All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2010 does not prevent future

submissions to any journals or conferences with proceedings.

SCIS 2010 The 2010 Symposium on
Cryptography and Information Security
Takamatsu, Japan, Jan. 19-22, 2010
The Institute of Electronics,
Information and Communication Engineers

Scalable Grouping-proof Protocol for RFID Tags

Dang Nguyen Duc *

Jangseong Kim *

Kwangjo Kim *

Abstract— In this paper, we propose a grouping-proof protocol for RFID tags based on (n, n)-secret
sharing. Our proposed protocol addresses the scalability issue of the previous protocols by removing
the need for an RFID reader to relay messages from one tag to another tag. We also present a security
model for a secure grouping-proof protocol which properly addresses the so called mafia fraud attack
(sometimes called distance fraud) which is a simple relay attack suggested by Desmedt. Any location-
based protocol including RFID protocols is vulnerable to this attack even if cryptographic technique is
deployed. One practical countermeasure against mafia fraud attack is to integrate a distance-bounding
protocol into a location-based protocol. However, Chandran et al. pointed out that forging geographic
location of devices cannot be theoretically prevented. Therefore, we need to take this fact into account
in order to make sense about security notion for secure grouping-proof protocols.

Keywords:

1 Introduction

Grouping-proof protocols allow multiple RFID tags
to be scanned at once such that their co-existence is
guaranteed. One typical application of a grouping-
proof protocol is to scan tags that are supposed to stay
together. For example, RFID tags attached on differ-
ent parts of a car should be located near each other.
Juels [3] proposed the first protocol of this kind which
is called yoking-proof. The protocol allows an RFID
reader to produce a co-existence proof of two RFID
tags. The proof can then be verified by a verifier which
holds all the secret keys of tags. Unfortunately, Saito
and Sakurai [4] showed that yoking-proof is vulnerable
to replay attack and proposed a timestamp-based ver-
sion of yoking-proof to withstand the attack. A true
grouping-proof protocol which supports simultaneous
scanning of more than two tags was also proposed in
[4]. However, this protocol requires a pallet tag to act
as a proxy between a reader and other regular tags.
Other improved variants of yoking-proof were also pro-
posed in [5, 6, 7].

In this paper, we point out that all of the previous
grouping-proof protocols in [3, 4, 5, 6, 7] suffer from
a scalability problem. More specifically, a reader has
to relay messages from one tag to another tag which
makes it difficult to scan a large number of tags at the
same time. Our proposed protocol aims to solve this
problem by removing the requirement to relay messages
among tags.

An important part of designing a secure protocol is
to define a security model in which the term secure
correctly captures our intuition about real-world se-
curity of the protocol. We argue that this task has
not been done adequately in previous works. In par-

* KAIST, 119 Munjiro, Yuseong-gu, Daejeon, Republic of Korea
{nguyenduc, jskim.withkals, kkj}@kaist.ac.kr

RFID Security, Yoking-Proof, Grouping-Proof, Scalability

ticular, no previous work addresses mafia fraud attack
presented in [1]. Mafia fraud attack is simply a relay
attack where an attacker relays messages exchanged
between a reader and tags. As noted in [9], all of
grouping-proof protocols for RFID are inherently in-
secure against this attack because the attacker can re-
lay messages exchange between a reader and tags that
reside out of the communication range of the reader.
The result is an invalid proof that contains tags not in
the communication range of the reader at the time of
interrogation. Indeed, a security model that does not
address this issue cannot be a proper security model for
grouping-proof protocols because it would be impossi-
ble to prove the security. In practice, we can somehow
mitigate this attack by using a distance bounding pro-
tocol [2] so that a relay attacker does not have sufficient
time to relay messages out of the communication range
of the reader. Indeed, some of previous protocols [4, 6]
make use of timestamp which is actually used to defeat
replay attack. However, this prevention method works
only if an interrogation session lasts as short as possi-
ble. Since a reader has to relay messages among tags in
previous protocols, a protocol session can be prolonged
which makes mafia fraud attack more feasible. There-
fore, it is also important to solve the scalability prob-
lem in order to defeat mafia fraud attack. Note that,
the use of timestamp does not mean that we do not
need to take mafia attack into account when defining
a security notion for secure grouping-proof protocols.
After all, mafia fraud attack is always feasible from a
theoretical point of view. In fact, in [8], Chandran et
al. showed that it is impossible to securely verify the
geographic location of a device. Another issue when
defining a security model for grouping-proof protocol
is that the verifier has no knowledge of what or how
many tags are actually in the communication range of

a reader. Therefore, we cannot achieve security at all
if a reader is allowed to behave maliciously in an arbi-
trary way. For example, a reader can deliberately avoid
scanning some tags resulting in an invalid co-existence
proof. In this paper, we present a secure model for
secure grouping-proof protocols which takes the above
issues into account. In particular, we put the following
assumptions in our security model:

e Relaying messages out of the communication range
of a reader is not allowed. We address this as-
sumption by restricting the adversary’s access to
the tag oracle during the last phase of an experi-
ment in which the adversary interacts with a set
of oracles, receives a challenge and attempts to
solve the challenge. We shall discuss this in more
details in Section 4.

e The reader is trusted to execute the protocol fruit-
fully but it may report an invalid co-existence
proof to the verifier. In particular, before report-
ing a valid proof to the verifier, a dishonest reader
may try to remove a tag from the proof, replace a
tag in the proof with another tag or add another
tag to the proof. In practice, the protocol can
be implemented in a tamper-proof chip whereas
a proof is assembled and sent to the verifier by
the reader in software (and therefore is subject to
malicious behaviors of a reader).

It is important to note that, none of previous proto-
col appears to be secure in a weaker assumption. We
then propose a grouping-proof protocol for RFID by
using a (n,n)-secret sharing scheme (also referred to as
unanimous consent control in [10]). The goal of using a
(n,n)-secret sharing scheme in our protocol is to let n
tags sign n different challenges. The n challenges are n
shared secrets of a number which is randomly chosen by
the verifier. The threshold property of a (n,n)-secret
sharing scheme guarantees that n signed challenges are
tied together. We then prove the security of our proto-
col.

2 Related Work

In this section, we briefly review existing grouping-
proof protocols. We will use the notations summarized
in Table 2.

Table 1: Notations

[Notation]| Description |

K; Secret key of tag T;
MACKk].] Message authentication code with secret key K

P A co-existence proof of multiple tags
R Reader
TS Timestamp
T, An RFID tag
v Verifier (Back-end Database)

2.1 Yoking-Proof for RFID Tags

Yoking-proof [3] enables an RFID reader to produce
a proof that two RFID tags are present within the com-
munication range of the reader. The proof can then be

verified by the verifier which knows secret keys of the
two tags. In the yoking-proof protocol, a tag proves
its presence by signing a random number generated
by another tag. A message authentication code (MAC
for short) algorithm can be used as a signing mecha-
nism. The reader is in charge of forwarding the random
numbers and collecting the MACs to form a proof of
co-existence. The resulting co-existence proof can be
verified by checking the validity of the MACs. The
protocol proceeds as follows:

1. R — T1: request.

2. 71 — R: T1,r1 where r; is chosen at random.
3. R —= Ty 1.
4

. Ta = R: Tz, r2,me =MACk,[r1] where 75 is cho-
sen at random.

5. ’R,—>7—1 T9.
6. 71 — R: my =MACk, [r2].
7. R—=V: P=(T1,r1,m1,T2,m2, ma).

2.2 Saitoh-Sakurai’s Grouping-Proof for RFID
Tags

Saitoh and Sakurai [4] showed that yoking-proof is
vulnerable to replay attack. The reason is that the two
messages my and mo are not guaranteed to be gener-
ated in the same session. As a result, an attacker can
reuse mo in another session which results in a forged
proof. To prevent the attack, Saitoh and Sakurai pro-
posed a timestamp-based yoking-proof which requires
an online verifier to issue a timestamp TS for each ses-
sion. TS is included in each co-existence proof and
must be signed by both 77 and 7. The online verifier
accepts a proof only if it is received within the expected
lifespan of one interrogation session. Other variants of
yoking-proof also appeared in [5, 6, 7].

In [4], the authors also proposed another protocol
which allows the simultaneous scanning of more than
two tags. The protocol is called grouping-proof and re-
quires an additional entity called pallet tag. The pallet
tag has more computational resource than an RFID tag
and acts as a representative of all RFID tags that are
in the same package with the pallet tag.

1. V—>R: TS.
.R—=T,T, T TS.
. Ti = R: m; =MACK,[TS], fori =1,2,--- ,n.

2
3
4. R — Pallet Tag: TS, mq,mo, -+ ,my.
5. Pallet Tag — R: Cp = SKg[TS, my,ma,- - ,my,].
6

. R—=V: P=(TS, Cp,T1, T2, -, Tn)-

The proof P is subject to timestamp verification by
the online verifier in order to prevent replay attacks.
Then, the co-existence proof is verified by checking the
validity of each m;.

3 Scalability Issue of Previous Grouping-
Proof Protocols

The design of yoking-proof and timestamp-based yok-
ing proof suffers from a serious scalability issue. The
reason is that a reader needs to relay messages from one
tag to another so that a tag can sign the random num-
bers that were generated by the other tags. As a result,
if the reader wants to produce a co-existence proof of n
tags, it is required to relay n(n — 1) messages among n
tags. The number of relaying messages can be reduced
to (n — 1) if a proof is constructed in a chaining fash-
ion. That is, the first tag signs the second tag’s random
number. The second tag signs the third tag’s random
number and so on. However, this approach might be
subject to replay attack if a protocol is not designed
carefully. Let’s assume that a tag 7; appears in two
chaining proofs. Using 7; as a connector, an attacker
might try to connect the first half of the first proof with
the second half of the second proof to produce a forged
proof. Nevertheless, this is a significant communica-
tion overhead compared to the traditional method of
scanning one tag at a time which requires no message
to be relayed by the reader. This same problem also
appears in other variations of yoking-proof including
the previous works [5, 6, 7].

The grouping-proof protocol by Saitoh and Sakurai
does not use the same design of yoking-proof. How-
ever, it requires a pallet tag which is capable of per-
forming symmetric encryption. This increases the cost
of multiple scanning of tags and might not be flexible
in practice. For example, in a retail store, items that
are scanned at a point-of-sale usually do not have an
accompanying pallet tag. In addition, the reader still
needs to relay messages from all tags to the pallet tag.
In order to scan n tags at once, the reader needs to
relay n messages to the pallet tag.

As we pointed out earlier, the lifespan of one proto-
col session may affect the resilience of a grouping-proof
protocol against mafia fraud attack. We believe that it
is important to solve the scalability problem of previ-
ous grouping-proof protocols, for the sake of not only
performance but also security.

4 Security Model for A Secure Grouping-

Proof Protocol

Before designing a protocol to secure certain crypto-
graphic tasks, It is important that one should clearly
define the meaning of the term secure. In this paper,
we present a security model for a secure grouping-proof
protocol for RFID tags which addresses mafia fraud
attack and the level of trust on an RFID reader. We
then define what a secure grouping-proof protocol for
RFID tags is. Our security model is a conventional
security model in a sense that the adversary is given
access to a set of oracles and the term secure is defined
via a game between a challenger and an adversary. In
[7], the authors proposed another security model for
secure grouping-proof protocol in the Universal Com-

posable Framework (UC framework for short). A pro-
tocol which is secure in UC framework is guaranteed
to remain secure even when running as a component
of a large system. The most important part of a secu-
rity model in the UC framework is the ideal functional-
ity which is a trusted party implementing the required
cryptographic task. The ideal functionality defined in
[7] is called Fyroup which interacts with different in-
volving parties via 5 interfaces: activate, initiate, link,
complete and verify (whereas involving parties do not
interact with each other directly). Interested readers
are referred to [7] for the description of each of Fg,oup’s
interface. The problem with Fg;..yp is that there is no
condition for a tag to call Fgroup’s initiate. Indeed,
only tags within the communication range of a reader
are qualified to make the initiate calls to Fyroup. Un-
fortunately, the communication range of a reader is not
modeled in Fgroup. That is probably why the full se-
curity proofs for two protocols in [7] are not yet avail-
able. Note that, this does not mean security proofs for
lightweight authentication protocols for RFID are in-
valid. In case of an authentication protocol, the goal
of the adversary is to impersonate a tag. Simply relay-
ing message between a legitimate tag and a reader does
not imply impersonation. It is also worth mentioning
that most of previous grouping-proof protocols employ
timestamp which makes it difficult to rigorously ana-
lyze their security. We believe that it is better to avoid
using a physical object in the description of a protocol
but embed it into the security model or assumption.
We now describe our security model for a secure
grouping-proof protocol. First of all, we realize that
for a grouping-proof for RFID tags protocol, the pri-
mary goal of an adversary is to inject some tags (pos-
sibly genuine) into a valid co-existence proof while the
tags are not actually in the communication range of
the reader. In addition, the adversary might also want
remove some tags from a valid co-existence proof. It
is also assumed that the reader can behave maliciously
but does execute the protocol correctly. When report-
ing a co-existence proof to the verifier, a malicious
reader may try to replace some tags in the proof with
different tags, add a tag to the proof or remove a tag
from the proof. One can obtain a stronger security no-
tion by allowing a malicious reader to deviate from the
protocol in any fashion. However, it is impossible to
achieve security because the verifier has no knowledge
of what and how many tags are actually in the commu-
nication range of the reader. The malicious reader can
violate the security by deliberately not scanning some
tags. This issue also appears in all of the previous pro-
tocols in [3, 4, 5, 6, 7]. Indeed, the timestamp-chaining
protocol by Lin et al. is vulnerable to malicious behav-
iors of a reader even if the reader is trusted to execute
the protocol correctly. The reason is that before re-
porting a co-existence proof of n tags to the verifier,
the malicious reader can remove some tags at the end
of the timestamp chain from the proof without invali-
dating the proof. We now define a set of oracles that

provide information to the adversary:

e The reader(.) oracle: This oracle simulates a
reader during a protocol session. That it, it re-
turns the reader’s challenge to a tag.

e The corrupt-reader(.) oracle: This oracle cor-
rupts a reader and returns the current state of
the reader. The adversary is also allowed to con-
trol the reader after this oracle is called.

e The tag(.) oracle: This oracle simulates a tag
during a protocol session. That is, it returns the
tag’s response given a challenge from a reader.

e The verify(.) oracle: This oracle takes a co-existence

proof P as input and returns 1 if P is valid and
0 otherwise.

We now define the security notion for a secure grouping-

proof protocol via the following game between a chal-
lenger and an adversary.

1. The challenger first sets the verifier and a reader
and tags up to prepare for the game.

2. In the first phase of the game, the adversary col-
lects information via 4 oracles: reader(.), tag(.),
corrupt-reader(.) and verify(.). These oracles are
simulated by the challenger.

3. In the second phase of the game, the challenger
gives the adversary a valid proof P of n tags as
a challenge. The adversary’s goal is to either re-
move a tag from P or add a new tag to P or
replace a tag in P with a different one. In this
phase, the adversary is also given access to the
corrupt-reader(.) oracle after the challenge proof
P is constructed. However, the tag(.) oracle is
not provided to the adversary after the adversary
has seen P. This is to reflect our assumption that
relay attack is not possible. The adversary should
output a new proof P’ which satisfies one of its
goals.

4. The adversary wins the game if verify(P’) returns
1. That is, P’ is a valid co-existence proof.

Definition 1. A grouping-proof protocol is said to be
secure if the winning probability of the adversary in the
above game is negligible. That is, for any polynomial-
bounded adversary A and a sufficiently large security
parameter k.

1
poly(k)

Prob[A wins| <

5 Owur Proposed Grouping-Proof Pro-
tocol

We now propose our grouping-proof protocol for mul-
tiple RFID tags which does not suffer from the scala-
bility problem. We use a (n,n)-secret sharing scheme
to stop messages being relayed among tags. A (n,n)-
secret sharing scheme allows one to split one secret x
into n of so called shared secrets such that x can only
be reconstructed from the shared secrets if and only
if all of n shared secrets are provided. This property
is used in our proposed protocol so that each tag can
sign its own random number to prove its existence. The
random numbers are shared secrets generated by a se-
cret sharing scheme. If the original secret generated
by a verifier can be recovered from signed shared se-
crets that were backscattered by tags, then the proof
of co-existence of tags is verified. A (n,n)-secret shar-
ing scheme can be implemented as follows:

e Given a secret z, a dealer chooses (n — 1) ran-
dom numbers y1, Y2, - ,Yn—1 as the first (n — 1)
shared secrets.

e The last shared secret ¥, is computed by y, =
TDY DY2D - D Yn—1-

It is easy to see that the above protocol achieves
perfect security since it is impossible to recover x with-
out any of y1,¥ys2, -+ or y,. In addition, for each ran-
domly chosen z, a shared secret of x is also random.
This property is important to prevent replay attack as
a shared secret is used as a challenge in our proposed
protocol. We now describe our grouping-proof protocol
below.

1. V — R: x chosen at random. The verifier also
sets a time-to-live on = such that a co-existence
proof associated with x must be received within
the lifespan of 2 (which is approximately the time
taken by one interrogation session of a reader).

2. R —>T;: x,y;fori =1,2,--- ,'n whereyy,y2,- -,
and y,, are n shared secrets of x.

3. Ti = R: Ti,m; =MACk, [y;, x], fori = 1,2,--- ,n.

4. R=V: P= (7-1791,W177—27y27m2>"' ;7;l7y’n7mn)~

5. V: The verifier verifies a proof P by checking if
P is received within the lifespan of x = y; S y2 B
-+ @ yp and each m; is valid MAC of the tag T;

on (.’L’, yz)

Remark 1. Note that, it is important to stress that
we do use timestamp in our protocol to prevent a mali-
cious reader from abusing x (i.e., the malicious reader
can take T and use shared secrets of x on different tags
at different locations and times). However, the way
which timestamp is used in our protocol is very differ-
ent from in previous protocols. More specifically, we

do not use timestamp as a challenge to a tag. Instead,
only the verifier maintains timestamp for each inter-
rogation session. This allows us to leave “time-to-live
of x” to the security model. Indeed, the fact that a co-
existence proof must be received within the lifespan of =
fits in the assumption that a reader always executes the
protocol correctly until reporting a proof to the verifier.
Therefore, we can ignore the use of timestamp in the
security proof of our protocol.

We now analyze the success probability of an adver-
sary attacking our protocol. The probability is mea-
sured in terms of the success probabilities of adver-
saries attacking the underlying MAC and secret shar-
ing schemes in the following theorem.

Theorem 1. Let a be success probability of an adver-
sary attacking the underlying MAC scheme. Let € be
the success probability of an adversary that attacks our
proposed grouping-proof protocol, we have:

EZO(Q+27%>

where | is the bit length x and d is the number of tags
in the tag database.

Proof. Let A be the adversary that attacks our pro-
posed grouping-proof protocol. Given a challenge P =
(Ti,y1,ma, T2, y2,may - -+, Toy Y, M) and let o = y1 @
Yo @ -+ - D yn, A wants to achieve one of the following
goals:

e Construct a co-existence proof P’ = (7%, yf, m}, T5",

ys,mb, - TX yk,mk) such that {71, T2, -+, Tn}
{7—1*77—2*5 ’7;*}§ YOy - Oy, =T and
mj,m5,--- and m} are valid MACs of 7;*, 755, - - -

and 7—n* on (yfv IE), (y;7 l’), -+ and (y:w I)v respec-
tively. In other words, A succeeds when it can
replace at least one tag that is actually in the
communication range of the reader by another
tag. We call this type of adversary Type-I adver-
sary.

e Construct a co-existence proof P’ = (7%, yf, m}, 75,

Ys,ms, -, T,y 1, my,_y) such that the car-
dll’la.hty Of {7—177-2a e aﬁl} \ {7;*’7—2*7' te ’7;:71}
sl yf Pys®-- - ®y;_; = x; and mj, m3,--- and

m., _, are valid MACs of 7*,75",--- and 7,"_; on
(yfv ZL’), (y;> $)7 -+ and (y:—la 37)7 respectively. In
other words, the adversary can remove a tag from
P. We call this type of adversary Type-II adver-
sary.

e Construct a co-existence proof P’ = (71, y7, m7, Tz,
y;7 m§7 T 7;“ y:w mru ;—i—lv y;-&-l’ m:L-’rl) such yT
Qys ©--- @y @Yy = x; and mi,m3, - -, my
and my | are valid MACs of T;,73,---,7T, and
7;;k+1 on (y’f,x), (y§7$)a Y (y;;,l’) and (y:+1a 37)7
respectively. In other words, the adversary can

add the tag 7., ; to P. We call this type of ad-
versary Type-III adversary.

In the first phase of the attack, A are given access
to three oracles: the tag(.) oracle, the reader(.) oracle
and the verify(.) oracle. The corrupt-reader(.) oracle is
not required as A can eavesdrop x itself from challenges
sent to tags (except that A can control the reader after
seeing the challenge P, however this does not affect the
analysis here). The tag(.) oracle is essentially a MAC
oracle as it outputs MAC on an input value together
with a tag ID. In the second phase of the attack, the
adversary can only control the reader after seeing the
challenge P. No oracle access is given in this phase.
As usual, we limit the number of calls to oracles and
running time of the adversary to be polynomial in se-
curity parameters. We analyze the success probability
of each type of the adversary below.

Type-1 Adversary: We distinguish two cases of
Type-I adversary as follows:

e Case 1: none of (yf,z) for i = 1,2,--- ,n has
not been asked to the tag(.) oracle. In this case,
A is essentially a MAC forger with m is a forged
MAC. Indeed, if A can forge a MAC, then it is
obvious to attack the proposed grouping-proof
protocol by constructing a forged MAC on one
of (y;,x) for i = 1,2,--- ,n such that the forged
MAC is a valid MAC of a tag not in {71, T2, -+ , Tn }.
Therefore, the success probability of A is bounded
by the success probability of the MAC adversary.

e Case 2: at least one of (yf,z) fori=1,2,---,n
has been asked to the tag oracle. We only con-
sider the case that the adversary try to replace
one tag in P with another tag. But it can be eas-
ily generalized to the case of replacing more than
one tag. Since A is not supposed to forge a MAC
(otherwise, it is easier to attack by executing the
scenario of the adversary in the first case) and the
tag(.) oracle is not provided in the second phase
of the attack, A can only hope that its query
to the tag oracle with (y¥,x) results in (7;*, m})
such that 7;* is not among (71,72, -+ ,Tn) and

y; constitutes a valid shared secret. However, be-
cause the underlying (n,n)-secret sharing scheme
is perfectly secure and z is randomly chosen for
each session, y; has to be one of y1,y2, -+ ,yn. In
other words, A succeeds only if one of the pairs
(yi,x) for : = 1,2,--- ,n has been queried to the
tag(.) oracle in the querying phase such that the
returned tuple (7;*,m}) satisfies the adversary’s
goal. As shared secrets are randomly distributed
and there are (d — n) candidate tags for 7*, the
success probability of A is CZTT"Q_%.

Type-I1 Adversary: Using the same analysis for
Type-I adversary, we can see that the best option that
adversary can succeed is to forge a MAC. For example,
if the adversary wants to remove 7, from P, it can forge

a MAC of T,,—1 on (yp—1 ® yn, z). The resulting proof
P'is (7-17 Y1, ma, 7—2a Y2,M2, -, 7;L—13 y:—la m;—l) where
Yh_1 = Yn—1 ® yn and m},_, is the forged MAC. Oth-
erwise, the adversary would have to hope that (y,—1 ©
Yn, x) was queried to the tag(.) oracle during the query-
ing phase. To conclude, the success probability of Type-
IT adversary is bounded by a + %2’%.

Type-11I Adversary: The success probability of
Type-III adversary can also be analyzed similarly. In
particular, if the adversary can forge a MAC, he can
add a tag 7,7, to P by forging two MACs of 7, and
Tv1 on (yn,x) and (y, 1,), respectively, such that
Yn, © Y1 = Yn- The forged proof P’ is (T1,y1,m1, Ta,
Y2, M2, Ty Yy Moy, Ty, Yy my, 1) which should
be correctly verified by the verifier. Therefore, we can
obtain the success probability of Type-III adversary as
%a + ‘FT”Z*%.

Combining the success probabilities of three types of
the adversary, we complete the proof. O

Theorem 1 suggests that if the underlying MAC scheme

is secure, t.e., a is negligible, and [is long enough,
then the success probability of an adversary attacking
our proposed grouping-proof for RFID tags protocol is
negligible. We conclude that our scheme is secure.

Assuming that we want to produce a co-existence
proof of n tags, We compare our proposed scheme with
previous protocols in terms of performance and security
in Table 5.

Table 2: Comparison

Number of Cost of

Relaying Messages

Protocol

Generating Proof

Yoking-Proof n(n — 1) 2n(n — 1) MACs
2nd Protocol [4] n n MACs
1 Encryption
Protocol in [5] n(n — 1) 2n(n — 1) MACs
1st Protocol [6] n(n —1) 2n(n — 1) MACs
1 Encryption
1st Protocol in [7] n(n —1) 4n(n-1) f(.)
Evaluations
Proposed Protocol 0 n MACs

6 Conclusion

In this paper, we present a grouping-proof for RFID
tags protocol based on secret sharing. Our protocol
solves the scalability issue of previous protocols by avoid-
ing relaying messages among tags by a reader. We
also define a security model for a secure grouping-proof
protocol. Our security model deals with the case of
un-trusted readers in a proper way. In particular, we
cannot assume that a reader is totally un-trusted. In-
stead, we assume that a reader is trusted to execute a
grouping-proof protocol correctly but may behave ma-
liciously when reporting a co-existence proof of tags
to the verifier. We also address the impact of mafia
fraud attack on the security of a grouping-proof proto-
col. Finally, we show that our proposed grouping-proof
protocol satisfies the security notion defined within the
proposed security model.

References

[1] Yvo Desmedt, Major security problems with the
Unforgeable (Feige)-Fiat-Shamir proofs of identiy
and how to overcome them, In SecureCom’88, pp.
15-17, 1988.

[2] Stefan Brands and David Chaum, Distance-
Bounding Protocols, In Advances in Cryptology
EUROCRYPT’93, Volume 765 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 344-359,
1994.

[3] Ari Juels, Yoking-Proofs for RFID Tags, In the
Proceedings of First International Workshop on
Pervasive Computing and Communication Secu-
rity, IEEE Press, pp.138-143, 2004.

[4] Junichiro Saitoh and Kouichi Sakurai, Grouping-
Proofs for RFID Tags, In the Proceedings of AINA
International Conference, IEEE Computer Soci-
ety, pp. 621-624, 2005.

[5] Selwyn Piramuthu, On Ezistence Proofs for Mul-
tiple RFID Tags, In the Proceedings of ACS/IEEE
International Conference on Pervasive Services,
IEEE Computer Society, pp. 317-320, 2006.

[6] Chih-Chung Lin, Yuan-Cheng Lai, J. D. Ty-
gar, Chuan-Kai Yang and Chi-Lung Chiang, Co-
existence Proof using Chain of Timestamps for
Multiple RFID Tags, In the Proceedings of AP-
Web/WAIM International Workshop, Springer-
Verlag LNCS 5189, pp. 634-643, 2007.

[7] Mike Burmester, Breno de Medeiros, and Rossana
Motta, Provably Secure Grouping-Proofs for RFID
Tags, In the Proceedings of CARDIS International
Conference, Springer-Verlag LNCS 5189, pp. 176-
190, 2008.

[8] Nishanth Chandran, Vipul Goyal, Ryan Moriarty
and RafailOstrovsky, Position Based Cryptogra-
phy, In the Proceedings of CRYPTO’09, Springer-
Verlag LNCS 5677, pp. 391-407, 20009.

[9] Dang Nguyen Duc and Kwangjo Kim, On the Se-
curity of RFID Group Scanning Protocols, IEICE
Transactions on Information and Communication

Systems, Vol. E93-D, No. 3, Mar. 2010.

[10] Alfred Menezes, Paul C. van Oorschot, and Scott

A. Vanstone, Handbook of Applied Cryptography,
Available at http://www.cacr.math.uwaterloo.
ca/hac/, pp. 524-525.

