
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2011 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2011 The 2011 Symposium on
Cryptography and Information Security

Kokura, Japan, Jan. 25-28, 2011
The Institute of Electronics,

Information and Communication Engineers

An Enhanced Security Policy Framework for Android

Yi Jae Park ∗ Doyoung Chung ∗ Made Harta Dwijaksara ∗ Jangseong Kim ∗

Kwangjo Kim ∗

Abstract— Googles Android, a smartphone operating system, is used by many users, and the
number of its users is increasing. However, because in Android Market, the application store only for
Android, there is no examination of security of applications and Android users can install applications
without stores; malicious applications can circumvent the safety verification. As a result, Android users
are exposed to malicious applications without any security privacy protection. Then, the verification
process for the application security policy is an important issue, but there are static verification pro-
cesses and inefficient dynamic verification processes so far. In this paper, to resolve these weaknesses,
we propose an enhanced security policy framework for Android. In the framework, users can check
dynamically on the permissions used by applications, allow the permissions of applications partially,
and modify the permissions of the applications. With the framework, users can distinguish malicious
applications.

Keywords: Smartphone security, Android security, Permissions

1 Introduction

After releasing Apple iPhone in 2009 Korea into cus-
tomers, the number of smartphone users is growing
dramatically. Especially, the market share of Android,
a smartphone operating system of Google, is growing
with its advantages: free release, multi-channel and
multi-carrier OS. Gartner, Inc., an information tech-
nology research firm, forecast that the market share of
Android in smartphone OS will be in second place [?].
As shown in Figure ??, the representative smartphone
operating systems are Apple’s iOS, Nokia’s Symbian,
Google’s Android, RIM’s BlackBerry, and Microsoft’s
Windows Mobile.

52%

19%

9%

13%

5% 2%

Symbian

RIMM

MSWindowsMobile

iPhoneOS

Linux

Android

Figure 1: Worldwide Smartphone OS Marketshare as
of Q2 2009 [?]

∗ Department of Computer Science, KAIST, 291 Daehak-
ro(373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Re-
public of Korea, (krad, wordspqr, made.harta, jskim.withkals,
kkj@kaist.ac.kr)

Along with the growth of smartphone market, the
market of smartphone applications (called application
store) is increasing. Two representative smartphone
application markets are Apple’s AppStroe and Google’s
Android Market. Applications sold at Apple’s App-
Store are registered only if it is verified by application-
verification processes that there is no fault in the secu-
rity and legitimacy of the applications. On the other
hand, because, in Android Market, applications are re-
leased without application-verification processes for the
security and legitimacy of the applications, Android
smartphone users are exposed to malicious applications
without any security privacy protection. Furthermore,
since Android smartphone users can install applications
without Android Market, the problem becomes more
serious.

In addition, for the installation of an application of
the Android operating system, users have to approve
the permissions specified by the developers of the ap-
plication. However, because there is no confirmation
of the permissions of the applications after the instal-
lation, even though the permissions are used by the
application for wrong purposes, users and the Android
operating system cannot verify uses of the permissions
[?, ?].

Due to multi-purpose usage and multi-tasking fea-
tures, the battery life of smartphones is shorter than
typical mobile phones [?]. Because of the battery life
of smartphones, antivirus applications for the security
in the Android operating system are inefficient.

In this paper, for energy efficiency of the security pol-
icy verification process in the Android operating sys-
tem, we propose an enhanced security policy frame-
work for Android. Our proposed framework has three

1



characteristics. First, users can check dynamically on
the access permissions which applications use. Second,
users can allow access the permissions of applications
partially. Third, users can modify the access permis-
sions of the installed applications. With the proposed
framework, users can distinguish between malicious ap-
plications and general applications.
The organization of this paper is as follow: in Section

2, we discuss with the related work; then, we present
our proposed framework in Section 3 and analyze the
proposed framework; Finally, we conclude this paper
with short summary and future work in Section 5.

2 Background and Related Work

2.1 Android

Android is a software-stack containing for mobile de-
vices, operating system, middleware, and core applica-
tions. Its architecture comprises of four layers. An-
droid applications are placed on top of the Android
layer stack, which are supported by underlying three
layers that include application framework, Android run-
time, and Linux kernel.

2.1.1 Application Framework

Android provides an open development platform and
helps developers to build rich an innovative applica-
tions. Developers are free to take advantage of the
hardware of device, access location information (GPS),
run background services, add notifications to the status
bar, and so on.
Also, the developers can access to the same frame-

work APIs used by the core applications. The appli-
cation architecture is designed to simplify the reuse of
components. If an application allows the usage of its
components subject to security constraints, any other
application can utilze the components.

2.1.2 Libraries

Android includes a set of C/C++ libraries used by
various components of the Android system. These ca-
pabilities are exposed to developers through the An-
droid application framework.

2.1.3 Android Runtime

Android runtime has core libraries and Dalvik virtual
machine. Besides libraries above, Android includes a
set of core libraries that provides most of the func-
tionality available in the core libraries of the Java pro-
gramming language. Dalvik virtual machine runs ap-
plications which have been converted into a compact
Dalvik Executable format suitable for systems that are
constrained in terms of memory and processor speed.
Every Android application runs in its own process, with
its own instance of Dalvik virtual machine.

2.1.4 Linux Kernel

Android relies on Linux version 2.6 for core system
services such as hardware (display, camera, etc.), secu-
rity, memory management, process management, and

network. The kernel also acts as an abstraction layer
between the hardware and the rest of the software stack.

2.2 Comparison with Android and iPhone OS

In 2010, the most popular operating systems for smart-
phones are Android and iPhone OS. Although there are
many differences with Android and iPhone OS, two
most representative differences are application stores
for developers and applications.

In the view of application store: Both Android
and iPhone OS have their own application store - An-
droid Market for Android and App Store for iPhone
OS. In the situation of application developers, there
are some differences. First, Android Market ask devel-
opers for 25$ as fee only once. However, App Store ask
developers for 99$ per year [?, ?].

Also, App Store needs some identification of develop-
ers like contact, a business registration and so on, but
Android Market needs only developers gmail account.

Finally, the biggest difference in application stores
is the verification processing of applications. In App
Store, when a developer uploads its application to App
Store, after a review for more than 5 days, users can
download the application. If the application cannot
pass the reviewing test, users cannot see the applica-
tion. However, in Android Market, there is no verifi-
cation test of applications. If developers upload their
applications to Android Market, users can download
them immediately. No verification test of application
can be a security hole of Android.

In the view of applications: There are two dif-
ferences between Android and iPhone OS: how to get
applications and how to enforce restriction. In iPhone
(along with iPod Touch and iPad), if users do not jail-
break their own iPhone, they can get applications from
only App Store. However, in Android, users can get
applications not only Android Market, but also appli-
cation stores of 3rd parties and Internet directly. In
order to get an application, users can download an An-
droid package file (apk file) of the application and just
install the application on their mobile devices.

Apple, the seller of iPhone, places some restrictions
on applications. For example, developers cannot make
an application which accesses important part of OS
or data. But in Android, there is no restriction like
iPhones. In addition to this, the source of Android is
opened.

2.3 Related Work

W. Enck et al., in 2009, proposed lightweight mobile
phone application certification technique for static se-
curity policy verification in the Android operating sys-
tem [?]. This technique judges whether an application
has some potential risks or not when the application
is installed. However, because this technique does not
judge whether the application has some risks when the
application is running, it is hard for this technique to
assess risks of an application accurately.

2



A. Chaudhuri proposed a technique which evaluates
the trustworthiness of applications. Their proposed
technique provides static safety analysis of applicaion
code on the basis of formal specifications of APIs pro-
vided the SDK [?]. The proposed technique anticipates
data flow of applications by analyzing codes of appli-
cations. However, because there can be a debate that
whether the application code analysis is precise, effi-
cient and feasible to observe the data flow by analyzing
codes of applications.
Unlike previously described techniques, M. Ongtang

et al. proposed SAINT scheme to secure the Android
platform [?]. They highlighted different aspects of secu-
rity vulnerability in Android system and extended An-
droid framework to provide a more controlled and se-
cure environment for applications to interact with other
applications and resources they can acquire. However,
they are not ensuring application trustworthiness for
trust and safety of Android users, but are focusing on
application integrity to protect application itself from
corrupting or malfunctioning.
M. Alam [?] proposes Android runtime security pol-

icy enforcement framework for dynamic security policy
verification. The proposed framework by [?] assesses
risks of an application based on the sequence of per-
missions the application needs in runtime. However,
there are some vulnerabilities: attackers can break into
the Android operating system by the sequences of per-
missions classified as secure sequences, and who will
classify secure sequences of permissions.

3 Our Proposed Framework

Android operating system does not investigate ap-
plication runtime behavior to ensure its trustworthi-
ness and prevent any application from malfunctioning
[?]. In order to solve these weaknessess, we propose
an Enhanced Security Policy Framework for Android.
The proposed framework is composed of 3 major parts:
EDAPA (Efficient Dynamic Access Permission Anal-
ysis) which dynamically examines access permissions
that applications use, pAPA (partial Access Permis-
sion Allow) which allows partially access permissions
of applications, and to modify the permissions of the
applications. Figure ?? shows the illustration of our
proposed framework in the Android operating system.
Compared to the previous approaches [?, ?], which
should perform additional computational overhead to
check access permission of a service, our approach only
checks access permission of the service by checking the
corresponding system calls which are related to the reg-
istered access permissions by an end-user (i.e., sending
SMS and accessing web).

3.1 EDAPA

In Android platform, in order to examine the secu-
rity policy of running applications, it requires a func-
tion that monitors continuously these applications, but
the function causes an issue in which the battery of the

Figure 2: Our Proposed Framework in the Android
Operating System

smartphone can be reduced. In order to solve this is-
sue and do efficient and dynamic analysis of the secu-
rity policy of running applications, we propose EDAPA
technique.

A user, first, sets up permissions he/she wants to pro-
tect. Next, if an application calls the permission the
user sets up, the proposed framework reports to the
user that the permission was called. By this technique,
users can notice the applications that request the per-
missions the users want to protect and the malicious
system call.

The dynamic verification process of EDAPA can be
represented as in Figure ??. For example, if a user
sets up the permission to send SMS (SEND SMS) and
the permissions to make a call (CALL PHONE) as the
protected permissions, EDAPA informs the user when
an application requests the system call for SEND SMS
or CALL PHONE.

Because EDAPA informs users whenever the pro-
tected permissions are called, the convenience of users
falls. In order to solve this issue, users can set up par-
ticular applications that EDAPA does not monitor al-
though the applications call the protected permissions.

App EDAPA Kernel

SEND_SMS request

Verify permission of 
App

Disallow, reject

Allow, 
SEND_SMS request

SEND_SMS

SEND_SMS

Figure 3: Dynamic Verification Process of EDAPA

3



3.2 pAPA

For the installation of an application in the Android
operating system, users have to approve the permis-
sions specified by the developers of the application.
However, an instance that a user does not want an ap-
plication to have all permissions specified by the devel-
oper may happen. By pAPA, users can allow partially
access permissions of applications. Figure ?? shows in-
teraction between pAPA and users at the installation
time.

Figure 4: pAPA at Installation

For example, we suppose that there is a chatting ap-
plication which, in the first run after the installation,
searches phone numbers in the telephone directory of
the user, finds persons who are in the telephone direc-
tory of the user and have the same application, and
add the persons into the friend list of itself automati-
cally. There can be a user of the application who does
not want automatic adding the persons. In current
Android operating system, because users have to ap-
prove all permissions specified by the developer of the
application, they cannot prevent the application from
adding the persons automatically. In the proposed
framework, with pAPA, when a user installs the chat-
ting application, if the user does not allow the permis-
sion to read the telephone directory (READ contacts),
the user can prevent the application from adding the
persons automatically.
In pAPA, there are two cases of allowing the access

permission partially: the permission is a monitoring
target of EDAPA or not. Even though the permission
called by an application is allowed by pAPA, if the
permission is a monitoring target of EDAPA, the per-
missions are confirmed by the user. Figure ?? shows
pAPA and a permissions which is not monitoring target
of EDAPA, and Figure ?? shows pAPA, a permissions
which is a monitoring target of EDAPA, and EDAPA.
By pAPA, users prevent malicious applications which

are disguised as useful applications. When users in-
stall an application, they can install the application
without doubtful permissions of the application with
pAPA. For example, when a user installs a naviga-
tion application, we supposed that the navigation ap-
plication needs the permissions to locate the user by

App pAPA

Permission Request

Check 
Permissions 

List of 
Application

Kernel

Disallow, 
Reject

Allow, 
Permission Request

EDAPA

Permission 
Monitoring 
List Check

Not Monitoring Target,
System Call

System Call

Figure 5: pAPA and Permission which is not monitor-
ing target of EDAPA

App EDAPA Kernel

SEND_SMS request

Verify permission of 
App

Disallow, reject

Allow, 
SEND_SMS request

SEND_SMS

SEND_SMS

Figure 6: pAPA, Permission which is a monitoring tar-
get of EDAPA

GPS (ACCESS FINE LOCATION), to locate the user
by Cell-ID (ACCESS COARSE LOCATION), and to
make a call (CALL PHONE). To users, the permis-
sions to make a call of the navigation application can
be doubtful. At this time, by pAPA, users can allow
two permissions other than CALL PHONE.

There can be a vulnerable point caused by pAPA: if
a permission is essential for an application but is not
allowed by pAPA, the application can make an error re-
lated to the permission. For example, let us look again
the above navigation application. Assume that the
navigation application needs CALL PHONE permis-
sion at the beginning of the application and CALL PHONE
permission for the application is not allowed by pAPA,
the navigation application might not run. In this case,
a pseudo-permission can be a solution. To the applica-
tion, which needs the permission the user does not want
to allow, pAPA gives a pseudo-permission for the per-
mission. Pseudo-permissions are recognized as real per-
missions by applications, but with pseudo-permissions,
applications cannot perform functions related to the
permissions.

3.3 Modification of the Permissions of the Ap-
plications

In the present Android operating system, the users
cannot modify the permissions after the installation

4



Table 1: Comparison with other techniques

Security Analysis Detection Battery Consumption System Resource

W. Enck et al. [?] Static Policy Low Medium
Antivirus

Dynamic
Signature

High High
applications [?] of applications

M. Alam [?] Dynamic
Sequence

Medium Medium
of permissions

Ours Dynamic System call Low Low

time. However, in the proposed framework, users can
modify the permissions of the applications. Users can
set more limits of permissions on applications which
need more verifications and uncap limits of permissions
on applications of which the verification process is con-
cluded.

4 Comparison

In Table ??, we compare the characteristics of our
framework and existing security policy verification tech-
niques [?, ?]. Existing studies of Android security have
analyzed applications statically. Lightweight mobile
phone application certification [?], the static verifica-
tion technique of W. Enck et al., extract the security
enforcement policy from corresponding Manifest file,
and compare the extracted policy with their predefined
invariants at installation in order to certify the appli-
cation trustworthiness or maliciousness. In the static
analyses, if the application passes the static verifica-
tion process at the installation time, users cannot real-
ize that the application does something malicious after
the installation time.
By antivirus applications for the Android operat-

ing system [?], the users can solve this weakness of
the static analysis. Because antivirus applications are
not in the Android operating system, the applications
must always occupy the system resources of the An-
droid operating system. Then, the applications can
cause shorter battery life.
M. Alam [?] tried to judge whether an application

has some risks or not by adding a dynamic verification
process of the sequence of the permissions the applica-
tion needs into the Android operating system. How-
ever, for the analysis of the sequence of the permis-
sions, the process have to always occupy the system
resources, and although a sequence of permissions is
already classified as a secure sequence, attacker can at-
tack the Android operating system with the sequence.
In order to solve these weaknesses, our framework

analyzes the access permissions of the applications dy-
namically by observing the corresponding system calls
in Android operating systems. Compared to the pre-
vious approaches [?, ?], we believe that our approach
is more efficient based on the following observations.
First, verification cost for access permission are deter-
mined not by the number of applications owned by an
end-user but by the number of the corresponding sys-

tem calls registered by the end-user. Second, when
new type of the application is installed, our approach
can enforce the current registered access permissions of
the end-user without any additional security analysis of
the application. Also, in our framework, partial access
permissions make it possible for the end-users to verify
application by themselves.

5 Conclusion and Future Work

Smartphone security is more important than the se-
curity of typical mobile phones because smartphones
have two functions of a mobile phone and a computer.
Android is an operating system for smartphones, and
after its release, users of Android are rapidly increasing.
However, because no verification of security of applica-
tions in Android Market is excuted, Android users are
exposed to malicious applications without any security
privacy protection. To resolve these issues, some frame-
works have been proposed, but presented static verifi-
cation processes or inefficient dynamic verification pro-
cesses. In this paper, using system calls for an efficient
dynamic security policy verification, we improve ineffi-
ciency of existing security policy verification processes.
Also, in the proposed framework, users can allow the
permissions of applications partially, and modify the
permissions of the applications, but in the present An-
droid operating system, users cannot do that. By the
proposed framework, users can distinguish between ma-
licious applications and general applications.

As our future work, we will implement this frame-
work on real devices and verify its pros and cons.

References

[1] Kyle, “Worldwide Smartphone
OS Marketshare as of Q2 2009,”
http://www.handheldnow.com/2009/12/25/there-

are-way-too-many-cell-phone-operating-systems/

[2] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S.
Dolev, and C. Glezer, “Google Android: A Com-
plrehensive Security Assessment ,” IEEE Security
& Privacy , 2009.

[3] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and
S. Dolev, “Google Android: A State-of-the-Art Re-
view of Security Mechanisms ,” 2009.

5



[4] Y. F. Chang, C. S. Chen and H. Zhou , “Smart
Phone for Mobile Commerce,” Computer Standards
& Interfaces, 2009.

[5] Android Developer Signup,
http://market.android.com/publish/signup

[6] iOS Developer Program,
http://developer.apple.com/programs/ios/

[7] W. Enck, M. Ongtang, and P. McDaniel, “On
Lightweight Mobile Phone Application Certifica-
tion,” Proceedings of the 16th ACM Conference on
Computer and Communications Security , ACM,
2009, pp. 235-245.

[8] A. Chaudhuri, “Language-based security on An-
droid,” Proceedings of the ACM SIGPLAN Fourth
Workshop on Programming Languages and Analy-
sis for Security, ACM, 2009, pp. 1-7.

[9] M. Ongtang, S. McLaughlin, W. Enck, and P. Mc-
Daniel, “Semantically Rich Application-Centric Se-
curity in Android,” 2009 Annual Computer Secu-
rity Applications Conference , IEEE, 2009, pp. 340-
349.

[10] M. Alam, “Android Runtime Security Policy En-
forcement Framework,” Journal of Personal and
Ubiquitous Computing, Springer, 2009.

[11] D.H. Kang, J.H. Han, Y.K. Lee, Y.S. Cho,
S.W. Han, J.N. Kim, and H.S. Cho, “Smartphone
Threats and Security Technology (in Korean),”
Electronics and Telecommunications Trends, ETRI,
2010.

6


