
An Approach to Spam Comment Detection through

Domain-independent Features

Jong Myoung Kim, Zae Myung Kim, and Kwangjo Kim

School of Computing, Korea Advanced Institute of Science and Technology (KAIST)

Email: {grayapple, zaemyung, kkj}@kaist.ac.kr

Abstract—Previous research in spam detection, especially in

email spam filtering, mainly focused on learning a set of

discriminative features that are often present in the spam contents.

Nowadays, these commercially oriented spams are well detected;

the real challenge lies in filtering rather vague spams that do not

exhibit distinctive spam keywords. We investigate two ways of

detecting such spams: 1) By comparing the similarity between the

publisher posts and user comments, and 2) by learning a single

representative meta-feature such as user name or ID. The first

measure relieves us from repetitively learning a set of domain-

dependent spam features, and the second measure enables us to

detect potential spam users even before the aggressive actions are

performed. Prior to the language model comparison in the first

method, we supplement the background information, normalize

the text, perform co-reference resolution, and conduct word-to-

word similarity measure in hope of enriching the language models

to improve the classification accuracy. To evaluate the first

measure, experiments on detecting blog-spam comments are

conducted. As for the second measure, we employ SVM on the ID

space of e-mail data collected by “Apache Spam Assassin”.

Keywords—spam filtering; spam user detection; machine

learning;

I. INTRODUCTION

Increased interactivity between users has led to an in-creased
amount of unwanted messages posted as comments. Such spam
contents affect the user experience, reduce the quality of
information provided by the publisher and hence indirectly
cause financial losses.

In this paper, two approaches to create a domain-
independent spam comment filter are proposed, where we aim
to detect vague spam comments that do not contain explicit spam
keywords.

The first approach compares the semantic similarity between
publisher posts and candidate comments. However, since the
size of the comments tend to be significantly shorter than the
posts, directly comparing the similarity score would result in a
high false-positive rate. This problem is solved by enriching the
language model of the post and comment; we fetch background
information from Wikipedia, normalize the text, apply co-
reference resolution, and finally take similar words into account
when measuring the overall similarity of the two models.

The second approach classifies spam users using ID space of
e-mail addresses. Many probabilistic language models employ
words or phrases separated by white-space as a feature to build
a classifier. However these features are not suitable for a

classifier that only takes a single attribute. We try to treat this
problem using n-gram of characters to represent the attribute.

II. RELATED WORK

A lot of research effort has been put into spam detection over
the past decades with considerable work done mainly on spam
email classification [4]. However, research on spam comments
only started in 2005 and has yet to gain much prominence. In
2005, Mishne et al. [11] used smoothed KL-divergence to
compute the similarity difference between the original post and
comments, as well as the web pages linked by the comments.
Our research follows the pattern of this earlier work. Cormack
et al. [16] evaluated the performance of methods commonly used
in email spam filtering, when applied to spam comment filtering.
He concluded that the short text length of comments makes it
difficult to support the bag-of-words model commonly used by
spam classifiers. Romero et al. [13] performed a comparative
study of four classification techniques (naive Bayes, k-nearest
neighbors, neural networks and support vector machines) in blog
spam comment filtering. Building a spam classifier using the
support vector machine resulted in the highest performance of
84.6%. Huang et al. [8] utilized a cosine similarity measure and
KL-divergence to conduct content analysis, and built a heuristic
decision tree depending on the length of comments. We
attempted to detect spam user using those features: lexical
analysis of user name and its past labeled user name.

In addition, many authors have considered the problem of
spam detection by employing the meta-data of the posted
comment. Such additional information includes, e-mail
addresses, click stream patterns, social graph properties, etc.
These methods work well when the meta-data are abundant.
However, it may not always be like this; we may only have the
user’s names and the contents available to us. Hence, we turn
our attention to the work of Freeman and David [7] where they
proposed to filter spam users with just the user’s name on
LinkedIn website. We adopt this method to another in our
second approach to spam detection.

III. SPAM COMMENTS ANALYSIS

Before describing the approach and techniques employed in
this work, it is helpful to look at the type of spam comments that
we will face. As many blog-hosting websites are equipped with
filtering engine, most of spam are in the form of Fig. 1.

I must thank you for the efforts you have put in writing this
website. I really hope to check out the same high-grade blog
posts from you later on as well. In fact, your creative writing
abilities has inspired me to get my very own site now!

Fig. 1. Example of vague and irrelevant spam comments

This kind of comment does not contain explicit links, or
commercially oriented keywords. This makes them arguably the
most difficult kind of spam to detect. In fact, even a state-of-the-
art spam comment filter like Askimet [1] cannot detect them
effectively. The goal of this research is to detect this type of
spam based on vague comments, as well as the traditional forms
of spam comments.

IV. THE FIRST APPROACH: SPAM COMMENTS DETECTION

THROUGH LANGUAGE MODEL COMPARISON

So how can we distinguish these vague and irrelevant spam
from the relevant ham? According to Mishne and Glance [2],
ham comments represent about 30% of a blog’s content.
Therefore, we can consider comparing the similarity between
the post and comments. However, as suggested by Cormack et
al. [17], a direct comparison would result in a very low similarity
score as the lengths of comments are significantly shorter than
that of posts. To mitigate this issue, we employ four additional
techniques.

A. Supplementing background information

When a post talks about “John McCain” and his political
campaign, a comment which discusses his recent political
movement in the “Republican” party would be considered
relevant. However, the post may not explicitly contain the word
“Republican” and share no words with the comment. In such
case, a similarity measure will give a lower score between the
post and the candidate comment than it actually deserves.

To alleviate this, we supplement some Wikipedia context of
named entities appearing in the post and comments. The
Wikipedia article of “John McCain” indeed contains
information about his role in the “Republican” party. We add the
first paragraph of the wiki entry, which often is a summarization
of the entire article.

B. Text normalization

Lexical normalization and lemmatization is used to account
for slangs and misspelled words.

C. Co-reference resolution

Co-reference-resolution maps pronouns into their
representative entities, making them more frequently appear in
the document.

D. Considering word similarity

When computing the similarity measure between the two-
term vector models, we extend them to include similar words in
the models by calculating their semantic distance using
WordNet taxonomy. If their semantic score is above a certain
level, we treat the two words the same, and reflect them in our
similarity measure. We employ similarity measures by Leacock
and Chodorow [9].

E. Similarity measures

After applying the above techniques, we proceed to measure
the similarity between the post and comment. Two similarity
measures, were employed with some slight modifications in the
equations to 1) reflect the differences in size of the vector models
of each post and comment, and 2) to incorporate words with high
similarity. Loosely speaking, the cosine similarity determines

how similar the two-term vector models are, whereas the latter
measures their dissimilarity. So in a sense, they are
complementary to each other, capturing both sides of the coin.

Skew divergence is a weighted version of the Kullback-Leibler

divergence. The skew divergence Sα between two language

models l1 and l2, is given by:

𝑆𝛼(𝑙1||𝑙2) = 𝐾𝐿(𝑙2||𝛼𝑙1 + (1 − 𝛼)𝑙2) (2)

 𝐾𝐿(𝑙1||𝑙2) = ∑ 𝑙1(𝑦)(𝑙𝑜𝑔𝑙1(𝑦) − 𝑙𝑜𝑔𝑙2(𝑦))𝑦 (3)
where KL(l1 || l2) is the KL-divergence of language models l1

and l2, y represents each word in l1 and α is the skew

divergence constant. We empirically set α to be 0.99. Since

skew divergence is asymmetric, we need to calculate both

S(lpost || lcomment) and S(lcomment || lpost) and find their

mean S as follows:

𝑆 =
𝑆0.99(𝑙𝑝𝑜𝑠𝑡||𝑙𝑐𝑜𝑚)+𝑆0.99(𝑙𝑐𝑜𝑚||𝑙𝑝𝑜𝑠𝑡)

2
 (4)

V. THE SECOND APPROACH: SPAM USERS DETECTION USING

SINGLE REPRESENTATIVE ATTRIBUTE

Spam detection methods that use contents as features have a
common point that they can only filter the aggressive activities
once such activities are performed. To address this limitation,
Freeman and David [7] tried to classify spam user with just a
single attribute, the name of a user. Most online services require
their users’ online identity to reflect his or her genuine identity
in real life. So they demand genuine user information at
registration time. But some users with bad motives intentionally
create false identity to engage in abusive activities. For the case
that their malicious activities are detected, such users employ
programs to create accounts, in which IDs or assumed names are
generated from a random string or a dictionary. The approach in
represents the users’ name by a probabilistic model, and filter
spam users with those features. They use the probability that a
subsequence of a user name belonging to a spam user.

We apply this method to e-mail account of comment writer.
After security of personal information stand out, most of online
services demand the least data for registration. In that situation,
e-mail is the most representative and important attribute of user.

A. N-gram for feature representation

Most spam classifications use words or phrases as a feature.
But in this approach, these features are considered inappropriate,
because the ID we will use as a feature in this study has only one
attributes. Consequently, we used an n-gram [20] of characters
to represent the feature. An n-gram represents a feature by the
contiguous sequence of n items from a given sequence of text.

B. Replacement of missing values

We used the ID space of e-mail as a feature of classification.
And we set the number of attributes to eight, the average size of
the ID. Because every ID has a different length, necessarily
missing values occurred. To use SVMs, we had to treat the
missing values. We replace them with n-1 gram.

Because an n-gram is a model representing the probability of
a gram’s occurrence, the probability of an ungrammatical
expression and symbol is very low in ham (ham means ‘not
spam’), and the probability is relatively high in spam. So
ungrammatical expressions or symbols can be evidence of spam.

But when we analyzed the data, we found some features. People
sometimes use ungrammatical expressions or symbols at the

start or end of an ID, such as “lok.tarrrr” or “grayapple★”.

Words which have “rrr” or “le★” as a substring do not exist. So
the occurrence frequency of these words are very low, and the
filter regards these as spam. Instead, we wanted to handle these
cases as special cases. So we marked the start and end of an ID
with the special symbol ‘/’.

VI. EXPERIMENTS FOR THE FIRST APPROACH

The previous research [3] on spam comments filtering used
Mishne’s spam corpus [11] as a benchmark to illustrate their
performance. However, after contacting the author, it was found
that the corpus was lost and hence not available to be used in this
work. Instead, a collection of spam comments was gathered
manually.

Our spam collection comprises 103 individual spam
comments, where each comment only contains the content body
and no other information (e.g., name of the spammer, the date of
its creation). It is also interesting to note that because these
spams got past a very advanced spam filter, almost all of them
take the form of the kind of vague spam comments illustrated in
Fig. 1 Many of them are either extremely complimentary or utter
gibberish, often with bad grammar. Only two comments
contained a direct hyperlink in the content.

The experiment was performed by comparing model
similarity of a) an article and its set of ham comments, against b)
the spam comments. Table 1 illustrates an example.

The result shows that the average cosine similarity of ham
comments to the article is higher than to the spam comments.
This means that relevant comments share more similar context

with the article. We can also confirm that the skew divergence
of the spam comments is larger than the value of the ham
comments. This is because the word probability distribution of
spam comments differs more significantly from the article’s
probability distribution.

The same experiment was conducted using a different set of
articles and ham comments gathered from the Washington Post.
The top ten most-read articles as of 15 January 2015 were chosen.
The results are shown in Fig. 2 and 3.

As depicted in the graphs, further experiments conform to our
expectations in the sense that ham comments achieve higher
similarity scores and lower divergence values than the spams.
However, in the case of the skew divergence, the difference
between the two scores is not always significant (e.g., the 7th
post shows only 3% difference in the score). We believe such
case arises when an original post largely contains simple words
that are also abundantly present in the spam comments, reducing
the divergence score of spams. Recall that spam comments
consist of many general and simple words which can give high
word similarity score when compared with another general
words in the post. As future work, we will consider employing a
scheme to pick out only the “important” words for comparison.

VII. EXPERIMENTS FOR THE SECOND APPROACH

Since a dataset that includes spam comments and
corresponding email addresses is hard to achieve due to its
scarcity, we instead evaluate the performance of our method on
spam e-mail datasets. We used SVM as a classifier and secured
8,846 data which consisted of 6,452 ham mails and 2,394 spam
mails to evaluate our approach. We designed the experiment
with 10-fold cross validation. We measured the accuracy,
precision, recall, F-measure, AUC, and Kappa score.

A. Data set

As noted, the data set we used in this experiment consisted
of 6,452 ham mails and 2,394 spam mails which were collected
between 2002 and 2004. These mails obey the xml form. We
extracted the ID space from these mails and used them as a
classifier feature. We obtained the dataset from Apache Spam
Assassin which is a famous spam filter open source company.
They provided the source code of a spam filter and dataset to test.

B. Performance of rival method

We set a content based spam filter as a rival method to be
compared with our approach. This classifier used the existence
of 1,900 words which frequently appeared in pre-investigation
as a feature of the classification algorithm, SVMs. The existence
of a word is represented by 0 and 1, and the SVM model is a
representation of the data as points in hyperspace which has
1,900 axis. This method shows awesome performance. It is
presented in Table 2 as follows.

TABLE II. PERFORMANCE OF BASIC AND RIVAL METTHODS

 Basic Rival

Accuracy 0.729 0.983

Precision 0.0 0.972

Recall 0.0 0.976

F-measure 0.0 0.974

AUC 0.5 0.998

TABLE I. COMPARISON OF HAM AND SPAM COMMENTS

Article title

“McCain tells White House he wants

Lieberman for defense secretary [4, 5]”

Ham comments Spam comments

of comments 9 10

Avg. # of words 71.89 38.70

Avg. cosine similarity 3.08 2.27

Avg. skew divergence 8.25 9.96

Fig. 2. Cosine similarity scores for the 10 posts

Fig. 3. Skew divergence scores for the 10 posts

C. Performance of initial version

At first, we evaluated our initial version using only n-gram
and SVMs. The result is shown in Table 2. The basic classifier
always says “This mail is not spam mail.” To improve the
performance, we introduced the method of replacing missing
values and marking the start and end with the special symbol.

D. Performance of improved version

After the introduction of replacing and marking, there was a
tremendous improvement. The proposed method could not
overtake the rival method. But it showed great performance, not
only in accuracy, but also in precision, recall, F-measure, AUC,
and Kappa scores. The detailed results are presented in Tables 3
and 4. RMV means replacement for missing value and MSE
means marking start and end with special symbol. The result of
the experiment proved this classification algorithm is totally
trustworthy. The model which applied 3-gram, RMV and MSE
shows the best performance.

E. Limitation

Using only a single-attribute and representing attribute with
an n-gram is a point of this section. But the method has some
limitations. The biggest weakness is unavoidable false positives.
A single attribute method cannot handle words from a non-
English keyboard or readable symbol expressions. The former
issue surface from a user who lived in a non-English country. In
a nation which has its own language, I/O devices, such as a
keyboard, have to treat both English and the national language.
So the keys of a keyboard are used for several letters, and the
keyboard has a translation key to change language mode. The
users from these countries sometimes type words using their
country's language in English mode. Readable symbol
expressions are caused by creative users, when letters in words
are substituted by symbols, numbers or other letters. For
example, most people can read "sk8ter boi", the famous song of
Avril Lavign, as "skater boy". But the computer does not have
the flexibility to treat that word in that way.

VIII. CONCLUSION

In this paper, we propose an approach to a domain-
independent spam filter that detects vague and irrelevant
comments by measuring the similarity between the post and
comment. In addition, we filter spam users by employing a
single representative attribute. To increase the precision of
content analysis, techniques such as text normalization, co-
reference resolution, word similarity measure and Wikipedia
extraction are utilized. Preliminary experiments show promising
results.

For further research, we plan to investigate ways to
distinguish “important” words from the common words and
utilize them in the word-to-word similarity measure.

ACKNOWLEDGMENT

This work was supported by ICT R&D program of
MSIP/IITP. [R0101-15-0062, Development of Knowledge
Evolutionary WiseQA Platform Technology for Human
Knowledge Augmented Services]

REFERENCES

[1] Askimet, “Akismet: Comment spam prevention for your blog,”
<http://akismet.com/>.

[2] Mishne, Gilad, and Natalie Glance. “Leave a reply: An analysis of weblog
comments.” Third annual workshop on the Weblogging ecosystem. 2006.

[3] Sculley, D. Advances in online learning-based spam filtering. ProQuest,
2008.

[4] Androutsopoulos, I., Koutsias, J., Chandrinos, K. V., and Spyropoulos, C.
D. An experimental comparison of naive bayesian and keyword-based
anti-spam filtering with personal e-mail messages. In Proceedings of the
23rd annual international ACM SIGIR conference on Research and
development in information retrieval (2000), ACM, pp. 160–167.

[5] Cormack, G. V., G Ómez Hidalgo, J. M., and S Ánz, E. P. Spam filtering
for short messages. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management (2007), ACM,
pp. 313–320.

[6] Cormack, G. V., and Lynam, T. R. Online supervised spam filter
evaluation. ACM Transactions on Information Systems (TOIS) 25, 3
(2007), 11.

[7] Freeman, D. M. Using naive bayes to detect spammy names in social
networks. In Proceedings of the 2013 ACM workshop on Artificial
intelligence and security (2013), ACM, pp. 3–12.

[8] Huang, C., Jiang, Q., and Zhang, Y. Detecting comment spam through
content analysis. In Web-Age Information Management. Springer, 2010,
pp. 222–233.

[9] Joachims, T. Text categorization with support vector machines: Learning
with many relevant features. Springer, 1998.

[10] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., and
Mcclosky, D. The Stanford corenlp natural language processing toolkit.
In Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations (2014), pp. 55–60.

[11] Mishne, G., and Glance, N. Leave a reply: An analysis of weblog
comments. In Third annual workshop on the Weblogging ecosystem
(2006), Edinburgh, Scotland.

[12] Romero, C., Valdez, M. G., and Alanis, A. A comparative study of
machine learning techniques in blog comments spam filtering. In Neural
Networks (IJCNN), The 2010 International Joint Conference on (2010),
IEEE, pp. 1–7.

.

TABLE IV. PERFORMANCE AFTER REPLACEMENT FOR MISSING

VALUES

RMV 2-gram 3-gram 4-gram 5-gram Rival

Accuracy 0.966 0.962 0.966 0.904 0.983

Precision 0.969 0.969 0.969 0.933 0.972

Recall 0.905 0.889 0.905 0.697 0.976

F-measure 0.936 0.927 0.936 0.789 0.974

AUC 0.955 0.943 0.954 0.85 0.998

Kappa 0.913 0.901 0.913 0.737 0.961

 TABLE III. PERFORMANCE AFTER REPLACEMENT OF MISSING

VALUES AND MARKING START AND END WITH SPECIAL SYMBOL

RMV+MSE 2-gram 3-gram 4-gram 5-gram Rival

Accuracy 0.967 0.967 0.966 0.962 0.983

Precision 0.969 0.969 0.969 0.969 0.972

Recall 0.905 0.905 0.905 0.889 0.976

F-measure 0.936 0.936 0.936 0.927 0.974

AUC 0.953 0.957 0.954 0.933 0.998

Kappa 0.913 0.913 0.913 0.901 0.961

http://akismet.com/

