‖T̃‖,
i.e., Gram-Schmidt norm of S is equal to Gram-
Schmidt norm of T.

2.3 Discrete Gaussian Distribution and Sam-
pling Algorithm

Given L be any subset of Zm, a Gaussian function
on Rm with center c and parameter γ can be defined
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as ργ,c(x) = exp(−π‖x-c‖2/γ2) for any vector c ∈ Rm
and any positive parameter γ > 0,

For a subset L ⊂ Zm, we can define discrete Gaus-
sian distribution, which is the m-dimensional Gaussian
distribution whose support is restricted to the subset
L and its density function is defined as

DL,γ,c(x) =
ργ,c(x)∑
y∈L ργ,c(y)

and for the sake of simplicity, we denote ργ(x) and
DL,γ(x) when center c = 0.

Gentry et al. [14] proved that this distribution can

be sampled efficiently for γ ≥ ‖T̃‖ ·ω(
√

log n) where T
is a trapdoor matrix of an n-dimensional lattice Λ as
follows:

SamplePre(A, T, γ, u) :
For the matrix A ∈ Zn×mq , its trapdoor matrix
T ∈ Zm×mq , a real number γ > 0, and a vector
u ∈ Zn, this algorithm outputs a sample σ from a
distribution that is statistically close to DΛu

q (A),γ .

The smoothing parameter ηε(Λ) of Λ enables every
coset of Λ to get roughly equal mass in the following
Lemmas 1 and 2.

Lemma 1. [14] Let q be a prime and n,m be integers
with m > 2n log q. Let f be some ω(

√
logm) function.

Then, there is a negligible function ε(m) such that for
all but at most q−n fraction of matrix A ∈ Zn×mq , we

have ηε(m)(Λ
⊥
q (A)) < f(m).

Lemma 2. [5] Let Λ ⊂ Rn be a lattice. Suppose ρ ≥
ηε(Λ) for some negligible ε. Then, we have

Pr

[
0 ≤ ‖v‖ ≤ 2ρ

√
n

2π
: v← DΛu

q (A),γ

]
≥ 1−negl(n).

Lemma 1 declares that we extract a sample vector
almost uniformly by sampling algorithm SamplePre
(A, T, γ,u) with proper parameters and Lemma 2 de-
termines the upper bound on the length ‖v‖ of a sample
vector v from the Gaussian distribution DΛu

q (A),γ .

2.4 Small Integer Solution Problem and k-SIS
Problem

Small Integer Solution (SIS) problem on a lattice
Λ⊥q (A) = {e ∈ Zm|A·e = 0 mod q, } where A ∈ Zn×mq

is to find a small vector e ∈ Λ⊥q (A) whose coefficients
are either −1, 0, or 1. In this paper, we focus ourselves
on a modified SIS problem called k-SIS problem and
prove the security of our signature based on this prob-
lem.

Problem. (k-SIS problem) Given a matrix A ∈ Zn×mq

and k short vectors e1, e2, · · · , ek ∈ Λ⊥q (A) satisfy-
ing A · ei = 0 (mod q) for all positive integer i with
i ≤ k, find a short vector e ∈ Zm satisfying ‖e‖ ≤
β and A · e = 0 (mod q), such that e is not in Q-
span({e1, e2, · · · , ek}).

This problem is called k-SISq,m,β,γ problem when each
ei is drawn from the distribution DΛ⊥

q (A),γ .
k-SIS problem is a natural generalization of a normal

SIS problem since this is a normal SIS problem when
k = 0, i.e., we have no information of the short vectors
on the lattice. Boneh and Freeman proved that this k-
SIS problem can be reduced to a normal SIS problem
[5].

2.5 Linearly Homomorphic Signature (LHS)

We let the public parameters params=(N, k, L,m, q,
γ) where N = n is the dimension of vectors to be
signed, k is the dimension of the subspace to be signed
(k < n), L is the maximum number of signatures in
linear combinations, m(n,L) > n is an integer, q(n,L)
is an odd prime, and γ(n,L) is a real number.

With those parameters, Boneh and Freeman [5] pre-
sented the linearly homomorphic signature over binary
fields with a tuple of PPT algorithms LHS = (Setup,
Sign, Combine, Verify) which does the following func-
tionality:

Setup(n, params) :
Given a security parameter n and public param-
eters params=(N, k, L, m, q, γ),

1. (A, T) ← TrapGen(n,m, 2q) where a ma-
trix A ∈ Zn×m2q and its trapdoor basis T of

Λ⊥2q(A) satisfies that ‖T̃‖ ≤ 30
√
n log 2q.

2. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle.

3. Output the public key pk ← (A, H) and the
secret key sk ← (A, H,T).

Sign(sk, id, v) :
Given a secret key sk ← (A, H,T), a tag id ∈
{0, 1}n and a vector v ∈ Fn2 ,

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. Let S ← ExtBasis(T,B) be a basis for

Λ⊥2q(B) with ‖S̃‖ = ‖T̃‖.
3. Output σ ← SamplePre(B,S, γ, q · v).

Combine(pk, id, {(αi, σi)}li=1) :
Given a public key pk = (A, H), a tag id ∈
{0, 1}n and pairs {(αi, σi)}li=1 where αi ∈ F2 =
{0, 1} and σi is a signature of the i-th vector vi,
output σ ← Σli=1αiσi ∈ Z2m.

Verify(pk, id, y, σ) :
Given a public key pk = (A, H), a tag id ∈ 0, 1n,
a vector y ∈ Fn2 and a signature σ ∈ Z2m,

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. If ‖σ‖ ≤ L · γ
√

2m and B ·σ = q ·y mod 2q,
output 1 (accept). Otherwise, output 0 (re-
ject).

To verify the correctness of this signature, for each
(pk, sk), we should have
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a. For all tags id and every vector y, the verification
algorithm Verify(pk, id, y, σ) outputs 1 for every
valid signature σ ← Sign(sk, id,y).

b. Whenever we operate linear combination of the
vector, we can output the valid signature for such
combination.

The security requirements of linearly homomorphic
signature are stated in unforgeability and weakly con-
text hiding property as below:

Definition 1. (unforgeability). A linearly homomor-
phic signature is unforgeable if the advantage of any
PPT adversary A, in the following security game is
negligible in the security parameter n.

Setup :
The challenger C sets (pk, sk)← Setup(n,params),
then sends the public key pk to A.

Queries :
Proceeding adaptively, the adversary A specifies
a sequence of k-dimensional subspaces Vi with

basis vectors {v(i)
j }

k

j=1
. For each i, the challenger

C chooses a tag idi ← {0, 1}n uniformly and gives

idi with j signatures σij ← Sign(sk, idi,v
(i)
j ) for

j = 1, 2, · · · , k.

Output :
The adversary A outputs a tag id∗ ∈ {0, 1}n, a
non-zero vector y∗, and a signature σ∗.

The adversary A wins the game if the signature σ is
valid and either (1) id∗ 6= idi for all i, or (2) id∗ = idi
for some i but y∗ /∈ Vi .

Definition 2. (weakly context hiding). A linearly ho-
momorphic signature is weakly context hiding if the
advantage of any PPT adversary A, in the following
security game is negligible in the security parameter n.

Setup :
The challenger C sets (pk, sk)← Setup(n,params),
then sends both public key pk and secret key sk
to A.

Challenge :
The adversary A outputs two k-dimensional vec-

tor spaces V0, V1 with basis vectors {v(0)
i }

k

i=1 and

{v(1)
i }

k

i=1, respectively and linear functions on

both {v(0)
i })

k

i=1 and {v(1)
i }

k

i=1 which satisfies

fj

(
v

(0)
1 ,v

(0)
2 , · · · ,v(0)

k

)
= fj

(
v

(1)
1 ,v

(1)
2 , · · · ,v(1)

k

)
for all j = 1, 2, · · · , s.
The challenger C chooses b ∈ {0, 1} and a tag id ∈
{0, 1}n and signs the vector space Vb with a tag

id. Then, C uses Combine(pk, id, {(αi, σi)}ki=1)

algorithm to derive signatures σj of the func-

tion fj

(
v

(b)
1 ,v

(b)
2 , · · · ,v(b)

k

)
for all j = 1, 2, · · · , s.

The adversaryA gets signatures σj . The function
can be out adaptively after choosing V0 and V1.

Output :
The adversary A outputs a bit b′.

The adversary A wins the game if b = b′.

Lemma 3. Let LHS be the linearly homomorphic sig-
nature over F2 as above. Suppose q be a prime, n,m
be integers with m > 2n log q, and γ > 30

√
n log 2q ·

ω(
√

log n). Then ‖σ‖ ≤ L · γ
√

2m and B · σ = q ·
y mod 2q for all valid signatures σ ← Combine(pk, id,

{(αi, σi)}li=1)

Moreover, Lemmas 4 and 5 from Boneh and Free-
man’s work show that this signature is unforgeable in
the random oracle model and it holds the weakly con-
text hiding property [5].

Lemma 4. Let LHS be the linearly homomorphic sig-
nature over F2 as above. Suppose that m = d6n log 2qe
and γ = 30

√
n log 2q log n. Let β = L · γ

√
2m. Then

LHS is unforgeable in the random oracle model assum-
ing that k-SISq,2m,β,γ problem is infeasible.

Lemma 5. Let LHS be the linearly homomorphic sig-

nature over F2 as above. Suppose that k <
log n

2 log log n
,

m = d6n log 2qe and γ = 30
√
n log 2q log n. Then LHS

is weakly context hiding.

Proof. (sketch) In LHS, one obtains a signature σ on a
linear combination v of vectors by calculating a linear
combination of the signatures σ1, σ2, · · · , σg of the orig-
inal vectors v1,v2, · · · ,vg. The obtained signature σ
on v is a linear combination of relatively short vectors
in cosets of some lattice.

The signature σ does not leak information on the
original signatures since a linear combination of k sig-
natures from Sign algorithm is indeed a short vector
sampled from a distribution that depends only on the
computed function and the vector v, i.e., σ does not
have any information on the original vectors v1,v2, · · · ,
vg and LHS holds the weakly context hiding property.

3 Multi-signature with Linear Homo-
morphism

We give a formal definition of multi-signature with
linear homomorphism over binary fields, having mul-
tiple signers. Then, we propose our construction on
multi-signature with linear homomorphism.

3.1 Formal Definition

A multi-signature is a sort of group-based cryptogra-
phy which involves two or more participants to authen-
ticate a single message. In multi-signature, all group
members are involved to sign the message with multiple
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secret keys. To achieve multi-signature with linear ho-
momorphism, there is a trusted dealer who pre-shares
the original message and sends them to group members.
With this process, we can achieve a multi-signature
with linear homomorphism. The formal definition of
our signature is as follows:

Definition 3. (multi-signature with linear homomor-
phism) A multi-signature with linear homomorphism
is a tuple of PPT algorithms MLH = (Setup, Pre-
Share, Sign, Combine, LinCom, Verify) with the
following functionality:

Setup(n, g, params) :
For the security parameter n, a number of group
members g, and public parameters params, this
algorithm outputs a common public key pk and a
pair of public keys and secret keys {pki, ski}

g
i=1.

PreShare(g, v) :
For a number of group members g and a vector
v, there is a dealer who pre-shares v into vi such
that v =

∑g
i=1 vi.

Sign({pki, ski}, id,vi) :
For a pair of public keys and secret keys {pki, ski},
a tag id, and a vector vi, this algorithm outputs
a signature ρi.

Combine(pk, id, g, {σi}gi=1) :
For a public key pk, a tag id, a number of group
members g, and set of signatures {σi}gi=1, this
algorithm outputs a signature σ.

LinCom(pk, id, {(gj , σj)}lj=1) :
For a public key pk, a tag id, and a set of pairs
{(gj , σj)}lj=1, this algorithm outputs a signature
σlin.

Verify(pk, id, y, σ) :
For a public key pk, a tag id, a vector y and a sig-
nature σ, this algorithm outputs either 0 (reject)
or 1 (accept).

We can check from which subspace a vector v is taken
for a given tag id. To verify the correctness of Defini-
tion 3, for each (pk, {ski}gi=1), we should have:

a. For every tag id and set of vectors {vi}gi=1, if
a signature σi ← Sign({pki, ski}, id,vi) , then
Verify(pk, id,vi, σi) = 1.

b. For every tag id and every vector v, if a sig-
nature σ ← Combine(pk, id, g, {σi}gi=1) where
σi ← Sign({pki, ski}, id,vi) and v =

∑g
i=1 vi,

then Verify(pk, id,v, σ) = 1.

c. (linear homomorphism) Whenever we operate lin-
ear combination of the message with the same
tag, we output the valid signature for such com-
bination. i.e., Verify(pk, id,vlin, σlin) = 1 where

σlin ← LinCom(pk, id, {(gj , σj)}lj=1) and vlin =∑l
j=1 vj .

3.2 Our Construction

We let the public parameters params=(N, k, L,m,
q, γ) as N = n is the dimension of vectors to be signed,
k is the dimension of the subspace to be signed (thus,
k < n), L is the maximum number of signatures in
linear combinations, m(n,L) > n is an integer, q(n,L)
is an odd prime, and γ(n,L) is a real number.

There is a trusted dealer who calculates noise vectors
and distributes the message with the noise to group
members. The main idea of our signature is that the
sum of such message is indeed the original message to
sign. With the above public parameters, we instantiate
our signature MLH with the following functionality:

Setup(n, g, params) :
Given a security parameter n and public parame-
ters params=(N, k, L, m, q, γ), do the following:

1. Run TrapGen(n,m, 2q) to generate a ma-

trix {Ai}Li=1 ∈ Zn×m2q and its corresponding

trapdoor basis {Ti}Li=1 of Λ⊥2q(Ai) such that

‖T̃i‖ ≤ 30
√
n log 2q.

2. Define A = A1‖A2‖ · · · ‖AL

3. Let H : {0, 1}∗ → Zn×m2q be a hash function,
viewed as a random oracle.

4. Output the common public key pk ← (A, H)
and a pair of public keys and secret keys
(pki, ski)← (Ai,Ti) for each i.

PreShare(g, v) :
For a number of group members g ≤ L and a
vector v, a dealer runs this algorithm to

1. Output the noise vector u1,u2, · · · ,ug−1 from
a discrete Gaussian distribution DΛ⊥

2q(A),γ

using SamplePre(A,T, γ,0) where T ←
ExtBasis(T1,A).

2. Get ug =
∑g−1
i=1 ui.

3. Output the set of pre-shared vectors {v1,v2,
· · · ,vg} = {v+u1,v+u2, · · · ,v+ug} when
g is odd and output {v1,v2, · · · ,vg} = {v+
u1,v + u2, · · · ,ug} when g is even.

Sign({pki, ski}, id,vi) :
For a pair of public keys and secret keys (pki, ski)
← (Ai,Ti), a tag id ∈ {0, 1}n, and a vector vi ∈
Fn2 , this algorithm is used to

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. Let Si ← ExtBasis(Ti,B) be a short basis

for Λ⊥2q(B) with ‖S̃i‖ = ‖T̃i‖.
3. Output a partial signature σi ← SamplePre

(B,Si, γ, q · vi).

Combine(pk, id, g, {σi}gi=1) :
Given a public key pk = (A, H), a tag id ∈
{0, 1}n, a number of group members g ≤ L, and
set of signatures {σi}gi=1, output σ =

∑g
i=1 σi ∈

Z2m.
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LinCom(pk, id, {(gj , σj)}lj=1) :

Given a public key pk = (A, H), a tag id ∈
{0, 1}n, and a set of pairs {(gj , σj)}lj=1, output

σlin =
∑l
j=1 σj ∈ Z2m only if

∑l
j=1 gj ≤ L.

Verify(pk, id, y, σ) :
Given a public key pk = (A, H), a tag id ∈
{0, 1}n, a vector y ∈ Fn2 and a signature σ ∈ Z2m,
do the following:

1. Set B← A‖H(id) ∈ Zn×2m
2q .

2. If ‖σ‖ ≤ L · γ
√

2m and B ·σ = q ·y mod 2q,
output 1 (accept). Otherwise, output 0 (re-
ject).

In the proposed signature, each ui is uniformly ran-
dom from SamplePre(A, T1, γ,0) with high proba-
bility and so is vi.

3.3 Correctness and Linear Homomorphism

To verify the correctness of the proposed signature,
we must show that the correctness condition in Defini-
tion 3 holds for any public key pk, secret keys {ski}gi=1

where g ≤ L.

Theorem 1. Suppose q be a prime, n,m be integers
with m > 2n log q, and γ > 30

√
n log 2q · ω(

√
log n).

Then, the proposed multi-signature is correct for a sin-
gle signature.

Proof. Each partial signature σi from Sign algorithm
is valid since SamplePre(B,Si, γ, q ·vi) outputs a sig-
nature σi such that B · σi = q · vi mod 2q and ‖σi‖ ≤

2ρ

√
n

2π
≤ γ
√

2m with extremely high probability by

Lemma 2, i.e., Verify(pk, id,vi, σi) = 1 for all pairs
{(σi,vi)}gi=1.

Likewise, for a signature σ =
∑g
i=1 σi ← Combine

(pk, id, g, {σi}gi=1), we have ‖σ‖ ≤ Σgi=1‖σi‖ ≤ g·γ
√

2m ≤
L · γ
√

2m if g ≤ L.
Since σi is a valid signature of vi, we have B · σi =

q·vi mod 2q and since q is odd, this implies that B·σi =
0 mod q and B · σi = vi mod 2. By simple addition,
B · σ = 0 mod q and B · σ =

∑g
i=1 vi = v mod 2 since

σ =
∑g
i=1 σi.

We get B · σ = q · v mod 2q by Chinese Remainder
Theorem and Verify(pk, id,v, σ) = 1.

Thus, the proposed multi-signature is correct.

Corollary 1. Suppose q be a prime, n,m be integers
with m > 2n log q, and γ > 30

√
n log 2q · ω(

√
log n).

Then, the proposed multi-signature is linearly homo-
morphic.

Proof. Assume that we combine l messages m1,m2, · · · ,
ml into mlin =

∑l
j=1 mj . From the proof of Theo-

rem 1, for all σj ← Combine(pk, id, gj , {σjk}
gj
k=1

),

‖σj‖ ≤ gj · γ
√

2m ≤ L · γ
√

2m if gj ≤ L and B · σj =
q ·mj mod 2q.

Thus, for a signature σlin =
∑l
j=1 σj ← LinCom

(pk, id, {(gj , σj)}lj=1), ‖σlin‖ ≤
∑l
j=1 gj · γ

√
2m ≤ L ·

γ
√

2m if
∑l
j=1 gj ≤ L and B · σ = q ·m mod 2q, i.e.,

Verify(pk, id,mlin, σlin) = 1 and the proposed sig-
nature satisfies the linearly homomorphic property if∑l
j=1 gj ≤ L.

4 Security of the Proposed Signature

4.1 Security Model

In the proposed signature, we assume that there are
some corrupted group members to forge a signature but
not all group members are corrupted.

Our multi-signature with linear homomorphism should
satisfy multi-unforgeability in Definition 4.

Definition 4. (multi-unforgeability). A multi-signature
with linear homomorphism is multi-unforgeable if the
advantage of any PPT adversary A, in the following
security game is negligible in the security parameter n.

Setup :
The challenger C sets (pk, {skτ}gτ=1) ← Setup
(n, g,params), then sends the public key pk and
gc secret keys skτ to the adversary A with gc < g.

Queries :
Proceeding adaptively, the adversary A specifies
a sequence of k-dimensional subspaces Vi with

basis vectors {v(i)
j }

k

j=1
. For each i, the challenger

C chooses a tag idi ← {0, 1}n uniformly and

1. Run PreShare(g,v
(i)
j ) to pre-share the vec-

tor v
(i)
j into {v(ij)

τ }
g

τ=1.

2. Run Sign(skτ , idi,v
(ij)
τ ) to get σ

(ij)
τ for τ =

1, 2, · · · , g.

3. Gives idi with j signatures σij ← Combine

(pk, idi, {σ(ij)
τ }

g

τ=1) for j = 1, 2, · · · , k.

Output :
The adversary A outputs a tag id∗ ∈ {0, 1}n, a
non-zero vector y∗, and a signature σ∗.

The adversary A wins the game if the signature σ is
valid and either (1) id∗ 6= idi for all i, or (2) id∗ = idi
for some i but y∗ /∈ Vi .

Also, our signture should satisfy weakly context hid-
ing property in Definition 5 as Boneh and Freeman’s
signature.

Definition 5. (weakly context hiding property). A
multi-signature with linear homomorphism is weakly
context hiding if the advantage of any PPT adversary
A, in the following security game is negligible in the
security parameter n.
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Setup :
The challenger C sets (pk, {skτ}gτ=1) ← Setup
(n, g,params) for security parameter n and other
public parameters params, then sends both pub-
lic key pk and all secret keys {skτ}gτ=1 to the ad-
versary A.

Challenge :
The adversary A outputs two k-dimensional vec-

tor spaces V0, V1 with basis vectors {v(0)
i }

k

i=1 and

{v(1)
i }

k

i=1, respectively and linear functions on

both {v(0)
i })

k

i=1 and {v(1)
i }

k

i=1 which satisfies

fj

(
v

(0)
1 ,v

(0)
2 , · · · ,v(0)

k

)
= fj

(
v

(1)
1 ,v

(1)
2 , · · · ,v(1)

k

)
for all j = 1, 2, · · · , s.
The challenger C chooses b ∈ {0, 1} and a tag id ∈
{0, 1}n and signs the vector space Vb with a tag

id. Then, C uses LinCom(pk, id, {(gj , σj)}lj=1)
algorithm to derive signatures σj on functions

fj

(
v

(b)
1 ,v

(b)
2 , · · · ,v(b)

k

)
for all j = 1, 2, · · · , s and

gives them to A. The function can be out adap-
tively after choosing V0 and V1.

Output :
A outputs a bit b′.

The adversary A wins the game if b = b′.

4.2 Security Analysis

To prove the security requirements of our signature,
we show multi-unforgeability and weakly context hiding
property of our construction in Theorems 2 and 3.
We prove multi-unforgeability of our multi-signature
with linear homomorphism over F2 in the random ora-
cle model. From an adversary that forges the signature
of the proposed signature over Z2q, we make an adver-
sary that solves the k-SIS problem over Zq.

Theorem 2. For the proposed signature MLH, sup-
pose that m = d6n log 2qe and γ = 30

√
n log 2q log n.

Let β = L · γ
√

2m. Then the proposed signature is
multi-unforgeable in the random oracle model assum-
ing that k-SISq,2m,β,γ problem is infeasible and weakly
context hiding property holds for our signature.

Proof. Let A be an adversary that has the advantage
ε0 of the challenge-response game in Definition 4. We
show the advantage of this game played by A is neg-
ligible on n assuming that k-SISq,2m,β,γ problem is in-
feasible.

Game 0. Game 0 is equal to the challenge-response
game in Definition 4 for some gc.

Game 1. Let Game 1 is equal to the challenge-
response game in Definition 1. From the weakly
context hiding property of our signature, given
signatures σ1, σ2, · · · , σg for original vectors v1,

v2, · · · ,vg, signatures do not reveal any informa-
tion on partial signatures ρij for each vi. They
only depends on the vector v =

∑g
i=1 vi and the

participants of signatures. Thus, finding a signa-
ture σ∗ for a vector v∗ in Game 0 is more diffi-
cult than finding a signature σ∗ for a vector v∗ in
Game 1. The advantage ε1 of Game 1 is greater
than or equal to the advantage ε0 of Game 0, i.e.,
ε1 ≥ ε0.

Game 2. Let Game 2 is a game to break k-SISq,2m,β,γ
problem. The probability ε2 of Game 2 is greater
than or equal to the advantage ε1 of Game 1 by
Lemma 4, i.e., ε2 ≥ ε1.

Thus, the adversary that wins Game 0 with non-
negligible probability breaks k-SISq,2m,β,γ problem with
non-negligible probability. So, our signature is multi-
unforgeable in the random oracle model assuming that
k-SISq,2m,β,γ problem is infeasible.

Theorem 3. For the proposed signature MLH, sup-
pose that k <

log n

2 log log n
, m = d6n log 2qe and γ =

30
√
n log 2q log n. Then, the proposed signature is weakly

context hiding.

Proof. In our signature, one obtains a signature σ on a
linear combination v of vectors by calculating a linear
combination of the signatures σ1, σ2, · · · , σg of the orig-
inal vectors v1,v2, · · · ,vg like Boneh and Freeman’s
signature. Thus, from Lemma 5, a signature σlin on
a linear combination vector vlin of vectors by summing
up signatures σ1, σ2, · · · , σg of vectors v1,v2, · · · ,vg
does not leak information on the original signatures
and our signature is weakly context hiding.

5 Concluding Remark

We construct a novel lattice-based multi-signature
with linear homomorphism over binary fields by gener-
alizing linearly homomorphic signature by Boneh and
Freeman [5].

In Table 1, we compare our signature with previous
lattice-based signatures with linear homomorphism. Al-
though one needs to deal with multiple signers on a
single message in the real world, Boneh and Freeman’s
original signature (BF11) does not satisfy this issue.
Zhang et al. (ZYW12) [8] and Jing (J13) [9] suggested
how to aggregate multiple signatures on multiple mes-
sages with each single signer having different secret key.
Still, they do not suggest how to manage multiple sign-
ers on a single message. And we suggest how to manage
multiple signatures on a single message with multiple
signers with different secret key.

Our signature is based on k-SIS problem like Boneh
and Freeman’s signature and is proved to exhibit very
similar security requirements and homomorphic prop-
erty of Boneh and Freeman’s signature.

One can implement our signature in the real world
cloud systems which have both individual signers and
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Table 1: Comparison of LHS

Scheme BF11 [5] ZYW12 [8] J13 [9] Ours

Hard Problem k-SIS SIS SIS k-SIS

Known X O X X
Attack

Number of unique multiple multiple multiple
Secret Key

Number of single single single multiple
Signers

multiple signers. By merging our signature with any
homomorphic encryption, one can obtain a more au-
thentic cloud system by giving integrity. For exam-
ple, we encrypt a set of messages {pt1,pt2, · · · ,ptg}
into {ct1, ct2, · · · , ctg} using homomorphic encryption
and make a signature σi for each cti using our signa-
ture. Then, a signature σ =

∑g
i=1 σi for a message

ct =
∑g
i=1 cti is valid and we check the integrity of

the message before decrypting it.
Till now, our scheme is restricted because of its both-

ersome reset process when there are another member
joining. Thus, as future work, it is mandatory to make
our signature to be more adaptive and efficient so that
the signature is applicable to the real world scenario.
Also, finding the concrete value of gc in Definition
4 is still an open problem. It is challenging to make
other group-oriented signature with linear homomor-
phism such as linearly homomorphic group signatures
and linearly homomorphic ring signatures or to extend
the group-oriented signature with fully homomorphic
property.
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