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a b s t r a c t

Digital signatures are one of the most fundamental primitives in cryptography. In this
paper, three new paradigms are proposed to obtain signatures that are secure against exis-
tential forgery under adaptively chosen message attacks (fully-secure, in short), from any
weakly-secure signature. These transformations are generic, simple, and provably secure
in the standard model. In the first paradigm, based on a weakly-secure signature scheme,
the construction of a fully-secure signature scheme requires one-time signature addition-
ally. However, the other two are built only on weakly-secure signatures. To the best of
our knowledge, it is observed for the first time in this paper that two weakly-secure signa-
ture schemes are sufficient to construct a fully-secure signature scheme.

Based on the new proposed paradigms, several efficient instantiations without random
oracles are also presented. We also show that these fully-secure signature schemes have
many special interesting properties in application.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Digital signature plays a central role in cryptography. The standard definition on the security of signature scheme was
given by Goldwasser et al. [18]. Compared to the standard security model [18], there are also many weak security models.
In fact, in terms of the goals and resources of the adversary, many security models can be formed. However, signatures in
these weak security models, such as existentially unforgeable against generic chosen message attack (or, weak chosen mes-
sage attack) [5,18], are not sufficient in many practical applications. In this paper, the signatures that is secure against weak
chosen message attack are called weakly-secure signatures. In this security model, the adversary is required to submit all sig-
nature queries before the signer’s public key is published.

Obviously, because of the limitation of signature queries, the signature that is provably secure in this weak model will be
insecure in many practical applications. There are many attempts to design practical and provably secure signature schemes
in the standard security model [18]. These methods can be divided into two categories, namely, concrete construction meth-
od and generic construction method.

There are many concrete constructions of signature schemes based on some standard assumptions, such as discrete log-
arithm problem [28,30], computational Diffie–Hellman problem [6,17,34], factoring problem [3]. Some constructions based
on other assumptions [29,36] have also been proposed. Though they are efficient, their security can only be proven in the
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random oracle model. As we know, Canetti et al. [9] has showed that some popular cryptosystems previously proved secure
in the random oracle are actually insecure when the random oracle is instantiated by any real-world hash functions. Over the
last decades, several signature schemes were proposed in the standard model based on some stronger complexity assump-
tions such as [5,8,12,16,20]. Among them, the most efficient schemes are based on the Strong-RSA assumption [12,16] and
q-strong Diffie–Hellman (q-SDH) assumption [5], which are cryptographically stronger than the computational Diffie–
Hellman and RSA assumptions.

There are also many generic constructions of signatures based on the basic cryptographic primitive, such as (trapdoor)
one-way functions [1,22]. Many generic constructions from other cryptographic protocols have also been proposed, such
as non-interactive zero-knowledge [19,11,15]. Among them, the most famous one is the Fiat–Shamir (FS) transform [15].
However, its security relies on the random oracle model. To avoid the usage of random oracle model, from the R protocol,
Cramer and Damgård [11] gave another generic transformation. However, this conversion method is not practical because it
used the authentication tree. Very recently, Bellare and Shoup [4] showed a simple transform for the construction of stan-
dard and strongly secure signatures from the R protocol, using the tool of two-tier signatures.

1.1. Our results

Firstly, we present three new paradigms to transform any weakly-secure signature schemes into fully-secure signature
schemes. More precisely, these three paradigms are called sequential composition with one-time signature, sequential com-
position method, and parallel composition method, respectively. To the best of our knowledge, it is observed for the first
time in our paper that only two weakly-secure signature schemes are required to get fully-secure signatures. Therefore, this
paper makes contributions towards the goal to obtain efficient constructions with standard assumptions. Motivated from the
results of [23], Huang et al. [21] showed how to construct a strongly unforgeable signature from a weakly secure signature
and Li et al. [24] showed two generic construction methods to get an unforgeable signature scheme from a weakly-secure
signature scheme. Thus, these results have interest from both theoretical and practical perspective. More specifically, these
three paradigms are described as follows:

� Sequential composition with one-time signature: This paradigm requires one weak signature scheme and an ordinary
one-time signature. Key pair of the weak signature scheme is generated in key generation algorithm and used to sign the
public key of one-time signature, which is generated in signing algorithm.
� Sequential composition (of weak signatures): This paradigm requires two weak signature schemes sequentially. Key pair

in the first weak signature scheme is generated in key generation algorithm. During signing algorithm, another key pair of
weak signature is generated. The first secret key is used to sign the other public key, and the other secret key is used to
sign a message.
� Parallel composition (of weak signatures): Two weak signature schemes are also required in this paradigm, however,

both of their key pairs should be generated in key generation algorithm, and used to sign two random and related
messages.

We also show several efficient instantiations without random oracles converted from two weakly-secure signature
schemes. The first two paradigm are very efficient in key generation compared to the last. However, the signing algorithm
of the last paradigm is more efficient. There is a coincidence that, when instantialized from weak signature scheme [16], the
construction will be similar to twin signature scheme [26]. In fact, the last paradigm can be viewed as generalization and
extension of the twin signature scheme [26]. Recently, another notion called strongly existential unforgeability was con-
cerned by many contributions, such as [7,21,33].

1.2. Organization

In Section 2, the definitions of variant signatures are given. Then, two previous instantiations of weakly-secure signature
schemes are reviewed in Section 3. In Section 4, three generic transformations techniques are proposed. In Section 5, several
instantiations from sequential composition with one-time signature scheme are presented. In Section 6, instantiations from
sequential composition method are given. In Section 7, we show the two instantiations from parallel composition method.
The conclusion is given in Section 8.
2. Preliminaries

A signature scheme is defined by the following algorithms:

� Key generation algorithm Gen. On input 1k, where k is the security parameter, it outputs (pk,sk) as public and secret keys.
� Signing algorithm Sign. On input a message m and sk, it outputs a signature r.
� Verification algorithm Verify. Given public key pk, message m and signature r, algorithm Verify(pk,m,r) outputs 1 if r  

Sign(sk,m). Otherwise, output 0.
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In terms of adversary’s goals, it can be divided into four categories: (1) Total break: This is the most serious attack, in
which the adversary is able to disclose the secret key of the signer; (2) Universal forgery: The adversary is able to sign any
given messages; (3) Existential forgery: The adversary is able to provide a signature on a new message whose signature
has not been seen; (4) Strong existential forgery: The adversary is able to provide a new message-signature pair.

On the other hand, various resource can be made available to the adversary, helping into his/her forgery. We focus our-
selves on two kinds of message attacks: (1) Weakly chosen message attack: The messages chosen by the adversary must be
given to the signer before seeing the signer’s public key; (2) Adaptively chosen message attack: The adversary is allowed to
request signatures of messages chosen by itself.

2.1. Unforgeability

The standard notion of security for a signature scheme is called existential unforgeability under adaptively chosen mes-
sage attacks (fully-secure signatures) [18], which is also required in other signature notions such as proxy signature and ring
signature [13,31,35]. It can be defined through the following game:
Setup: A public/private key pair (pk,sk) Gen(1k) is generated and adversary A is given the public key pk.

Query: A runs for time t and issues q signing queries to a signing oracle in an adaptive manner, that is, for

each i; 1 6 i 6 q; A chooses a message mi based on the message-signature pairs that A has already seen,

and obtains in return a signature ri on mi from the signing oracle (i.e., ri = Sign(sk,mi)).

Forge: A outputs a forgery (m⁄,r⁄) and halts. A wins if

� r⁄ is a valid signature on message m⁄ under the public key pk, i.e., Verify(pk,m⁄,r⁄) = 1; and

� m⁄ has never been queried, i.e., m⁄ R {m1,m2, . . . ,mq}.
Definition 1 (Unforgeability). A signature scheme P = (Gen, Sign, Verify) is (t,q,e)-fully-secure, if any adversary with run-time t
wins the above game with probability at most e after issuing at most q signing queries.

2.2. Strong existential unforgeability

The notion is also defined using the above game between a challenger C and an adversary A, except the definition that ‘‘A
wins the game’’ is A can output a pair (m⁄,r⁄) such that (m⁄,r⁄) does not belong to the previous queried set {(mi,ri)} and
Verify(pk,m⁄,r⁄) = 1.

2.3. Weak unforgeability

If we lower the adversary’s ability to weak chosen message attack while keeping the goal of the adversary unchanged, we
can get a weaker definition compared to existential unforgeability against adaptive chosen message attacks. The difference
between this security notion with the standard security is that here it requires that the adversary should submit all messages
for signature queries before the public key is seen. It is defined through the following game:
Pre-Proceeding: Adversary A runs for time t and issues q signing queries to a signing oracle, i.e., A chooses

messages mi, where 1 6 i 6 q.

Setup: A public/private key pair (pk,sk) Gen(1k) is generated and adversary A is given the public key pk. Meanwhile,
q signatures ri on mi from the signing oracle (i.e., ri = Sign(sk,mi)), are also returned to A.
Forge: A outputs a forgery (m⁄,r⁄) and halts. A wins if

� r⁄ is a valid signature on message m⁄ under the public key pk, i.e., Verify(pk,m⁄,r⁄) = 1; and

� m⁄ has never been queried, i.e., m⁄ R {m1,m2, . . . ,mq}.
And we define ‘‘A wins the game’’ is equivalent to A can output a pair (m⁄,r⁄) such that r is a valid signature of a new
message m⁄.

Definition 2 (Weak Unforgeability). A signature scheme P = (Gen,Sign,Verify) is (t,q,e)-weakly-secure, if any adversary with
run-time t wins the above game with probability at most e.
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3. Instantiations of weak signatures

It has been shown in [5,16] that two weakly-secure signature schemes can be constructed, based on the q-SDH assumption
and Strong-RSA assumption, respectively, in the standard model.

3.1. Weak Boneh–Boyen signature [5]

Before describing the weak Boneh–Boyen signature, we first introduce some preliminaries on bilinear maps and an
assumption used in [5].

Let G1 and G2 be cyclic groups of prime order p with the multiplicative group action. And, g is a generator of G1. Let
ê : G1 �G1 ! G2 be a map with the following properties, (1) Bilinearity: ê ga

1; g
b
2

� �
¼ êðg1; g2Þ

ab for all g1; g2 2 G1, and
a; b2RZp; (2) Non-degeneracy: There exists g1; g2 2 G1 such that êðg1; g2Þ – 1, in other words, the map does not send all pairs
in G1 �G1 to the identity in G2; (3) Computability: There is an efficient algorithm to compute êðg1; g2Þ for all g1; g2 2 G1.

As shown in [6,36], such non-degenerate bilinear maps over cyclic groups can be obtained from the Weil or the Tate pair-
ing over algebraic curves.

Definition 3 (q-Strong Diffie–Hellman Assumption (q-SDH in short)). The q-SDH assumption in group G1 is defined as follows:
given a (q + 1)-tuple ðg; gx; gx2

; � � � ; gxq Þ 2 ðG1Þqþ1 as input, it is hard to output a pair (c,g1/(x+c)), where c 2 Z�p.

Next, we describe the weak Boneh–Boyen signature [5].

1. Gen: Pick a random value x 2 Z�p and compute y = gx. Then, output the key pair (x,y), where y is the public key and x is the
secret key.

2. Sign: Given a message m 2 Z�p, the signer computes the signature as r ¼ g 1
xþm with his secret key x.

3. Verify: To verify the signature r on message m, it checks if the following equation holds: êðy � gm;rÞ ¼ êðg; gÞ. If it holds,
the signature is valid. Otherwise, the signature is invalid.

Theorem 1. The weak Boneh–Boyen signature is weakly-secure if the q-SDH assumption holds.

Proof. Refer to [5]. h

3.2. Weak GHR signature [16]

Gennaro et al. proposed a secure signature scheme [16] (denoted by GHR signature) without random oracle, however,
under the assumption that hash function H is division intractable, and acts like the random oracle model or achieves the
chameleon property, which was called a non-standard randomness-finding oracle in [16]. Division intractability means that
it is computationally impossible to find a1, a2, . . ., ak and b such that H(b) divides the product of all the H(ai). In order to get a
fully-secure signature without random oracles, the non-standard randomness-finding oracle was required [16]. This non-
standard assumption helps the simulator to find the second preimage during the simulation. The randomness-finding oracle
is non-standard because it requires that, given a hash function H, values M and e, one could find a random value R such that
H(R,M) = e. In fact, without the assumption of randomness-finding oracle, the simulator has to guess which messages the
adversary will ask during the signing simulation phase. This problem was also addressed in [10].

Definition 4 (Strong-RSA Assumption). Given a randomly chosen RSA modulus n, and a random element s 2 Z�n, it is
infeasible to find a pair (e,r) with e > 1 such that re = s (mod n).

We describe the weak GHR signature scheme as follows:

1. Gen: Pick two random safe primes p and q and compute n = pq as RSA modulus. A hash function H and a random value
s 2 Z�n are selected. The public key is (n,s) and the secret key is (p,q).

2. Sign: To sign a message m, the signer computes e H(m) and outputs the signature as r ¼ s1
e mod n.

3. Verify: On input verification key (n,s), message m, and r, check if the following equation rH(m) = s mod n. If it holds, out-
put 1 and accept the signature. Otherwise, output 0.

Theorem 2. The weak GHR signature scheme is weakly-secure if the Strong-RSA assumption holds and H is division intractability.

Proof. Refer to [10,16] h

Note that the division-intractable hash functions can be constructed from collision-intractable hash functions [27].

4. Fully-secure signatures from weakly-secure signatures

There are two main techniques to get fully-secure signatures from weakly-secure signatures in literature, (1) Random Ora-
cle Model: By using the hash function on the messages for signatures without changing other algorithms, the new signatures
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can be fully-secure from the back patch property of random oracle [2]. This method was used in [5,36]; (2) Chameleon Hash
Function: By combining weakly-secure signatures with the chameleon hash function, the signer can first sign any value with
the weak signature scheme. Then it can sign the real message from the signature on any value, by using the property of cha-
meleon hash function. Many papers have used this technique, such as [5,14,25,32].

In this section, three new paradigms are proposed to transform any weakly-secure signature into fully-secure signature.

4.1. Sequential composition method with one-time signature

Given a weakly-secure signature scheme P0 = (Gen0,Sign0,Verify0), we construct fully-secure signature scheme
P = (Gen,Sign,Verify). In the construction, we use a one-time signature scheme OTS ¼ ðOGen;OSign;OVerifyÞ, where OGen,
OSign, and OVerify are generating keys algorithm, signing algorithm, and verifying signatures algorithm, respectively.

The construction of P proceeds as follows:

1. Gen. On input security parameter 1k, invoke Gen0(1k) and obtain (pk,sk) Gen0(1k). Output P’s public key pk and secret
key sk (In fact, Gen = Gen0).

2. Sign. To sign message m, the signer first invokes OGen(1k) to obtain one-time signature key pair (opk,osk) OGen(1k). The
signer then invokes algorithms Sign0(sk,opk) and OSign(osk,m). Output r = (A,B,C) as the signature, where A = Sign0(sk,opk),
B = OSign(osk,m), C = opk.

3. Verify. On input verifying key pk, message m, and r = (A,B,C), output 1 if and only if Verify0 (pk,A,C) = 1 and
OVerify(C,m,B) = 1.

Key generation of the resulted fully-secure signature is the same with the key generation of weak signature. So, length of
the public key in the fully-secure signature is independent of the one-time signature’s public key length. In signature gener-
ation phase, Sign0(sk,opk) can be pre-computed by the signer. So, online computation in signature generation are only the
computation of the one-time signature OTS, which is very efficient. The computation in verification is just the verification
computation of P0 and OTS.

We first give some intuition as to why P is secure against adaptively chosen message attack. Given only weakly-secure
signature S0 and one-time signature OTS, the simulator can answer the adaptively signature queries from adversary because
the choose of one-time keys is independent of messages chosen by the adversary, which implies that the one-time public
keys can send to S0 for signatures before messages are given, and then using OTS to sign messages from the adversary.
Let ri = (Ai,Bi,Ci) be the queried signatures and let r⁄ = (A⁄,B⁄,C⁄) be the forged signature on a new message m⁄ outputted
by the adversary. On one hand, if C⁄– Ci for i = 1, . . ., qS, then it implies that the P0 is insecure under weak chosen message
attack. On the other hand, if C⁄ = Ci for some signature output by the simulator, then B⁄ is another valid signature with respect
to the one-time key C⁄, that is to say, the adversary breaks the one-time signature scheme. So, under the assumption that P0

is weakly-secure and that OTS is secure one-time signature, the signature scheme P is fully-secure.
Below, we formally prove the security of the signature scheme P.

Theorem 3. If P0 is a weakly-secure signature scheme and OTS is an unforgeable one-time signature scheme, then P is a fully-
secure signature scheme.
Proof. See Appendix A. h
4.2. Sequential composition method

Given a weakly-secure signature scheme P0 = (Gen0,Sign0,Verify0), we construct a fully-secure signature scheme
P = (Gen,Sign,Verify) by using the sequential composition method. We assume that the public key space belongs to the mes-
sage space in this paradigm. Otherwise, hash function or other techniques could be applied here to achieve this. The con-
struction of P proceeds as follows:

� Gen. On input security parameter 1k, invoke Gen0(1k) and obtain (pk,sk) Gen0(1k). Output P0s public key pk and secret
key sk (In fact, Gen = Gen0).
� Sign. To sign message m, the signer first invokes Gen0(1k) to obtain a key pair (pk0,sk0) Gen0(1k). The signer then invokes

algorithms Sign0(sk,pk0) and Sign0(sk0,m). Finally, it outputs r = (A,B,C) as the signature, where A = Sign0(sk,pk0), B = Sign0

(sk0,m), C = pk0.
� Verify. On input verifying key pk, message m, and signature r = (A,B,C), output 1 if and only if Verify0 (pk,C,A) = 1 and

Verify0(C,m,B) = 1.

Key generation of the resulted fully-secure signature P is the same with the key generation of weak signature P0. In sig-
nature generation phase, Sign0(sk,pk0) can be pre-computed by the signer. The construction is similar with [4,23]. However, it
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is observed for the first time that only weakly-secure signatures are required here, instead of fully-secure signature scheme [4]
or one-time signature scheme as required in [23].

Below, we formally prove the security of the signature scheme P. We denote the cost of a signing algorithm Sign0 in P0 by tsign0 .

Theorem 4. If P0 is (t0, q,e0)-weakly-secure, then the signature P is (t,q,e)-fully-secure, where t 6 t0 � Oðq � tsign0 Þ and e P 2q � e0.
Proof. See Appendix B. h

In fact, if the signing algorithm Sign0 in P0 deterministic, then the fully-secure signature scheme P is strongly unforgeable.

4.3. Parallel composition method

In this section, we show another generic transformation from weakly-secure signatures to fully-secure signatures.
Before showing the transformation, we define a relation R ¼ fðða; bÞ; cÞg that satisfies the following conditions:

� Given a and c (or b and c), b (or a) is determined and can be computed in probabilistic polynomial time (PPT);
� Given randomly chosen values a and b, it is hard to find c in PPT, such that ðða; bÞ; cÞ 2 R:

In fact, this kind of relation can be easily found. Suppose the security parameter is 1k. For example, given a collision-resis-
tant hash function H: {0,1}⁄? {0,1}k, a, b 2 {0,1}k and c 2 {0,1}⁄, we define ðða; bÞ; cÞ 2 R, if and only if a � b = H(c).

Obviously, this relation satisfies the definition of R because: Given a 2 {0,1}k and c, b 2 {0,1}k is determined and can be
computed efficiently; And, randomly choose a 2 {0,1}k and b 2 {0,1}k, it is hard to find c such that a � b = H(c) for the colli-
sion-resistant property of the hash function.

In public parameters, relation R ¼ fðða; bÞ; cÞg defined above should be given. The generic construction follows:

1. Gen. On input security parameter 1k, invoke Gen0(1k) two times and obtain two key pairs (pk1,sk1) and (pk2,sk2). Output
P0s public key pk = (pk1,pk2) and secret key sk = (sk1,sk2).

2. Sign. To sign message m, the signer first chooses m0 randomly and computes m00 such that ððm0;m00Þ;mÞ 2 R. The signer
then invokes algorithms Sign0(sk1,m0) and Sign0(sk2,m00). Output r = (A,B,C) as the signature on message m, where
A = Sign0(sk1, m0), B = Sign0(sk2,m00), C = m0.

3. Verify. On input verifying key pk = (pk1,pk2), message m, and signature r = (A,B,C), first compute m00 from m and C such
that ððC;m00Þ;mÞ 2 R (This can be done from the property of the relation R). Finally, it outputs 1 if and only if
Verify0(pk1,C,A) = 1 and Verify0(pk2,m00,B) = 1.

It is easy to prove that P is strongly unforgeable if P0 is deterministic. Below, we formally prove the security of the resulting
signature scheme P, with very tight security reduction to P0. We also denote the cost of a signing algorithm sign0 in P0 by tsign0 .

Theorem 5. The signature scheme P is (t,q,e)-fully-secure, provided that P0 is (t0, q,e0)-weakly-secure, where t 6 t0 � O q � tsign0
� �

and e P 2e0.
Proof. See Appendix C. h
4.4. Comparisons

We only compare the efficiency of the last two paradigms, i.e., sequential composition method and parallel composition
method, because they are only based on weakly-secure signature scheme.

� Key generation phase: The key generation in fully-secure signature from the sequential method, is the same with its cor-
responding key generation of weak signature scheme. And, for the fully-secure signature from parallel method, it requires
to run the key generation algorithm of weak signature twice. So, the key size is smaller and computation cost is less in
sequential method, compared with the parallel method.
� Signing phase: In the first paradigm, the signer should run the key generation algorithm and signing algorithm of weak

signature, respectively. In the second paradigm, it requires to run the signing algorithm of weak signature twice. The
online computations of both methods in signing phase are the same because it is only required to run signing algorithm
of weak signature only once.
� Verification phase: In both paradigms, it requires to run the verification of weak signature scheme twice. So, the compu-

tations of verification algorithm are the same.

In conclusion, the sequential method is more suitable for device with small storage such as smart card for its smaller key
size. And, the signing algorithm in the sequential composition method requires one key generation of weak signatures. So, if
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the computation of this phase is almost the same with signing algorithm of weak signature, then, the sequential method is
indeed better than the parallel composition method. Otherwise, from only the computational cost of signing algorithm, the
parallel composition method is better. So, we can use different paradigms according to circumstance requirements.

5. Instantiations from sequential composition method with one-time signature scheme

5.1. Fully-secure signature from weak Boneh–Boyen signature

Next, we describe the fully-secure signature from the weakly-secure signature [5] andOTS. We describe how to get fully-se-
cure signature, denoted by S-WBB-OTS, by using the sequential composition method with one-time signature on the weak
Boneh–Boyen signature scheme. The public parameters are similar with the weak Boneh–Boyen signature. Let
OTS ¼ ðOGen;OSign;OVerifyÞ be a one-time signature. Meanwhile, define a collision-resistant hash function H : f0;1g� ! Z�p.

1. Gen: Pick x 2 Z�p, compute y = gx. The public key is pk = (g,y) and the secret key is sk = x.
2. Sign: Given message m 2 Z�p, the signer first invokes OGen(1k) and obtains key pair (opk,osk) OGen(1k). Output the sig-

nature on m as r = (A,B,C), where A ¼ g
1

xþHðopkÞ; B ¼ OSignðosk;mÞ; C ¼ opk.
3. Verify: On input verification key y, message m, and the signature r = (A,B,C), output 1 if and only if êðy � gHðopkÞ;AÞ ¼ êðg; gÞ

and OVerify(C,m,B) = 1. Otherwise, output 0.

Theorem 6. The S-WBB-OTS signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 1 and 3. h

Notice that the user’s public key consists only one group element y in G1. So length of the public key is even more shorter
than [5]. It requires one point scalar multiplication in G1 and one-time signature computations in signature generation. In
fact, the value A and C can be pre-computed. So the online computation of Sign is only the computation of one-time signature,
which is very efficient compared ordinary signature scheme. Verification only requires two pairing computation, one point
scalar multiplication in G1, and an OTS verification, which is also very efficient. The only disadvantage of this signature
scheme is that length of the signature is longer than [5].
5.2. Fully-secure signature from weak GHR signature

In this section, we show the fully-secure signature (denoted by S-WGHR-OTS) from weakly-secure signature [16] and
OTS ¼ ðOGen;OSign;OVerifyÞ. Define a hash function H which is collision and division intractable satisfies H : ð0;1Þ� ! Z�n.

1. Gen: Pick two safe primes p and q, compute n = pq as RSA modulus, select s 2 Z�n. The public key is pk = (n,s) and the secret
key is sk = (p,q).

2. Sign: To sign a message m, invoke OGen(1k) and obtain key pair (opk,osk) OGen(1k) of OTS. Output the signature as
r = (A,B,C), where A ¼ s

1
HðopkÞ mod n; B ¼ OSignðosk;mÞ; C ¼ opk.

3. Verify: On input verification key (n,s), message m, and r = (A,B,C), output 1 if and only if AH(C) = s mod n and OVeri-

fy(C,m,B) = 1. Otherwise, output 0.

Theorem 7. The S-WGHR-OTS signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 2 and 3. h

6. Instantiations from sequential composition method

6.1. Fully-secure signature from weak Boneh–Boyen signature

We describe how to get fully-secure signature, denoted by S-WBB, by using the sequential composition method on the
weak Boneh–Boyen signature scheme. The public parameters are similar with the weak Boneh–Boyen signature, except a
collision resistant hash function H : G1 ! Z�p is chosen additionally.

1. Gen: Pick x 2 Z�p, compute y = gx. The public key is y and the secret key is x.
2. Sign: Given message m 2 Z�p, the signer chooses a random x0 2 Z�p, computes y0 ¼ gx0 , and outputs the signature as

r = (A,B,C), where A ¼ g
1

xþHðy0 Þ;B ¼ g
1

x0þm;C ¼ y0.
3. Verify: On input verification key y, message m, and the signature r = (A,B,C), output 1 if and only if êðy � gHðCÞ;AÞ ¼ êðg; gÞ

and êðy0 � gm; BÞ ¼ êðg; gÞ. Otherwise, output 0.
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In key generation algorithm, S-WBB scheme needs one exponentiation in group G1. The signing algorithm costs two expon-
entiations computations in group G1 and two inversion computations in Z�p. As the value A could be pre-computed, the compu-
tations is reduced to only one exponentiation inG1 and one inversion computation inZ�p. In verification algorithm, the value êðg; gÞ
can be fixed and published as part of the public key. So, it only needs two pairing and two exponentiations computations.

Compared with the fully-secure signature scheme in [5], the key generation algorithm of S-WBB is more efficient. Further-
more, the key size is smaller than [5] because the secret key consists of only one group element. So, it is very suitable for
small storage device such as smart card or mobile phone to perform authentication operations. The online computation
for signing algorithm in [5] is also one exponentiation in G1 and one inversion computation in Z�p. The computation of online
verification in S-WBB requires one more pairing computation compared with [5]. From the above comparison, the S-WBB

scheme is very suitable for device with small storage.

Theorem 8. The S-WBB signature scheme is fully-secure.
Proof. The result can be derived directly from Theorems 1 and 4. h
6.2. Fully-secure signature from weak GHR signature

In this section, we present a fully-secure signature, denoted by S-WGHR, from the weak GHR signature scheme [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1,q1). Compute n1 = p1q1 as a RSA modulus, select
s1 2 Z�n1

. Meanwhile, choose a division intractability hash function H1 : f0;1g� ! Z�n1
. The public key is (n1,s1,n2,s2,H1)

and the secret key is (p1,q1).
2. Sign: To sign a message m, choose two pairs safe primes (p2,q2), and a random s2 2 Z�n2

, compute n2 = p2q2. Then, choose a

division intractability hash functions and H2 : f0;1g� ! Z�n2
and compute the signature as r = (A,B,C), where A ¼ s

1
H1 ðn2ks2kH2 Þ
1

mod n1; B ¼ s
1

H2 ðmÞ
2 mod n2, C = n2ks2kH2.

3. Verify: On input verification key (n1,s1,H1), message m, and r = (A,B,C), parse C = (C1,C2,C3). Then, output 1 if and only if
AH1ðCÞ ¼ s1 mod n1 and BC3ðmÞ ¼ C2 mod C1. Otherwise, output 0.

Theorem 9. The S-WGHR signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 2 and 4. h

In key generation algorithm, it requires one multiplications in Z�n1
. The secret key size is only [log2n1]. The signing algo-

rithm needs one exponentiation and inversion computations in Z�n1
and Z�n2

, respectively. As the value A could be pre-com-
puted, the computation is reduced to only one exponentiation and one inversion computation in Z�n2

. In verification
algorithm, it requires one exponentiation computation in Z�n1

and Z�n2
, respectively. Compared to [26], the computations

in signing and verification algorithms are almost the same. In key generation algorithm of S-WGHR, the key size is smaller
than [26] and it requires less exponentiations to generate key pair.

7. Instantiations from parallel composition method

In the following two instantiations, we will use the concrete relation R given in Section 4.3: ðða; bÞ; cÞ 2 R, if and only if
a � b = H(c). The relation should be described in system public parameters, in both following examples.

7.1. Fully-secure signature from weak Boneh–Boyen signature

Denote the following fully-secure signature scheme from the weak Boneh–Boyen by P-WBB. The public parameters are
similar with the weak Boneh–Boyen signature, excluding a concrete relation R given in Section 4.3.

1. Gen: Pick x1; x2 2 Z�p, compute y1 ¼ gx1 and y2 ¼ gx2 . The public key is (y1,y2) and the secret key is (x1,x2).
2. Sign: Given message m 2 Z�p, the signer chooses a random m0 2 Z�p and computes the signature as r = (A,B,C), where

A ¼ g
1

x1þm0 ; B ¼ g
1

x2þðHðmÞ�m0 Þ; C ¼ m0.
3. Verify: On input verification key (y1,y2), message m, and the signature r = (A,B,C), output 1 if and only if

êðy1 � gC ;AÞ ¼ êðg; gÞ and êðy2 � gHðmÞ�C ;BÞ ¼ êðg; gÞ. Otherwise, output 0.

In key generation algorithm of P-WBB, it needs two exponentiations in group G1. The signing algorithm costs two expon-
entiations computations in group G1 and two inversion computations in Z�p. In verification algorithm, it only needs two
pairing and two exponentiations computations as the value êðg; gÞ can be published as part of the public key.

From Theorems 1 and 5, we can get the following result:
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Theorem 10. The P-WBB signature scheme is fully-secure.
The security reduction is the same with Theorem 5.

7.2. Fully-secure signature from weak GHR signature

In this section, we present a fully-secure signature, denoted by P-WGHR, from the weak GHR signature [16] with the fol-
lowing advantages: The new scheme does not require the non-standard randomness-finding oracle assumption. The signing
algorithm requires less exponentials computation compared to [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1,q1), (p2,q2). Compute n1 = p1q1 and n2 = p2q2 as two
RSA modulus, select s1 2 Z�n1

and s2 2 Z�n2
. Meanwhile, choose two division intractability hash functions H1 : f0;1g� ! Z�n1

and H2 : f0;1g� ! Z�n2
. Furthermore, a collision-resistant hash function H: {0,1}⁄? {0,1}k is selected. The public key is

(n1,s1,n2,s2,H1,H2,H) and the secret key is (p1,q1,p2,q2).
2. Sign: To sign a message m, the signer chooses a random m0 2 {0,1}k and computes the signature as r = (A,B,C), where

A ¼ s
1

H1 ðm0 Þ
1 mod n1; B ¼ s

1
H2ðHðmÞ�m0 Þ
2 mod n2, C = m0.

3. Verify: On input verification key (n1,s1,n2,s2,H1,H2,H), message m, and r = (A,B,C), output 1 if and only if AH1ðCÞ ¼ s1 mod
n1 and BH2ðHðmÞ�CÞ ¼ s2 mod n2. Otherwise, output 0.

It requires one multiplication in Z�n1
and Z�n2

in key generation algorithm, respectively. The signing algorithm needs one
exponentiation and inversion computations in Z�n1

and Z�n2
, respectively. The online computation in signing phase could be

reduced to only one exponentiation and one inversion computation in Z�n2
. In verification algorithm, it requires one exponen-

tiation computation in Z�n1
and Z�n2

, respectively.
It is very interesting because this instantiation from the weak GHR signature scheme looks similar to the twin signature

scheme in [26]. In fact, the parallel composition paradigm could be viewed as generalization of [26]. First, we define a rela-
tion R as follows:
ða; bÞ; c 2 R if and only if a = c � l1kc � l2, b = l1kl2 for some l1 and l2.
It is easy to verify such kind of relation satisfies the definition given in Section 4.3. Based on this given relation and the

parallel paradigm, the twin signature scheme [26] could be derived directly from the weak GHR signature scheme.
And, the following result could be derived easily from Theorems 2 and 5. And, security reduction is the same with

Theorem 5.

Theorem 11. The P-WGHR signature scheme is fully-secure.
8. Conclusion

Three new paradigms are proposed to obtain fully-secure signature scheme from any scheme satisfies only a weak security
notion called existentially unforgeable against generic chosen message attacks. The sequential composition (with one-time
signature) methods are very efficient in key generation algorithm compared to the parallel composition method. However, if
the computation cost in the key generation algorithm of weak signature needs more than the weak signature’s signing algo-
rithm, then, the signing algorithm is more efficient in the parallel paradigm. Therefore, different paradigm can be adopted in
applications according to different requirements.

We also present several instantiations which are converted from two previous weakly-secure signature schemes and are
fully-secure without random oracles. The comparisons with the previous secure signatures show that our paradigms are very
efficient.
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Appendix A. Proof of Theorem 3

Proof. Given any adversaryA attacking P in an adaptive chosen message attack, we construct an adversaryA0 breaking P0 in
a weak chosen message attack or breaking OTS. After given public key pk of P; A queries the signing oracle of P on
messages mi adaptively and gets qS signatures ri = (Ai,Bi,Ci) for 1 6 i 6 qS. After the signature queries, A outputs a forged
signature on a new m⁄ as r⁄ = (A⁄,B⁄,C⁄).
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There are two types of forgeries. The reduction works differently for each forger type. Therefore, initially A0 will choose a
random bit bcode 2 {1,2} that indicates its guess for the type of forger thatAwill emulate. The simulation proceeds differently
for each bcode.

Type 1 forgery. C⁄– Ci for 1 6 i 6 qS.
Algorithm A0 first picks a random bit bcode. If bcode = 1, we construct an algorithm A0 to break P0. A0 first invokes OGen(1k)

and gets qS key pairs (opki,oski) OGen(1k) for OTS (Assume Amakes at most qS queries to signing oracle), and sends the qS

values opki, for 1 6 i 6 qS, to challenger for signature queries of P0 before the parameters publication of P0. Then A0 gets
public key pk of P0 and qS signatures r0i on the qS messages opki for 1 6 i 6 qS.

Then A0 sends the public key pk to the adversary A as the public key of P. A then queries the signing oracle of P on
messages mi adaptively for 1 6 i 6 qS. A0 answers the signature query as follows: ri = (Ai,Bi,Ci), where Ai ¼ r0i from the
challenger, Bi = OSign(oski,mi), Ci = opki.

After the signature queries, A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄). Because C⁄– Ci for
1 6 i 6 qS, then A0 can output a forged P0 signature as r = A⁄ on a new message C⁄ and break the signature scheme P0.

Type 2 forgery: C⁄ = Ci for some i, 1 6 i 6 qS.
If bcode = 2, we construct an algorithm A0 to break OTS. A0 is given opk⁄ from challenger as the challenge public key for

OTS. Then it randomly generates (pk,sk) Gen0(1k) of P0. A0 then gets the key pair (pk,sk) of P and sends the public key pk to
A. A0 also chooses a random j 2 [1,qS] and keeps it secret.

Then A queries the signing oracle of P on messages mi adaptively for 1 6 i 6 qS. A0 answers the signature query as
follows: if i – j; A0 computes one-time key pair (opki,oski), returns the signature as ri = (Ai,Bi,Ci), where Ai = Sign0(sk,opki),
Bi = OSign(oski,mi), Ci = opki. Otherwise, if i ¼ j; A0 sends mi to the challenger for one-time signature with respect to public
key opk⁄ and gets the one-time signature Bi on message mi. Then A0 answer the signature query as ri = (Ai,Bi,Ci), where
Bi = Sign0(sk,opk⁄) and Ci = opk⁄.

After the signature queries, A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄), where C⁄ = Ci for some
1 6 i 6 qS. If i – j; A0 aborts and fails. If i = j (with success probability 1

qS
), then C⁄ = opk⁄. Meanwhile, B⁄– Bi because

m⁄– mi. This implies that A0 can output a forged one-time signature B⁄ on a new message m⁄ with respect to opk⁄ and break
the one-time signature scheme OTS. h
Appendix B. Proof of Theorem 4

Proof. Given any adversaryA attacking P in an adaptive chosen message attack, we construct an adversaryA0 breaking P0 in
weak chosen message attacks. After given public key pk of P; A queries the signing oracle of P on messages mi adaptively
and gets q signatures ri = (Ai,Bi,Ci) for 1 6 i 6 q. After the signature queries, A outputs a forged signature on a new m⁄ as
r⁄ = (A⁄,B⁄,C⁄). There are two types of forgeries.

Type 1 forgery: C⁄– Ci for 1 6 i 6 q.
Type 2 forgery: C⁄ = Ci for some i, 1 6 i 6 q.

The reduction works differently for each forger type. Therefore, initially A0 will choose a random bit bcode 2 {1,2} that
indicates its guess for the type of forger. The simulation proceeds differently for each bcode. If bcode = 1, we construct an
algorithm A0 to break P0 as follows:

Simulation of key generation. A0 first invokes Gen0(1k) and gets q key pairs (pki,ski) Gen0(1k) (Assume that A makes at
most q queries to signing oracle), and sends the q values pki, for 1 6 i 6 q, to challenger for signature queries of P0 before the
parameters publication of P0. Then A0 gets public key pk of P0 and q signatures r0i ¼ Sign0ðsk; pkiÞ on the q messages pki, with
respect to pk, for 1 6 i 6 q. A0 sends the public key pk to the adversary A as the public key of P.

Simulation of signing oracle.A then queries the signing oracle of P on messages mi adaptively for 1 6 i 6 q. A0 answers the
signature query as ri = (Ai,Bi,Ci), where Ai ¼ r0i from the challenger, Bi = Sign0(ski,mi), Ci = pki.

Forgery. After the signature queries, A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄). If C⁄– Ci for
1 6 i 6 q, then A0 can output a forged P0 signature as r = A⁄ on a new message C⁄ and break the signature scheme P0.
Otherwise, A0 aborts.

If bcode = 2, we construct an algorithm A0 to break P0 as follows:
Simulation of key generation. A0 randomly generates (pk,sk) Gen0(1k) of P0. A0 then sets P0s key pair as (pk,sk) and sends

the public key pk to A. A0 also chooses a random j 2 [1,q] and keeps it secret.
Simulation of signing oracle. A queries the signing oracle of P on messages mi adaptively for 1 6 i 6 q. A0 answers the

signature query as follows: if i – j; A0 first invokes Gen0(1k) and gets key pair (pki,ski) Gen0(1k). Then, it returns the
simulated signature on messages mi as ri = (Ai,Bi,Ci), where Ai = Sign0(sk,pki), Bi = Sign0(ski,mi), Ci = pki. Otherwise, if i ¼ j; A0
sends mi to the challenger for signature of P0, and gets the challenge public key pk⁄ of P0 and signature Sign0(sk⁄,mi) of mi with
respect to pk⁄. Then A0 answers the signature query as ri = (Ai,Bi,Ci), where Ai = Sign0(sk,pk⁄), Bi = Sign0(sk⁄,mi) and Ci = pk⁄.

Forgery. After the signature queries, A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄), where C⁄ = Ci

for some 1 6 i 6 q.
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If i – j; A0 aborts and fails. Otherwise, if i = j, then c⁄ = pk⁄. This implies thatA0 can output a forged signature B⁄ on a new
message m⁄ with respect to pk⁄ and break the signature scheme P0.

We define two events, E1 and E2, which denotes type 1 forgery and type 2 forgery occurs, respectively. As
prob½E1� þ prob½E2� ¼ prob½A wins�. Since A wins with probability e, it follows that one of the two events occurs with
probability at least e/2. It is easy to see that the success probability of A0 under the conditions that event E1 occurs is
1
2 � prob½E1�. In the type 2 forgery simulation, success guess of c is 1

q. So the success probability of A0 under the conditions that
event E2 occurs is 1

2q prob½E2]. Therefore, if Awins with probability e, the signature scheme P0 with probability at least e
2q. h

Appendix C. Proof of Theorem 5

Proof. Given any adversaryA attacking P in an adaptive chosen message attack, we construct an adversaryA0 breaking P0 in
weak chosen message attacks. After given public key pk of P; A queries the signing oracle of P on messages mi adaptively
and gets q signatures ri = (Ai,Bi,Ci) for 1 6 i 6 q. After the signature queries, A outputs a forged signature on a new m⁄ as
r⁄ = (A⁄,B⁄,C⁄).

There are also two types of forgeries:

Type 1 forgery: C⁄– Ci for 1 6 i 6 q.
Type 2 forgery: C⁄ = Ci for some i, 1 6 i 6 q.

The reduction works differently for each forger type. Therefore, initially A0 will choose a random bit bcode 2 {1,2} that
indicates its guess for the type of forger that A will emulate. The simulation proceeds differently for each bcode.

If bcode = 1, we construct an algorithm A0 to break P0 as follows:
Simulation of key generation. A0 first invokes Gen0(1k) and gets key pair (pk2,sk2) Gen0(1k). Then A0 chooses q random

values m01; . . . ;m0q (AssumeAmakes at most q queries to signing oracle), and sends the q values m0i, for 1 6 i 6 q, to challenger
for signature queries of P0 before the parameters publication of P0. Then A0 gets its challenge public key pk of P0 and q
signatures r0i ¼ Sign0ðsk;m0iÞ on the q messages m0i, with respect to pk, for 1 6 i 6 q. Then A0 sets the public key of P as
pk = (pk1,pk2), where pk1 ¼ pk, and sends the public key pk to the adversary A.

Simulation of signing oracle.A then queries the signing oracle of P on messages mi adaptively for 1 6 i 6 q. A0 answers the
signature query as follows:

� From the first property of the given relation R; A0 could compute m00i such that m0i;m
00
i

� �
;mi

� �
2 R;

� Then, it computes Bi ¼ Sign0ðsk2;m00i Þ;
� Finally, outputs the signature ri = (Ai,Bi,Ci), where Ai ¼ r0i from challenger, and Ci ¼ m0i.

Forgery. After the signature queries,A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄). Because m⁄– mi

for 1 6 i 6 q, then if C� ¼ m0i for some i; A0 aborts and fails. Otherwise, A0 can output a forged P0 signature as r = A⁄ of a new
message C⁄ and break the signature scheme P0, with the challenge public key pk.

If bcode = 2, we construct an algorithm A0 to break P0 in another way:
Simulation of key generation. A0 randomly generates (pk1,sk1) Gen0(1k) of P0. Then A0 chooses q random values

m001; . . . ;m00q, and sends the q values m00i , for 1 6 i 6 q, to challenger for signature queries of P0 before the parameters
publication of P0. ThenA0 gets its challenge public key pk of P0 and q signatures r0i ¼ Sign0 sk;m00i

� �
of the q messages m00i , with

respect to pk, for 1 6 i 6 q. Then A0 sets the public key of P as pk = (pk1,pk2), where pk2 ¼ pk, and sends the public key pk to
the adversary A.

Simulation of signing oracle.A then queries the signing oracle of P on messages mi adaptively for 1 6 i 6 q. A0 answers the
signature query as follows: First, from the first property of relation R; A0 computes m0i such that ðm0i;m00i Þ;mi

� �
2 R. Then, A0

outputs simulated signature on message mi as ri = (Ai,Bi,Ci), where Ai ¼ Sign0 sk1;m0i
� �

; Bi ¼ r0i; Ci ¼ m0i.
Forgery. After the signature queries, A outputs a forged signature on a new message m⁄ as r⁄ = (A⁄,B⁄,C⁄). By using the

first property of relation R again, A0 could compute m�
00

from m⁄ and C⁄, such that (ðC�;m�00 Þ;m�Þ 2 R.
Recall that in this kind of forgery, C⁄ = Ci for some i. Because m⁄– mi for 1 6 i 6 q, and m0i;m

00
i are chosen randomly by the

simulator, we have m�
00

– m00i from the second property of the defined relationR. This proof, in fact, shows that the signature
scheme prevents the attack from the adversary that just combine the first part in one signature for message M and the
second part in the other signature for message M0.

So,A0 can output a forged P0 signature as r = A⁄ on a new message m�
00

and break the signature scheme P0, with respect to
the challenge public key pk. h
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