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Chameleon signatures simultaneously provide the properties of non-repudiation and non-
transferability for the signed message. However, the initial constructions of chameleon sig-
natures suffer from the key exposure problem of chameleon hashing. This creates a strong
disincentive for the recipient to compute hash collisions, partially undermining the con-
cept of non-transferability. Recently, some constructions of discrete logarithm based cha-
meleon hashing and signatures without key exposure are presented, while in the setting of
gap Diffie–Hellman groups with pairings.

In this paper, we propose the first key-exposure free chameleon hash and signature
scheme based on discrete logarithm systems, without using the gap Diffie–Hellman groups.
This provides more flexible constructions of efficient key-exposure free chameleon hash
and signature schemes. Moreover, one distinguishing advantage of the resulting chame-
leon signature scheme is that the property of ‘‘message hiding’’ or ‘‘message recovery’’
can be achieved freely by the signer, i.e., the signer can efficiently prove which message
was the original one if he desires.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Chameleon signatures, introduced by Krawczyk and Rabin [1], are based on well established hash-and-sign paradigm,
where a chameleon hash function is used to compute the cryptographic message digest. A chameleon hash function is a trap-
door one-way hash function, which prevents everyone except the holder of the trapdoor information from computing the
collisions for a randomly given input. Chameleon signatures simultaneously provide non-repudiation and non-transferabil-
ity for the signed message as undeniable signatures [2–6] do, but the former allows for simpler and more efficient realization
than the latter. In particular, chameleon signatures are non-interactive and less complicated. More precisely, the signer can
generate the chameleon signature without interacting with the designated recipient, and the recipient will be able to verify
the signature without the collaboration of the signer. On the other hand, if presented with a forged signature, the signer can
deny its validity by only revealing some certain values. That is, the forged-signature denial protocol is also non-interactive.
Besides, since the chameleon signatures are based on well established hash-and-sign paradigm, it provides more generic and
flexible constructions.

One limitation of the original chameleon signature scheme is that signature forgery (i.e., collision computation) results in
the signer recovering the recipient’s trapdoor information, i.e., the private key [7]. The signer then can use this information to
deny other signatures given to the recipient. In the worst case, the signer could collaborate with other individuals to
. All rights reserved.
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invalidate any signatures which were designated to be verified by the same public key. This will create a strong disincentive
for the recipient to compute the hash collisions and thus weakens the property of non-transferability.

Ateniese and de Medeiros [7] firstly addressed the key exposure problem of chameleon hashing and introduced the
idea of identity-based chameleon hashing to solve this problem.1 Due to the distinguishing property of identity-based sys-
tem, the signer can sign a message to an intended recipient, without having to first retrieve the recipient’s certificate. More-
over, the signer uses a different public key (corresponding a different private key) for each transaction with a recipient, so
that signature forgery only results in the signer recovering the trapdoor information associated to a single transaction.
Therefore, the signer will not be capable of denying signatures on any message in other transactions. We argue that this
idea only provides a partial solution for the problem of key exposure since the recipient’s public key is changed for each
transaction.2

Chen et al. [11] proposed the first full construction of a key-exposure free chameleon hash function in the gap Diffie–Hell-
man (GDH) groups with bilinear pairings. Ateniese and de Medeiros [12] then presented three key-exposure free chameleon
hash schemes, two based on the RSA assumption (the first constructions without using pairings), as well as a new construc-
tion based on pairings. Recently, Gao et al. [13] claimed to present a key-exposure free chameleon hash scheme based on the
Schnorr signature. However, this scheme requires an interactive protocol between the signer and the recipient and thus does
not meet the basic definition of chameleon hashing and signatures.

All of the existing discrete logarithm based chameleon hash schemes without key exposure [11,12] can only be con-
structed in the setting of GDH groups with pairings. Are there efficient (discrete-logarithm-based) constructions for key-
exposure free chameleon hashing without using the GDH groups? To the best of our knowledge, there is no research work
on this problem in the open literature.

Our contribution. In this paper, we propose two efficient constructions for discrete logarithm based chameleon hash
schemes without key exposure. Our contribution is two folds:

(1) We proposed a new key-exposure free chameleon hash scheme in the GDH groups. Compared with the existing
schemes in the GDH groups [11,12], the proposed chameleon hash scheme is not only based on the weaker assump-
tion, but also more efficient in both hashing and collision computations.

(2) We propose the first discrete logarithm based key-exposure free chameleon hash scheme without using the GDH
groups. One distinguishing advantage of the resulting chameleon signature scheme is that the property of ‘‘message
hiding’’ or ‘‘message recovery’’ can be achieved freely by the signer.

Organization. The rest of the paper is organized as follows: Some preliminaries are given in Section 2. The definitions
associated with chameleon hashing and signatures are introduced in Section 3. The proposed key exposure freeness chame-
leon hash and signature schemes in the GDH groups and non-GDH groups are given in Sections 4 and 5, respectively. Finally,
conclusions will be made in Section 6.

2. Preliminaries

In this section, we first introduce some well-known number-theoretic problems in the discrete logarithm systems. We
then present two proof systems for knowledge of discrete logarithms.

2.1. Number-theoretic problems

Let G be a cyclic multiplicative group generated by g with the prime order q. We introduce the following problems in G.

� Discrete logarithm problem (DLP): Given two elements g and h, to find an integer a 2 Z�q, such that h = ga whenever
such an integer exists.

� Computation Diffie–Hellman problem (CDHP): Given (g, ga, gb) for a; b 2 Z�q, to compute gab.
� Decision Diffie–Hellman problem (DDHP): Given (g, ga, gb, gc) for a; b; c 2 Z�q, to decide whether c � abmodq.

It is proved that the CDHP and DDHP are not equivalent in the GDH groups. More precisely, we call G a GDH group if the
DDHP can be solved in polynomial time but there is no polynomial time algorithm to solve the CDHP with non-negligible
probability. Such groups can be found in supersingular elliptic curves or hyperelliptic curves over finite fields. For more
details, see [14–16]. Moreover, we call hg, ga, gb, gci a valid Diffie–Hellman tuple if c � abmodq.
1 Shamir and Tauman [8] firstly used the chameleon hash functions to design efficient generic on-line/off-line signature schemes. It also suffers from the key
exposure problem of chameleon hashing. Chen et al. [9,10] firstly introduced a special double-trapdoor hash family to solve the problem in the on-line/off-line
signatures.

2 A trivial solution for the key exposure problem is that the signer changes his key pair frequently in the chameleon signature scheme. However, it is only
meaningful in theoretical sense because the key distribution problem arises simultaneously.
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2.2. Proofs of knowledge

A prover with possession a secret number x 2 Zq wants to show a verifier that x = loggy without exposing x, this is named
the proof of knowledge of a discrete logarithm.

This proof of knowledge is basically a Schnorr signature [17] on message (g, y): The prover chooses a random number
r2RZq, and then computes c = H(g, y, gr), and s = r � cx mod q, where H:{0,1}⁄? {0,1}k is a collision-resistant hash function.
The verifier accepts the proof if and only if c = H(g, y, gsyc).

Definition 1. A pair ðc; sÞ 2 f0;1gk � Zq satisfying c = H(g, h, gsyc) is a proof of knowledge of a discrete logarithm of the
element y to the base g.

Similarly, we can define the proof of knowledge for the equality of two discrete logarithms: A prover with possession a
secret number x 2 Zq wants to show that x = loggu = loghv without exposing x.

Chaum and Pedersen [18] firstly proposed the proof as follows: The prover chooses a random number r2RZq, and then
computes c = H(g, h, u, v,gr, hr), and s = r � cx mod q, where H:{0,1}⁄? {0,1}k is a collision-resistant hash function. The verifier
accepts the proof if and only if c = H(g, h, u, v, gsuc, hsvc).

Definition 2. A pair ðc; sÞ 2 f0;1gk � Zq satisfying c = H(g, h, u, v, gsuc, hsvc) is a proof of knowledge for the equality of two
discrete logarithms of elements u, v with respect to the base g, h.

Trivially, the verifier can efficiently decide whether hg, u, h, vi is a valid Diffie–Hellman tuple with the pair (c, s).

3. Definitions

In this section, we introduce the definitions and properties of chameleon hashing and signatures [1,7,8].

3.1. Chameleon hashing

A chameleon hash function is a trapdoor collision-resistant hash function, which is associated with a trapdoor/hash key
pair (TK, HK). Anyone who knows the public key HK can efficiently compute the hash value for each input. However, there
exists no efficient algorithm for anyone except the holder of the secret key TK, to find collisions for every given input. In the
following, we present a formal definition of a chameleon hash scheme.

Definition 3. A chameleon hash scheme consists of four efficient algorithms ðPG;KG;H;FÞ:

� System parameters generation PG: A probabilistic polynomial-time algorithm that, on input a security parameter k, out-
puts the system parameters SP.
� Key generation KG: A probabilistic polynomial-time algorithm that, on input the system parameters SP, outputs a trap-

door/hash key pair (TK, HK).
� Hashing computation H: A probabilistic polynomial-time algorithm that, on input the hash key HK, a customized iden-

tity I,3 a message m, and a random string r, outputs the hashed value h = Hash(I, m, r). Note that h does not depend on TK.
� Collision computation F : A deterministic polynomial-time algorithm that, on input the trapdoor key TK, a message m, a

random string r, and another message m0 – m, outputs a string r0 ¼ Fðh; x; I;m; r;m0Þ such that
3 A c
h ¼ HashðI;m0; r0Þ ¼ HashðI;m; rÞ:

Moreover, if r is uniformly distributed in a finite space R, then the distribution of r0 is computationally indistinguishable
from uniform in R.
A secure chameleon hashing scheme satisfies the following properties:

� Collision resistance: Without the knowledge of trapdoor key TK, there exists no efficient algorithm that, on input a mes-
sage m, a random string r, and another message m0, outputs a string r0 that satisfy Hash(I, m0, r0) = Hash (I, m, r), with non-
negligible probability.
� Semantic security: Let H[X] denote the entropy of a random variable X, and H[XjY] the entropy of the variable X given the

value of a random function Y of X. Semantic security is the statement that the conditional entropy H[mjh] of the message
given its chameleon hash value h equals the total entropy H[m] of the message space.
� Key exposure freeness: If a recipient has never computed a collision under I, then there is no efficient algorithm for an

adversary to find a collision for a given chameleon hash value Hash (I, m, r). This must remain true even if the adversary
has oracle access to F and is allowed to make polynomially many queries on triples (Ij, mj, rj) of his choice, except that Ij is
not allowed to equal the challenge I.
ustomized identity is actually a label for each transaction [7,12].
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3.2. Chameleon signatures

A chameleon signature is generated by digitally signing a chameleon hash value of the message. More precisely, we have
the following definition:

Definition 4. A chameleon signature scheme consists of the following efficient algorithms and a specific denial
protocol:

� System parameters generation PG: A probabilistic polynomial-time algorithm that, on input a security parameter k,
outputs the system parameters SP.
� Key generation KG: A probabilistic polynomial-time algorithm that, on input the system parameters SP, outputs a

trapdoor/hash key pair (TK, HK) and a signing/verification key pair (sk, vk).
� Signature generation SG: A probabilistic polynomial-time algorithm that, on input the hash key HK, the signing key sk, a

customized identity I, a message m, and a random string r, outputs a signature r on the chameleon hash value h = Hash(I,
m, r).
� Signature verification SV: A deterministic polynomial-time algorithm that, on input the hash key HK, the verification key

vk, a customized identity I, a message m, a random string r, and a signature r, outputs a verification decision b 2 {0,1}.
� Denial protocol DP: A non-interactive protocol between the signer and the judge. Given a chameleon signature (r, r) on

the message m, the signer provides the judge a valid collision (m0, r0) and some auxiliary information R. If and only if
m – m0 and R is valid, the judge claims that the signature r on the message m is a forgery.

A secure chameleon signature scheme should satisfy the properties [1,7,11]:

� Unforgeability: No party can produce a valid chameleon signature not previously generated by the signer. Also, the reci-
pient can only produce a forgery of a chameleon signature previously generated by the signer.
� Non-transferability: The recipient cannot convince a third party that the signer indeed generated a signature on a certain

message, thus the signature is not universal verifiable.
� Non-repudiation: The signer cannot deny legitimate signature claims.
� Deniability: The signer can deny a forgery of the signature.
� Message hiding: In case of a dispute, the signer can compute a new collision to deny the forgery and thus the original

message is never revealed.
� Message recovery (or Convertibility): A variant of the chameleon signature can be transformed into a regular signature

by the signer. That is, the signer is also able to prove which message is the original one in case of forgery.

4. Constructions in the GDH groups

In this section, we present an efficient construction of chameleon hashing without key exposure in the GDH groups. As
pointed out by Ateniese and de Medeiros [12], the double-trapdoor mechanism is a necessary condition for the construction
of key-exposure free chameleon hashing. There are two consecutive trapdoors in our proposed chameleon hash scheme: One
is the master trapdoor key x of the user, the other is the ephemeral trapdoor hx for each transaction with the customized
identity I. Given a collision of the chameleon hash function, only the ephemeral trapdoor hx is revealed, but the master trap-
door x still remains secret.

4.1. The proposed chameleon hash scheme

� System parameters generation PG: Let G be a GDH group generated by g, whose order is a prime q. Let H : f0;1g� ! G�

be a full-domain collision-resistant hash function. The system parameters are SP ¼ fG; q; g;Hg.
� Key generation KG: Any user randomly chooses an integer x2RZ

�
q as his trapdoor key, and publishes his hash key y = gx.

The validity of y can be ensured by a certificate issued by a trusted certification authority.
� Hashing computationH: On input the hash key y, a customized identity I, let h = H(y, I). Chooses a random integer a2RZ

�
q,

and computes r = (ga, ya). Our proposed chameleon hash function is defined as
H ¼ HashðI;m; rÞ ¼ gahm
:

� Collision computation F : For any valid hash value H, the algorithm F can be used to compute a hash collision with the
trapdoor key x as follows:
FðH; x; I;m; r;m0Þ ¼ r0 ¼ ðga0 ; ya0 Þ;
where ga0 ¼ gahm�m0 and ya0 ¼ yahxðm�m0 Þ.
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Note that
4 If th
HashðI;m0; r0Þ ¼ ga0hm0 ¼ gahm�m0hm0 ¼ gahm ¼ HashðI;m; rÞ
and hg; y; ga0 ; ya0 i is a valid Diffie–Hellman tuple. Therefore, the forgery is successful. Moreover, if r is uniformly distributed
then the distribution of r0 is computationally indistinguishable from uniform.

Theorem 1. The proposed chameleon hash scheme is collision resistance under the assumption that the CDHP in G is intractable.
Proof. We can prove this theorem by contradiction. Assume that there exists a polynomial time algorithm A, with a non-
negligible probability, that outputs two pairs (m,r) and (m0, r0) which satisfy Hash (I, m0, r0) = Hash(I, m, r), i.e.,
ga0hm0 ¼ gahm, we can compute hx ¼ ðya0=yaÞðm�m0 Þ�1

efficiently. Note that hx is a GDH signature on message I [15], which is
proved secure against existential forgery on adaptively chosen message under the assumption that the CDHP in G is intrac-
table. Therefore, the proposed chameleon hash scheme is collision resistance under the assumption that the CDHP in G is
intractable. h
Theorem 2. The proposed chameleon hash scheme is semantically secure.
Proof. Given a customized identity I, there is a one-to-one correspondence between the hash value H and the string r
for each message m. Therefore, the conditional probability lðmjHÞ ¼ lðmjrÞ. Note that m and r are independent variables,
the equation lðmjHÞ ¼ lðmÞ holds. Then, we can prove that the conditional entropy H½mjH� equals the entropy H[m] as
follows:
H½mjH� ¼ �
X

m

X

H
lðm;HÞ logðlðmjHÞÞ ¼ �

X

m

X

H
lðm;HÞ logðlðmÞÞ ¼ �

X

m

lðmÞ logðlðmÞÞ ¼ H½m�:
So, the proposed chameleon hash scheme is semantically secure. h
Theorem 3. The proposed chameleon hash scheme is key-exposure free.
Proof. Even if the adversary has oracle access toF and is allowed to make polynomially many queries on triples ðIj;mj; gaj ; yaj Þof
his choice, there is no efficient algorithm for him to find a collision of the hash valueH ¼ HashðI;m; ga; yaÞwhere I – Ij. Note that
hx is a GDH signature on message I [15], and computing collisions is equivalent to breaking the signature scheme. However, the
GDH signature scheme is proved to be secure against existential forgery on adaptive chosen-message attacks in the random
oracle model. In other words, even if the adversary has obtained polynomially many GDH signatures hx

j on message Ij, he cannot
forge a signature hx on message I – Ij. h
4.2. The proposed chameleon signature scheme

There are two users, a signer S and a recipient R, in our signature scheme. When a dispute occurs, a judge J can involve in
the scheme.

� System parameters generation PG: Let G be a GDH group generated by g, whose order is a prime q. Let H : f0;1g� ! G�

be a full-domain collision-resistant hash function. The system parameters are SP ¼ fG; q; g;Hg:
� Key generation KG: S randomly chooses an integer xS2RZ

�
q as his signing key, and publishes his verification key yS ¼ gxs .

Similarly, R randomly chooses an integer xR2RZ
�
q as his trapdoor key, and publishes his hash key yR ¼ gxR .

� Signature generation SG: Suppose the message to be signed is m. S randomly chooses an integer a2RZ
�
q, and computes

the chameleon hash valueH ¼ gahm, where h = H(yR, I) and I is a customized identity. Assume SIGN is any secure signature
scheme. The signature r for message m consists of ðm; ga; ya

R; SIGNxS ðHÞÞ:
� Signature verification SV: Given a signature r, R first verifies whether the equation ðgaÞxR ¼ ya

R holds.4 If the verification
fails, he rejects the signature; else, he computes the chameleon hash value H ¼ gahm and verifies the validity of SIGNxS ðHÞ
with the verification key yS.
� Denial protocol DP: When a dispute occurs, i.e., R provides a signature r ¼ ðm�; ga� ; ya�

R ; SIGNxS ðHÞÞ to J. If either
hg; yR; g

a� ; ya�
R i is not a valid Diffie–Hellman tuple or SIGNxS ðHÞ is invalid, J rejects it. Otherwise, J summons S to accept/

deny the claim. If S wants to accept the signature, he just confirms to J this fact. Otherwise, he provides a collision for
the chameleon hash function as follows:
e equation ðgaÞxR ¼ ya
R holds, then R can be convinced that hg; yR; g

a ; ya
Ri is a valid Diffie–Hellman tuple.
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– If S wants to achieve the property of ‘‘message hiding’’, he provides J a collision ðm0; ga0 ; ya0
R Þ. If and only if

m�–m0; hg; yR; g
a0 ; ya0

R i is a valid Diffie–Hellman tuple, and H ¼ ga0hm0 , then J can be convinced that R forged the signa-
ture on message m⁄.

– If S wants to achieve the property of ‘‘message recovery’’, he provides the tuple ðm; ga; ya
R;RÞ as the collision, where R is

a non-interactive proof of knowledge of the discrete logarithm a = loggga. If and only if m⁄– m, hg; yR; g
a; ya

Ri is a valid
Diffie–Hellman tuple, H ¼ gahm, and R is valid, then J can be convinced that R forged the signature on message m⁄ and
S only generated a valid signature on message m.

Different from the basic chameleon signature schemes [1,7], the proposed chameleon signature scheme has the following
distinguishing advantages:

� In the previous chameleon signature schemes, the customized identity I and the identity of the recipient IDR must be
explicitly committed to the signature. While in our scheme, this is unnecessary since no one knows the discrete logarithm
of the element h to the base g.
� Another distinguishing advantage of our scheme is that the signer can efficiently prove which message was the original

one if he desires. This is due to the following observations: Firstly, no one can provide a proof of knowledge of the discrete
logarithm a0 ¼ loggga0 for any collision ga0 ¼ gahm�m0 ; Secondly, only S can provide a proof of knowledge of the discrete
logarithm a = loggga for the original input ga.

On the other hand, the enhanced schemes [1,7] can be converted into universally verifiable instances. The trick is that the
signer encrypts the message using a semantically secure probabilistic encryption scheme ENC and then includes the cipher-
text in the signature. However, as noted in [7], this solution does not provide the recipient with a mechanism for adjudicated
convertibility, because the recipient has no guarantee that the signer has encrypted the correct information during the
signing step.

4.3. Security analysis

Theorem 4. The proposed chameleon signature scheme satisfies the properties of unforgeability, non-transferability, non-
repudiation, deniability, message hiding, and key exposure freeness.
Proof. We prove the proposed chameleon signature scheme satisfies the above properties one by one.

� Unforgeability: No third party can produce a valid chameleon signature which has not been previously generated by the
signer, as this requires either to break the underlying signature scheme SIGN, or find a valid collision of the chameleon
hash function H. Also, it is trivial that the recipient can only produce a forgery of a chameleon signature previously gen-
erated by the signer. However, it is meaningless since the judge can detect this forgery after the signer provides a different
collision.
� Non-transferability: Note that the semantic security of a chameleon hashing scheme implies the non-transferability of

the corresponding chameleon signature scheme [7]. Therefore, the recipient cannot transfer a signature of the signer to
convince any third party.
� Non-repudiation: Given a valid signature r ¼ ðm; ga; ya

R; SIGNxS ðHÞÞ, the signer cannot generate a valid hash collision
ðm0; ga0 ; ya0

R Þ which satisfies H ¼ HashðI;m0; ga0 ; ya0
R Þ and m – m0 because it is equivalent to computing the CDHP in G.

� Deniability: It is ensured by the denial protocol.
� Message hiding: Given a collision ðm; ga; ya

RÞ and ðm�; ga� ; ya�
R Þ, though the trapdoor key x is never divulged, the signer can

compute the ephemeral trapdoor key hx. Then the signer can provide any other collision ðm0; ga0 ; ya0
R Þ to ensure the confi-

dentiality of the original message m, where ga0 ¼ gahm�m0 , ya0
R ¼ ya

Rðh
xÞm�m0 .

� Message recovery: Note that (only) S can provide a proof of knowledge of the discrete logarithm a = loggga (only) for the
original input ga. Therefore, any verifier can be convinced that the original message to be signed is m. h

4.4. Comparison

Compared with the existing two key-exposure free chameleon hash schemes in the GDH groups [11,12], the proposed
chameleon hash scheme is a little more efficient in both hashing computation and collision computation. Moreover, the
security of the scheme [12] is equivalent to the q-Strong Diffie–Hellman problem (q-SDHP), while the security of our pro-
posed scheme is equivalent to the CDHP, which is harder than the q-SDHP for any q.

In the proposed chameleon signature scheme, both the signature verification and the denial protocol are non-inter-
active, so it is more efficient and simple than undeniable signature schemes. Moreover, compared with two previous
chameleon signature schemes in the GDH groups [11,12], our signature scheme provides more efficient and explicit
convertibility.



Table 2
Comparison with two previous chameleon signature schemes.

Scheme [18] Scheme [17] Our scheme

Signature generation 4M + 2m + 1C(S) 3M + 2m + 1C(S) 3M + 1m + 1C(S)
Signature verification 2M + 1m + 1C(V) 2M + 2m + 1C(V) 2M + 1m + 1C(V)
Denial protocol (message hiding) 2M + 3m + 1I 2M + 3m + 1I 2M + 3m + 1I
Denial protocol (message recovery) 1C(E) 1C(E) 1M

Table 1
Comparison with two previous chameleon hash schemes.

Scheme [18] Scheme [17] Our scheme

Mathematical assumption q-SDHP CDHP CDHP
Hashing computation 4M + 2m 3M + 2m 3M + 1m
Collision computation 2M + 2m + 1I 2M + 2m + 1I 2M + 1m
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Tables 1 and 2 present the comparison between our scheme and two previous schemes. We denote by M the exponen-
tiation in G, by m the multiplication in G, and by I the inversion in G. We also denote by C(S), C(V), and C(E) the computation
cost of signing, verifying in scheme SIGN and encrypting in scheme ENC, respectively. We omit other operations such as
hashing and the multiplication in Zq in all schemes.

5. Constructions in the non-GDH groups

In this section, we propose a construction of key exposure freeness chameleon hashing in the non-GDH groups, e.g., the
multiplicative group of finite fields.

5.1. Main idea

The chameleon hash scheme in the non-GDH groups is almost the same as the one in the GDH groups. The only dif-
ference is the way to verify the validity of a Diffie–Hellman tuple. Given the original input (ga, ya) in the GDH groups,
anyone can easily check that hg, y, ga, yai is a valid Diffie–Hellman tuple using the decisional Diffie–Hellman (DDH) ora-
cle. While in the non-GDH groups, no one is allowed to access the DDH oracle. Trivially, the holder of the trapdoor key x
can verify the validity of the Diffie–Hellman tuple hg, y, ga, yai as follows: The holder can check whether the equation
(ga)x = ya holds using the trapdoor key x. However, any third party without knowing x cannot verify the validity of (ga,ya)
with the same method.

As we mentioned before, the proof of knowledge for the equality of two discrete logarithms can substitute the DDH ora-
cle. Therefore, the holder with trapdoor key x could provide such a knowledge proof to convince any third party of the fact.
We explain it in more details as below.

Note that if (g, gu, gv, guv) is a valid Diffie–Hellman tuple, then (g, gv, gu, guv) is also a valid Diffie–Hellman tuple, vice versa.
That is, there are two different ways (based on the knowledge u or v, respectively) to prove that (g, gu, gv, guv) is a valid Diffie–
Hellman tuple when using the proof of knowledge for the equality of two discrete logarithms. This is the main trick to design
key exposure freeness chameleon hash scheme in the non-GDH groups. Therefore, for any collision ðga0 ; ya0 Þ, the holder with
knowledge x can provide a proof of knowledge for the equality of two discrete logarithms, i.e., x ¼ loggy ¼ logga0 ya0 . In par-
ticular, it is also holds for the original input (ga, ya).5 Moreover, we argue that it is NOT required to know the value a0 or a in this
knowledge proof.

On the other hand, only the signer (with knowledge a) can provide a proof of knowledge that a = loggga = logyya for the
original input (ga, ya), and no one can provide a proof of knowledge that a0 ¼ loggga0 ¼ logyya0 for any collision ðga0 ; ya0 Þ. This
is the main trick to achieve the property of ‘‘message recovery’’ in the denial protocol of the proposed chameleon signature
scheme. For more details, please refer to Section 5.3.

5.2. The proposed chameleon hash scheme

� System parameters generation PG: Let G be a multiplicative group generated by g, whose order is a prime q. Let
H : f0;1g� ! G� be a full-domain collision-resistant hash function. The system parameters are SP ¼ fG; q; g;Hg.
� Key generation KG: Any user randomly chooses an integer x2RZ

�
q as his trapdoor key, and publishes his hash key y = gx.

The validity of y can be ensured by a certificate issued by a trusted certification authority.
5 This ensures the property of non-transferability in the resulting chameleon signature scheme.
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� Hashing computationH: On input the hash key y, a customized identity I, let h = H(y, I). Chooses a random integer a2RZ
�
q,

and computes r = (ga, ya). Our proposed chameleon hash function is defined as
H ¼ HashðI;m; rÞ ¼ gahm
:

� Collision computation F : For any valid hash value H, the algorithm F can be used to compute a hash collision with the
trapdoor key x as follows:
FðH; x; I;m; r;m0Þ ¼ r0 ¼ ðga0 ; ya0 Þ;
where ga0 ¼ gahm�m0 and ya0 ¼ yahxðm�m0 Þ.

Note that Hash(I, m0, r0) = Hash(I, m, r). Also, for any collision r0, the holder of the trapdoor key x can convince any third
party that hg; y; ga0 ; ya0 i is a valid Diffie–Hellman tuple, using a proof of knowledge for the equality of two discrete logarithms,
i.e., loggy ¼ logga0 ya0 . In particular, it also holds for the original input (ga, ya). Therefore, the forgery is successful. Besides, if r is
uniformly distributed then the distribution of r0 is computationally indistinguishable from uniform.

Theorem 5. The construction above is a secure chameleon hash scheme under the assumption that the CDHP in G is intractable.
Proof. The proof for the properties of collision resistance and semantic security is the same as that of Theorem 1. In the fol-
lowing, we only focus on the key exposure freeness.

Note that even if the adversary has obtained polynomially many signatures hx
j on message Ij, he can not forge a signature

hx on message I – Ij, otherwise the full domain hash (FDH) [19,20] variant of Chaum’s undeniable signature scheme can be
broken. However, Ogata et al. [21] showed that the unforgeability of the FDH variant of Chaum’s scheme with non-
interactive zero-knowledge proof confirmation and disavowal protocols is equivalent to the CDHP. Therefore, even if the
adversary has oracle access to F and is allowed to make polynomially many queries on triples ðIj;mj; gaj ; yaj Þ of his choice,
there is no efficient algorithm for him to find a collision of the hash value H ¼ HashðI;m; ga; yaÞ where I – Ij. h
5.3. The proposed chameleon signature scheme

There are two users, a signer S and a recipient R, in our signature scheme. When dispute occurs, a judge J can involve in
the scheme.

� System parameters generation PG: Let G be a multiplicative group generated by g, whose order is a prime q. Let
H : f0;1g� ! G� be a full-domain collision-resistant hash function. The system parameters are SP ¼ fG; q; g;Hg.
� Key generation KG: S randomly chooses an integer xS2RZ

�
q as his signing key, and publishes his verification key yS ¼ gxs .

Similarly, R randomly chooses an integer xR2RZ
�
q as his trapdoor key, and publishes his hash key yR ¼ gxR .

� Signature generation SG: Suppose the message to be signed is m. S randomly chooses an integer a2RZ
�
q, and computes

the chameleon hash valueH ¼ gahm, where h = H(yR, I) and I is a customized identity. Assume SIGN is any secure signature
scheme. The signature r for message m consists of ðm; ga; ya

R; SIGNxS ðHÞÞ.
� Signature verification SV: Given a signature r, R first verifies whether the equation ðgaÞxR ¼ ya

R holds. If the verification
fails, he rejects the signature; else, he computes the chameleon hash valueH ¼ gahm and verifies the validity of SIGNxS ðHÞ
with the verification key yS.
� Denial protocol DP: When a dispute occurs, i.e., R provides J a signature r ¼ ðm�; ga� ; ya�

R ; SIGNxS ðHÞÞ and a non-interac-
tive proof of knowledge P⁄ for the equality of two discrete logarithms that xR ¼ loggyR ¼ logga� ya�

R . If either SIGNxS ðHÞ or P⁄

is invalid, J rejects it. Otherwise, J summons S to accept/deny the claim. If S wants to accept the signature, he just confirms
to J this fact. Otherwise, he provides a collision for the chameleon hash function as follows:
– If S wants to achieve the property of ‘‘message recovery’’, he provides J the tuple ðm; ga; ya

R;PÞ as a collision, where P is
a non-interactive proof of knowledge for the equality of two discrete logarithms that loggga ¼ logyR

ya
R. If and only if

m⁄– m, H ¼ gahm, and P is valid, then J can be convinced that R forged the signature on message m⁄ and S only gen-
erated a valid signature on message m.

– If S wants to achieve the property of ‘‘message hiding’’, he provides J the tuple ðga; ya
R;R;PÞ as a collision, where R is a non-

interactive proof of knowledge of a discrete logarithm that m ¼ loghH=ga, and P is a non-interactive proof of knowledge
for the equality of two discrete logarithms that loggga ¼ logyR

ya
R. If and only if ga�–ga, andR and P are both valid, then J can

be convinced that R forged the signature on message m⁄ and the original message m is still confidential.

Remark 1. For any collision ðga� ; ya�
R Þ, R can provide a proof of knowledge that loggyR ¼ logga� ya�

R , which is also holds even
when a = a⁄. That is, the original input ðga; ya

RÞ is totally indistinguishable with any collision ðga� ; ya�
R Þ. Besides, only S can pro-

vide a proof of knowledge that loggga ¼ logyR
ya

R, and no one can provide a proof of knowledge that loggga� ¼ logyR
ya�

R when
a – a⁄. Therefore, S can efficiently prove which message was the original one if he desires.

Remark 2. In the proposed chameleon signature scheme, both the signature verification and the denial protocol are non-
interactive, so it is more efficient and simple than undeniable signature schemes.
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Compared with our key-exposure free chameleon signature scheme based on GDH groups in Section 5.3, the proposed
scheme is as efficient as in the signature generation and verification algorithms. While in the denial protocol, the proposed
scheme requires a (very) little more computation and communication cost for the non-interactive proofs of knowledge. We
argue that these proofs of knowledge requires at most 2 modular exponentiation operations and about 2q bits storage.
Therefore, the proposed chameleon signature scheme is much efficient for the real applications.

5.4. Security analysis

Theorem 6. The proposed chameleon signature scheme satisfies the properties of unforgeability, non-transferability, non-
repudiation, deniability, message hiding, and key exposure freeness.
Proof. We prove the proposed chameleon signature scheme satisfies the above properties one by one.

� Unforgeability: No third party can produce a valid chameleon signature which has not been previously generated by the
signer, as this requires either to break the underlying signature scheme SIGN, or find a valid collision of the chameleon
hash function H. Also, it is trivial that the recipient can only produce a forgery of a chameleon signature previously gen-
erated by the signer. However, it is meaningless since the judge can detect this forgery after the signer provides a different
collision.
� Non-transferability: The semantic security of the proposed chameleon hash scheme implies the non-transferability of

the resulting chameleon signature scheme.
� Non-repudiation: Given a valid signature r ¼ ðm; ga; ya

R; SIGNxS ðHÞÞ, the signer cannot generate a valid hash collision
ðm0; ga0 ; ya0

R Þ which satisfies H ¼ HashðI;m0; ga0 ; ya0
R Þ and m – m0 because it is equivalent to computing the CDHP in G.

� Deniability: It is ensured by the denial protocol.
� Message hiding: Since R is a proof of knowledge of a discrete logarithm that m ¼ loghH=ga, the information for original

signed message m is never revealed.
� Message recovery: Note that only S can provide a proof of knowledge that loggga ¼ logyR

ya
R, and no one can provide a

proof of knowledge that loggga� ¼ logyR
ya�

R when a⁄– a. Therefore, any verifier can be convinced that the original message
to be signed is m. h

6. Conclusions

We first propose a key-exposure free chameleon hash scheme based on discrete logarithm systems, without using the
GDH groups. Moreover, one distinguishing advantage of the resulting chameleon signature scheme is that the property of
‘‘message hiding’’ or ‘‘message recovery’’ can be achieved freely by the signer. In addition, we prove that the proposed cha-
meleon hash and signature schemes satisfy the desired security requirements.
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