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Abstract—Previous research in spam detection, especially in 

email spam filtering, mainly focused on learning a set of 

discriminative features that are often present in the spam contents. 

Nowadays, these commercially oriented spams are well detected; 

the real challenge lies in filtering rather vague spams that do not 

exhibit distinctive spam keywords. We investigate two ways of 

detecting such spams: 1) By comparing the similarity between the 

publisher posts and user comments, and 2) by learning a single 

representative meta-feature such as user name or ID. The first 

measure relieves us from repetitively learning a set of domain-

dependent spam features, and the second measure enables us to 

detect potential spam users even before the aggressive actions are 

performed. Prior to the language model comparison in the first 

method, we supplement the background information, normalize 

the text, perform co-reference resolution, and conduct word-to-

word similarity measure in hope of enriching the language models 

to improve the classification accuracy. To evaluate the first 

measure, experiments on detecting blog-spam comments are 

conducted. As for the second measure, we employ SVM on the ID 

space of e-mail data collected by “Apache Spam Assassin”. 

Keywords—spam filtering; spam user detection; machine 

learning;  

I.  INTRODUCTION  

Increased interactivity between users has led to an in-creased 
amount of unwanted messages posted as comments. Such spam 
contents affect the user experience, reduce the quality of 
information provided by the publisher and hence indirectly 
cause financial losses. 

In this paper, two approaches to create a domain-
independent spam comment filter are proposed, where we aim 
to detect vague spam comments that do not contain explicit spam 
keywords. 

The first approach compares the semantic similarity between 
publisher posts and candidate comments. However, since the 
size of the comments tend to be significantly shorter than the 
posts, directly comparing the similarity score would result in a 
high false-positive rate. This problem is solved by enriching the 
language model of the post and comment; we fetch background 
information from Wikipedia, normalize the text, apply co-
reference resolution, and finally take similar words into account 
when measuring the overall similarity of the two models. 

The second approach classifies spam users using ID space of 
e-mail addresses. Many probabilistic language models employ 
words or phrases separated by white-space as a feature to build 
a classifier. However these features are not suitable for a 

classifier that only takes a single attribute. We try to treat this 
problem using n-gram of characters to represent the attribute.  

II. RELATED WORK 

A lot of research effort has been put into spam detection over 
the past decades with considerable work done mainly on spam 
email classification [4]. However, research on spam comments 
only started in 2005 and has yet to gain much prominence. In 
2005, Mishne et al. [11] used smoothed KL-divergence to 
compute the similarity difference between the original post and 
comments, as well as the web pages linked by the comments. 
Our research follows the pattern of this earlier work. Cormack 
et al. [16] evaluated the performance of methods commonly used 
in email spam filtering, when applied to spam comment filtering. 
He concluded that the short text length of comments makes it 
difficult to support the bag-of-words model commonly used by 
spam classifiers. Romero et al. [13] performed a comparative 
study of four classification techniques (naive Bayes, k-nearest 
neighbors, neural networks and support vector machines) in blog 
spam comment filtering. Building a spam classifier using the 
support vector machine resulted in the highest performance of 
84.6%. Huang et al. [8] utilized a cosine similarity measure and 
KL-divergence to conduct content analysis, and built a heuristic 
decision tree depending on the length of comments. We 
attempted to detect spam user using those features: lexical 
analysis of user name and its past labeled user name.  

In addition, many authors have considered the problem of 
spam detection by employing the meta-data of the posted 
comment. Such additional information includes, e-mail 
addresses, click stream patterns, social graph properties, etc. 
These methods work well when the meta-data are abundant. 
However, it may not always be like this; we may only have the 
user’s names and the contents available to us. Hence, we turn 
our attention to the work of Freeman and David [7] where they 
proposed to filter spam users with just the user’s name on 
LinkedIn website. We adopt this method to another in our 
second approach to spam detection. 

III. SPAM COMMENTS ANALYSIS 

Before describing the approach and techniques employed in 
this work, it is helpful to look at the type of spam comments that 
we will face. As many blog-hosting websites are equipped with 
filtering engine, most of spam are in the form of Fig. 1. 

I must thank you for the efforts you have put in writing this 
website. I really hope to check out the same high-grade blog 
posts from you later on as well. In fact, your creative writing 
abilities has inspired me to get my very own site now! 

 
Fig. 1. Example of vague and irrelevant spam comments 



This kind of comment does not contain explicit links, or 
commercially oriented keywords. This makes them arguably the 
most difficult kind of spam to detect. In fact, even a state-of-the-
art spam comment filter like Askimet [1] cannot detect them 
effectively. The goal of this research is to detect this type of 
spam based on vague comments, as well as the traditional forms 
of spam comments. 

IV. THE FIRST APPROACH: SPAM COMMENTS DETECTION 

THROUGH LANGUAGE MODEL COMPARISON 

So how can we distinguish these vague and irrelevant spam 
from the relevant ham? According to Mishne and Glance [2], 
ham comments represent about 30% of a blog’s content. 
Therefore, we can consider comparing the similarity between 
the post and comments. However, as suggested by Cormack et 
al. [17], a direct comparison would result in a very low similarity 
score as the lengths of comments are significantly shorter than 
that of posts. To mitigate this issue, we employ four additional 
techniques. 

A.  Supplementing background information 

When a post talks about “John McCain” and his political 
campaign, a comment which discusses his recent political 
movement in the “Republican” party would be considered 
relevant. However, the post may not explicitly contain the word 
“Republican” and share no words with the comment. In such 
case, a similarity measure will give a lower score between the 
post and the candidate comment than it actually deserves. 

To alleviate this, we supplement some Wikipedia context of 
named entities appearing in the post and comments. The 
Wikipedia article of “John McCain” indeed contains 
information about his role in the “Republican” party. We add the 
first paragraph of the wiki entry, which often is a summarization 
of the entire article. 

B.  Text normalization 

Lexical normalization and lemmatization is used to account 
for slangs and misspelled words. 

C.  Co-reference resolution 

Co-reference-resolution maps pronouns into their 
representative entities, making them more frequently appear in 
the document. 

D.  Considering word similarity 

When computing the similarity measure between the two-
term vector models, we extend them to include similar words in 
the models by calculating their semantic distance using 
WordNet taxonomy. If their semantic score is above a certain 
level, we treat the two words the same, and reflect them in our 
similarity measure. We employ similarity measures by Leacock 
and Chodorow [9]. 

E.  Similarity measures 

After applying the above techniques, we proceed to measure 
the similarity between the post and comment. Two similarity 
measures, were employed with some slight modifications in the 
equations to 1) reflect the differences in size of the vector models 
of each post and comment, and 2) to incorporate words with high 
similarity. Loosely speaking, the cosine similarity determines 

how similar the two-term vector models are, whereas the latter 
measures their dissimilarity. So in a sense, they are 
complementary to each other, capturing both sides of the coin. 

Skew divergence is a weighted version of the Kullback-Leibler 

divergence. The skew divergence Sα between two language 

models l1 and l2, is given by: 

𝑆𝛼(𝑙1||𝑙2) = 𝐾𝐿(𝑙2||𝛼𝑙1 + (1 − 𝛼)𝑙2)   (2) 

  𝐾𝐿(𝑙1||𝑙2) = ∑ 𝑙1(𝑦)(𝑙𝑜𝑔𝑙1(𝑦) − 𝑙𝑜𝑔𝑙2(𝑦))𝑦    (3)   
where KL(l1 || l2) is the KL-divergence of language models l1 

and l2, y represents each word in l1 and α is the skew 

divergence constant. We empirically set α to be 0.99. Since 

skew divergence is asymmetric, we need to calculate both 

S(lpost || lcomment) and S(lcomment || lpost) and find their 

mean S as follows: 

𝑆 =
𝑆0.99(𝑙𝑝𝑜𝑠𝑡||𝑙𝑐𝑜𝑚)+𝑆0.99(𝑙𝑐𝑜𝑚||𝑙𝑝𝑜𝑠𝑡) 

2
 (4) 

V. THE SECOND APPROACH: SPAM USERS DETECTION USING 

SINGLE REPRESENTATIVE ATTRIBUTE 

Spam detection methods that use contents as features have a 
common point that they can only filter the aggressive activities 
once such activities are performed. To address this limitation, 
Freeman and David [7] tried to classify spam user with just a 
single attribute, the name of a user. Most online services require 
their users’ online identity to reflect his or her genuine identity 
in real life. So they demand genuine user information at 
registration time. But some users with bad motives intentionally 
create false identity to engage in abusive activities. For the case 
that their malicious activities are detected, such users employ 
programs to create accounts, in which IDs or assumed names are 
generated from a random string or a dictionary. The approach in 
represents the users’ name by a probabilistic model, and filter 
spam users with those features. They use the probability that a 
subsequence of a user name belonging to a spam user. 

We apply this method to e-mail account of comment writer. 
After security of personal information stand out, most of online 
services demand the least data for registration. In that situation, 
e-mail is the most representative and important attribute of user.  

A.  N-gram for feature representation 

Most spam classifications use words or phrases as a feature. 
But in this approach, these features are considered inappropriate, 
because the ID we will use as a feature in this study has only one 
attributes. Consequently, we used an n-gram [20] of characters 
to represent the feature. An n-gram represents a feature by the 
contiguous sequence of n items from a given sequence of text. 

B. Replacement of missing values  

We used the ID space of e-mail as a feature of classification. 
And we set the number of attributes to eight, the average size of 
the ID. Because every ID has a different length, necessarily 
missing values occurred. To use SVMs, we had to treat the 
missing values. We replace them with n-1 gram.  

Because an n-gram is a model representing the probability of 
a gram’s occurrence, the probability of an ungrammatical 
expression and symbol is very low in ham (ham means ‘not 
spam’), and the probability is relatively high in spam. So 
ungrammatical expressions or symbols can be evidence of spam. 



But when we analyzed the data, we found some features. People 
sometimes use ungrammatical expressions or symbols at the 

start or end of an ID, such as “lok.tarrrr” or “grayapple★”. 

Words which have “rrr” or “le★” as a substring do not exist. So 
the occurrence frequency of these words are very low, and the 
filter regards these as spam. Instead, we wanted to handle these 
cases as special cases. So we marked the start and end of an ID 
with the special symbol ‘/’.  

VI. EXPERIMENTS FOR THE FIRST APPROACH 

The previous research [3] on spam comments filtering used 
Mishne’s spam corpus [11] as a benchmark to illustrate their 
performance. However, after contacting the author, it was found 
that the corpus was lost and hence not available to be used in this 
work. Instead, a collection of spam comments was gathered 
manually. 

Our spam collection comprises 103 individual spam 
comments, where each comment only contains the content body 
and no other information (e.g., name of the spammer, the date of 
its creation). It is also interesting to note that because these 
spams got past a very advanced spam filter, almost all of them 
take the form of the kind of vague spam comments illustrated in 
Fig. 1 Many of them are either extremely complimentary or utter 
gibberish, often with bad grammar. Only two comments 
contained a direct hyperlink in the content. 

The experiment was performed by comparing model 
similarity of a) an article and its set of ham comments, against b) 
the spam comments. Table 1 illustrates an example. 

The result shows that the average cosine similarity of ham 
comments to the article is higher than to the spam comments. 
This means that relevant comments share more similar context 

with the article. We can also confirm that the skew divergence 
of the spam comments is larger than the value of the ham 
comments. This is because the word probability distribution of 
spam comments differs more significantly from the article’s 
probability distribution. 

The same experiment was conducted using a different set of 
articles and ham comments gathered from the Washington Post. 
The top ten most-read articles as of 15 January 2015 were chosen. 
The results are shown in Fig. 2 and 3. 

As depicted in the graphs, further experiments conform to our 
expectations in the sense that ham comments achieve higher 
similarity scores and lower divergence values than the spams. 
However, in the case of the skew divergence, the difference 
between the two scores is not always significant (e.g., the 7th 
post shows only 3% difference in the score). We believe such 
case arises when an original post largely contains simple words 
that are also abundantly present in the spam comments, reducing 
the divergence score of spams. Recall that spam comments 
consist of many general and simple words which can give high 
word similarity score when compared with another general 
words in the post. As future work, we will consider employing a 
scheme to pick out only the “important” words for comparison. 

VII. EXPERIMENTS FOR THE SECOND APPROACH 

Since a dataset that includes spam comments and 
corresponding email addresses is hard to achieve due to its 
scarcity, we instead evaluate the performance of our method on 
spam e-mail datasets. We used SVM as a classifier and secured 
8,846 data which consisted of 6,452 ham mails and 2,394 spam 
mails to evaluate our approach. We designed the experiment 
with 10-fold cross validation. We measured the accuracy, 
precision, recall, F-measure, AUC, and Kappa score. 

A. Data set  

As noted, the data set we used in this experiment consisted 
of 6,452 ham mails and 2,394 spam mails which were collected 
between 2002 and 2004. These mails obey the xml form. We 
extracted the ID space from these mails and used them as a 
classifier feature. We obtained the dataset from Apache Spam 
Assassin which is a famous spam filter open source company. 
They provided the source code of a spam filter and dataset to test.  

B. Performance of rival method 

We set a content based spam filter as a rival method to be 
compared with our approach. This classifier used the existence 
of 1,900 words which frequently appeared in pre-investigation 
as a feature of the classification algorithm, SVMs. The existence 
of a word is represented by 0 and 1, and the SVM model is a 
representation of the data as points in hyperspace which has 
1,900 axis. This method shows awesome performance. It is 
presented in Table 2 as follows.  

TABLE II. PERFORMANCE OF BASIC AND RIVAL METTHODS 

 Basic Rival 

Accuracy 0.729 0.983 

Precision 0.0 0.972 

Recall 0.0 0.976 

F-measure 0.0 0.974 

AUC 0.5 0.998 

TABLE I. COMPARISON OF HAM AND SPAM COMMENTS 

Article title 

“McCain tells White House he wants 

Lieberman for defense secretary [4, 5]” 

Ham comments Spam comments 

# of comments 9 10 

Avg. # of words 71.89 38.70 

Avg. cosine similarity 3.08 2.27 

Avg. skew divergence 8.25 9.96 

 

 

Fig. 2. Cosine similarity scores for the 10 posts 

 

Fig. 3. Skew divergence scores for the 10 posts 



C. Performance of initial version  

At first, we evaluated our initial version using only n-gram 
and SVMs. The result is shown in Table 2. The basic classifier 
always says “This mail is not spam mail.” To improve the 
performance, we introduced the method of replacing missing 
values and marking the start and end with the special symbol.  

D. Performance of improved version  

After the introduction of replacing and marking, there was a 
tremendous improvement. The proposed method could not 
overtake the rival method. But it showed great performance, not 
only in accuracy, but also in precision, recall, F-measure, AUC, 
and Kappa scores. The detailed results are presented in Tables 3 
and 4. RMV means replacement for missing value and MSE 
means marking start and end with special symbol. The result of 
the experiment proved this classification algorithm is totally 
trustworthy. The model which applied 3-gram, RMV and MSE 
shows the best performance. 

E. Limitation  

Using only a single-attribute and representing attribute with 
an n-gram is a point of this section. But the method has some 
limitations. The biggest weakness is unavoidable false positives. 
A single attribute method cannot handle words from a non-
English keyboard or readable symbol expressions. The former 
issue surface from a user who lived in a non-English country. In 
a nation which has its own language, I/O devices, such as a 
keyboard, have to treat both English and the national language.  
So the keys of a keyboard are used for several letters, and the 
keyboard has a translation key to change language mode. The 
users from these countries sometimes type words using their 
country's language in English mode. Readable symbol 
expressions are caused by creative users, when letters in words 
are substituted by symbols, numbers or other letters. For 
example, most people can read "sk8ter boi", the famous song of 
Avril Lavign, as "skater boy". But the computer does not have 
the flexibility to treat that word in that way.  

VIII.  CONCLUSION 

In this paper, we propose an approach to a domain-
independent spam filter that detects vague and irrelevant 
comments by measuring the similarity between the post and 
comment. In addition, we filter spam users by employing a 
single representative attribute. To increase the precision of 
content analysis, techniques such as text normalization, co-
reference resolution, word similarity measure and Wikipedia 
extraction are utilized. Preliminary experiments show promising 
results. 

For further research, we plan to investigate ways to 
distinguish “important” words from the common words and 
utilize them in the word-to-word similarity measure. 
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TABLE IV. PERFORMANCE AFTER REPLACEMENT FOR MISSING 

VALUES 

RMV 2-gram 3-gram 4-gram 5-gram Rival 

Accuracy 0.966 0.962 0.966 0.904 0.983 

Precision 0.969 0.969 0.969 0.933 0.972 

Recall 0.905 0.889 0.905 0.697 0.976 

F-measure 0.936 0.927 0.936 0.789 0.974 

AUC 0.955 0.943 0.954 0.85 0.998 

Kappa 0.913 0.901 0.913 0.737 0.961 

 TABLE III. PERFORMANCE AFTER REPLACEMENT OF MISSING 

VALUES AND MARKING START AND END WITH SPECIAL SYMBOL 

RMV+MSE 2-gram 3-gram 4-gram 5-gram Rival 

Accuracy 0.967 0.967 0.966 0.962 0.983 

Precision 0.969 0.969 0.969 0.969 0.972 

Recall 0.905 0.905 0.905 0.889 0.976 

F-measure 0.936 0.936 0.936 0.927 0.974 

AUC 0.953 0.957 0.954 0.933 0.998 

Kappa 0.913 0.913 0.913 0.901 0.961 
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