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The ‘‘hash–sign–switch” paradigm was firstly proposed by Shamir and Tauman with the
aim to design an efficient on-line/off-line signature scheme. Nonetheless, all existing on-
line/off-line signature schemes based on this paradigm suffer from the key exposure prob-
lem of chameleon hashing. To avoid this problem, the signer should pre-compute and store
a plenty of different chameleon hash values and the corresponding signatures on the hash
values in the off-line phase, and send the collision and the signature for a certain hash
value in the on-line phase. Hence, the computation and storage cost for the off-line phase
and the communication cost for t0he on-line phase in Shamir–Tauman’s signature scheme
are still a little more overload. In this paper, we first introduce a special double-trapdoor
hash family based on the discrete logarithm assumption and then incorporate it to con-
struct a more efficient generic on-line/off-line signature scheme without key exposure.
Furthermore, we also present the first key-exposure-free generic on-line/off-line threshold
signature scheme without a trusted dealer. Additionally, we prove that the proposed
schemes have achieved the desired security requirements.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The notion of on-line/off-line signatures was introduced by Even et al. [12,13]. The idea is to perform the signature gen-
erating procedure in two phases. The first phase is performed off-line (before the message to be signed is known) and the
second phase is performed on-line (after the message to be signed is known). On-line/off-line signatures are particularly use-
ful in smart card applications [29]: The off-line phase is implemented either during the card manufacturing process or as a
background computation whenever the card is connected to power, and the on-line phase uses the stored result of the off-
line phase to sign actual messages. The on-line phase is typically very fast, and hence can be extended efficiently even on a
weak processor.

Even et al. proposed a general method for converting any signature scheme into an on-line/off-line signature scheme.
Nonetheless, the method is rather impractical since it increases the size of the signature by a quadratic factor. In Crypto
2001, Shamir and Tauman [29] used the so-called ‘‘chameleon hash functions” to develop a new paradigm, named ‘‘hash–
sign–switch”, for designing efficient on-line/off-line signature schemes.
. All rights reserved.

nal Conference on Applied Cryptography and Network Security, LNCS 4521, pp. 18–30, Springer-Verlag,

n).

mailto:isschxf@mail.sysu.edu.cn
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


X. Chen et al. / Information Sciences 178 (2008) 4192–4203 4193
Chameleon hash functions, firstly introduced by Krawczyk and Rabin [21], are trapdoor one-way hash functions which
prevent anyone, except the holder of the trapdoor information from computing the collisions for every given input.
Chameleon hash functions were originally used to design chameleon signatures, which as well as undeniable signatures
[6] simultaneously provide non-repudiation and non-transferability for the signed message. In the chameleon signature
schemes, the recipient is the holder of trapdoor information, while in the case of on-line/off-line signatures, the signer is
the holder of the trapdoor information. Therefore, in the off-line phase the signer generates a signature r by using a provably
secure signature scheme to sign the chameleon hash value hðm0; r0Þ of a random message m0 and a random auxiliary number
r0. In the on-line phase, the signer computes a collision r of the chameleon hash function for the given message m such that
hðm; rÞ ¼ hðm0; r0Þ. The signature for the message m is the pair ðr; rÞ.

In the Shamir–Tauman’s on-line/off-line signature schemes, one limitation is that the signatures for different messages
must use different chameleon hash values. Otherwise, if the signer uses the same hash value twice to obtain two signatures
on two different messages, then the recipient can obtain a hash collision and use it to recover the signer’s trapdoor informa-
tion, which is the signer’s secret key. This problem is known as the key exposure problem of chameleon hashing. To avoid this
problem, the signer must compute and store a large number of different chameleon hash values and the corresponding sig-
natures on the hash values in the off-line phase. Given a message in the on-line phase, the signer first selects a one-time hash
value, and then computes a hash collision for the hash value. Then, he provides the hash collision and the corresponding sig-
nature to the verifier. Hence, the computation and storage cost for the off-line phase and the communication cost for the on-
line phase in Shamir–Tauman’s signature scheme are still a little more overload.

The idea of threshold cryptography [10] is to distribute a secret information (i:e:, a secret key) and computation (i:e:,
decryption or signature generation) among multi parties in order to prevent a single point of failure or abuse. In a threshold
signature scheme, given a group of n players, and a threshold t < n, no subset of the players of size at most t can generate a
signature. Recently, Crutchfield et al. [7] presented a generic on-line/off-line threshold signature scheme without trusted
dealers. The main idea of this work is to apply the ‘‘hash–sign–switch” paradigm to a threshold signature scheme. Therefore,
the resulting scheme will suffer from the inherent key exposure problem.

Our contributions. In this paper, we first address the key exposure problem by introducing a double-trapdoor hash family
based on the discrete logarithm assumption. Then, we apply the ‘‘hash–sign–switch” paradigm to propose a more efficient
generic on-line/off-line signature scheme. The key idea is as follows: the hash value and the corresponding signature are al-
ways identical and can be viewed as the public key of the signer. Hence, it is not required to compute and store them in the
off-line phase. Additionally, we introduce the idea of long-term trapdoor and one-time trapdoor in our chameleon hash fam-
ilies, which is similar to the idea of master trapdoor and specific trapdoor in the multi-trapdoor commitment schemes [16].
The one-time trapdoor is used only once for each message being signed in the on-line phase, which prevents the recipient
from recovering the trapdoor information of the signer and computing other collisions. Furthermore, we also propose the
first key-exposure-free on-line/off-line threshold signature scheme without trusted dealers. We prove that the proposed sig-
nature schemes can achieve the desired security requirements in the random oracle model.

In order to achieve the communication and computation advantages of our on-line/off-line signature scheme, we adopt
elliptic curve cryptosystems [20,24] to present our double-trapdoor hash family. Certainly, we can design such a double-
trapdoor hash family over other generic groups, e:g:, the subgroup of Z�p. However, we argue that such a double-trapdoor
hash family over other generic groups is unsuitable for designing efficient generic on-line/off-line signature schemes. The
reason is as follows: Since the ‘‘hash-sign-switch” paradigm is a generic method, it is required that any provably secure sig-
nature scheme S can be used to design the on-line/off-line signature scheme. However, only when the signature length of
original signature scheme S is less than that of a group element, our proposed on-line/off-line signature scheme is superior
to Shamir–Tauman’s scheme in communication cost.1 Currently, for any provably secure signature scheme, the signature
length is more than 160 bits. Therefore, the elliptic curve cryptosystems seem to be the optimal choice. If we adopt other generic
group such as the subgroup of Z�p, some short signature schemes [3,5,28,30] can not be used to design our on-line/off-line sig-
nature scheme. For more details, we refer the readers to Section 4.3.

1.1. Related work

As noted in [29], some signature schemes such as Fiat–Shamir, Schnorr, and ElGamal signature schemes [14,27,11] can be
naturally partitioned into on-line and off-line phases. The reason is that the first step in these signature schemes does not
depend on the given message, and can thus be carried out off-line. However, these are particular schemes with special struc-
ture and specific security assumptions rather than a general and provably secure conversion technique for arbitrary signa-
ture schemes. Shamir and Tauman introduced the ‘‘hash-sign-switch” method for simultaneously improving both the
security and the real-time efficiency of any signature scheme by converting it into an efficient on-line/off-line signature
scheme. Generally, a new chameleon hash family results in a new on-line/off-line signature scheme. Recently, some variants
of on-line/off-line signature schemes [4,7,22] have been proposed based on Shamir–Tauman’s general construction.

The key exposure problem of chameleon hashing is firstly addressed by Ateniese and de Medeiros [1] in the original cha-
meleon signature schemes. Chen et al. [8] proposed the first full construction of a chameleon hash function without key
1 In any case, our proposed scheme is no inferior to Shamir–Tauman’s scheme in computation and storage cost.
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exposure. Later, Ateniese and de Medeiros presented several constructions of exposure-free chameleon hash functions based
on different cryptographic assumptions [2]. However, it seems that the current chameleon hash schemes without key expo-
sure are not suitable for designing efficient on-line/off-line signature schemes. The reasons are twofold: Firstly, collision
computation in these chameleon hash schemes usually requires the costly modular exponentiation operation. Secondly,
though collision forgery will not reveal the signer’s trapdoor information, it allows the verifier to compute other collisions
for the same hash value. To the best of our knowledge, there exists no work that solves the key exposure problem in the
generic on-line/off-line signature schemes except [9].

1.2. Organization of the paper

The rest of the paper is organized as follows: some preliminaries are provided in Section 2. The new double-trapdoor
chameleon hash family based on the discrete logarithm assumption is presented in Section 3. Our efficient generic on-
line/off-line signature scheme and its security and efficiency analysis are given in Section 4. The resulting on-line/off-line
threshold signature scheme is given in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

In this section, we firstly introduce the notion of chameleon hash family and the ‘‘hash–sign–switch” paradigm [29]. We
then present the definition of secure distributed key generation protocol and threshold signature scheme [17].

2.1. Chameleon hash family

Definition 1 (Chameleon hash family). A chameleon hash family consists of a pair ðI;HÞ:

� I is a probabilistic polynomial-time key generation algorithm that on input 1k, outputs a pair ðHK; TKÞ such that the sizes
of HK; TK are polynomially related to k.

� H is a family of randomized hash functions. Every hash function in H is associated with a hash key HK, and is applied to a
message from a space M and a random element from a finite space R. The output of the hash function HHK does not
depend on TK.

A chameleon hash family ðI;HÞ has the following properties:

(1) Efficiency: Given a hash key HK and a pair ðm; rÞ 2M�R, HHKðm; rÞ is computable in polynomial time.
(2) Collision resistance: There is no probabilistic polynomial time algorithm A that on input HK outputs, with a probability

which is not negligible, two pairs ðm1; r1Þ; ðm2; r2Þ 2M�R that satisfy m1 6¼ m2 and HHKðm1; r1Þ ¼ HHKðm2; r2Þ (the
probability is over HK, where ðHK; TKÞ  Ið1kÞ, and over the random coin tosses of algorithm A).

(3) Trapdoor collisions: There exists a probabilistic polynomial time algorithm that given a pair ðHK; TKÞ  Ið1kÞ, a pair
ðm1; r1Þ 2M�R, and an additional message m2 2M that satisfy m1 6¼ m2, outputs a value r2 2 R such that:

� HHKðm1; r1Þ ¼ HHKðm2; r2Þ.
� If r1 is uniformly distributed in R then the distribution of r2 is computationally indistinguishable from uniform in

R.
2.2. Shamir–Tauman’s ‘‘hash–sign–switch” paradigm

Shamir and Tauman introduced the following‘‘hash–sign–switch” paradigm to construct a generic on-line/off-line signa-
ture scheme.

� System parameters generation: Let ðI;HÞ be any trapdoor hash family and ðG;S;VÞ be any provably secure signature
scheme. The system parameters are SP ¼ fðI;HÞ; ðG;S;VÞg:

� Key generation algorithm:
– On input 1k, run the key generation algorithm of the original signature scheme G to obtain a signing/verification key

pair ðSK;VKÞ.
– On input 1k, run the key generation algorithm of the trapdoor hash family ðI;HÞ to obtain a hash/trapdoor key pair
ðHK; TKÞ.

The signing key is ðSK; TKÞ and the verification key is ðVK;HKÞ.
� The signing algorithm:

1. Off-line phase

– Choose at random ðmi; riÞ2RM�R, and compute the chameleon hash value hi ¼ HHKðmi; riÞ.
– Run the signing algorithm S with the signing key SK to sign the message hi. Let the output be ri ¼SSKðhiÞ.
– Store the pair ðmi; riÞ, and the signature ri.
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2. On-line phase
2 Th
– For a given message m, retrieve from the memory a random pair ðmi; riÞ and the signature ri.
– Compute r 2 R such that HHKðm; rÞ ¼ HHKðmi; riÞ.
– Send ðr;riÞ as the signature of the message m.
� The verification algorithm:
– Compute hi ¼ HHKðm; rÞ.
– Verify that ri is indeed a signature of the hash value hi with respect to the verification key VK.

In the following, we present Shamir–Tauman’s ‘‘hash–sign–switch” paradigm with elliptic curve analogue of the
chameleon hash family based on the discrete logarithm assumption [21,29], so that we can fairly compare it with our pro-
posed signature scheme.

� System parameters generation: Let l be a prime power, and EðFlÞ an elliptic curve over finite field Fl. Let #EðFlÞ be the
number of points of EðFlÞ, and P be a point of EðFlÞ with prime order q where qj#EðFlÞ. Denote G the subgroup generated
by P. Let ðI;HÞ be the trapdoor hash family based on the discrete logarithm assumption and ðG;S;VÞ be any provably
secure signature scheme. The system parameters are SP ¼ fE; l; q; P;G; ðG;S;VÞg:

� Key generation algorithm:
– On input 1k, run the key generation algorithm of the original signature scheme G to obtain the signing/verification key

pair ðSK;VKÞ.
– On input 1k, run the key generation algorithm of the trapdoor hash family ðI;HÞ to obtain the hash/trapdoor key pair
ðY ¼ xP; xÞ.

The signing key is ðSK; xÞ and the verification key is ðVK;YÞ.2
� The signing algorithm:

1. Off-line phase

– Choose at random ðmi; riÞ2RM�R, and compute the chameleon hash value hi ¼ HYðmi; riÞ ¼ miP þ riY .
– Run the signing algorithm S with the signing key SK to sign the message hi. Let the output be ri ¼SSKðhiÞ.
– Store the pair ðmi; riÞ, and the signature ri.
2. On-line phase

– For a given message m, retrieve from the memory x�1 and a random pair ðmi; riÞ.
– Compute r ¼ x�1ðmi �mÞ þ rimodq.
– Send ðr;riÞ as the signature of the message m.

� The verification algorithm:
– Compute hi ¼ HYðm; rÞ ¼ mP þ rY .
– Verify that ri is indeed a signature of the hash value hi with respect to the verification key VK.

2.3. Secure distributed key generation protocol

A distributed key generation (DKG) protocol is an essential component of threshold cryptosystems in order to construct
the public key and secret key. In a DKG protocol with n players, the public key is made known to all players, whereas the
secret key is known by none. Instead, each player receives a key share, from which they can recover the secret key.

Feldman [15] presented a verifiable secret sharing (VSS) protocol, denoted by Feldman-VSS, which allows a trusted dealer
to share a key x among n parties that is secure with threshold t. Pederson [25] proposed the first DKG protocol based on Feld-

man-VSS. However, Gennaro et al. [18] showed a security flaw of Pederson’s DKG protocol and then proposed a secure DKG
protocol for discrete logarithm cryptosystems. After performing the DKG protocol, each player obtains a secret share of a
random, uniformly distributed value x and the secret/public key pair is ðx; y ¼ gxÞ. Also, this protocol has the property of
‘‘simulatability”, i:e:; for any adversary A who corrupts a set of players PA 2 P, there exists a simulator M, such that on
input an element y, can produce an output distribution which is polynomially indistinguishable from A’s view of a run of
the DKG protocol that ends with y as the public key output.

We will use this DKG protocol throughout this paper.
e value of x�1 should be pre-computed and stored in order to decrease the computation cost in the on-line phase of the signature scheme.
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2.4. Threshold signature scheme

Gennaro et al. presented a formal definition for threshold signatures [17]. Given a signature scheme S ¼ ðKey�
Gen; Sig;VerÞ, a ðt;nÞ threshold signature scheme TS for S is a triple of randomized algorithms (Thresh-Key-Gen,Thresh-Sig,-

Ver) for a set of n players P ¼ fp1; p2; . . . ; png with a threshold value t where:

� Thresh-Key-Gen is a distributed key generation algorithm used by the players to create a public/secret key pair
ðPK; SKÞ 2 PK�SK such that each pi 2 P receives a share SKi of the secret key SK.

� Thresh-Sig is a distributed signing algorithm used by the players to create a signature for a message m 2M such that the
output of the algorithm is SSKðmÞ. This algorithm can be decomposed into two algorithms: signature share generation and
signature reconstruction.

� Ver is a verification algorithm such that VerðPK;m;rÞ ¼ 1 if and only if r ¼ SSKðmÞ.

A ðt;nÞ threshold signature scheme TS is said to be unforgeable, if no malicious adversary who corrupts at most t players
can produce the signature on any new message m 6¼ mi, given the view of the protocol Thresh-Key-Gen and of the protocol
Thresh-Sig on input the adversary’s adaptively chosen messages mi for 1 6 i 6 k.
3. A new double-trapdoor chameleon hash family

In this section, we first provide a formal definition of double-trapdoor chameleon hash family. We then propose a new
construction based on the discrete logarithm assumption.

3.1. Formal definition

Definition 2 (Double-trapdoor chameleon hash family). A double-trapdoor chameleon hash family consists of a triple
ðI1;I2;HÞ:

� I1 is a probabilistic polynomial-time key generation algorithm that on input 1k, outputs a long-term hash/trapdoor key
pair ðHK1; TK1Þ such that the sizes of HK1; TK1 are polynomially related to k. Note that ðHK1; TK1Þ is associated with all cha-
meleon hash functions in the family and can be used repeatedly during its life span.

� I2 is a probabilistic polynomial-time key generation algorithm that on input 1k, outputs a one-time hash/trapdoor key pair
ðHK2; TK2Þ such that the sizes of HK2; TK2 are polynomially related to k. Note that ðHK2; TK2Þ is only associated with a spe-
cific chameleon hash function in the family and can be used only once.

� H is a family of randomized hash functions. Every hash function in H is associated with a hash key pair HK ¼ ðHK1;HK2Þ,
and is applied to a message from a space M and a random element from a finite space R. The output of the hash function
HHK does not depend on TK ¼ ðTK1; TK2Þ.

A double-trapdoor chameleon hash family ðI1;I2;HÞ has the following properties:

(1) Efficiency: Given a hash key pair HK and a pair ðm; rÞ 2M�R, HHK is computable in polynomial time.
(2) Collision resistance: There is no probabilistic polynomial time algorithm A that on input HK outputs, with a probability

which is not negligible, two pairs ðm1; r1Þ; ðm2; r2Þ 2M�R that satisfy m1 6¼ m2 and HHKðm1; r1Þ ¼ HHKðm2; r2Þ (the prob-
ability is over HK, where ðHK1; TK1Þ  I1ð1kÞ, ðHK2; TK2Þ  I2ð1kÞ and over the random coin tosses of algorithm A).

(3) Trapdoor collisions: There exists a probabilistic polynomial time algorithm that given a pair ðHK1; TK1Þ  I1ð1kÞ, a pair
ðHK2; TK2Þ  I2ð1kÞ, a pair ðm1; r1Þ 2M�R, and an additional message m2 2M that satisfy m1 6¼ m2, outputs a value
r2 2 R such that:

� HHKðm1; r1Þ ¼ HHKðm2; r2Þ.
� If r1 is uniformly distributed in R then the distribution of r2 is computationally indistinguishable from uniform in

R.

(4) Key-exposure freeness: There is no probabilistic polynomial time algorithm A that on input a long-term hash key HK1,

two different one-time hash key HK2 and HK 02, two pairs ðm1; r1Þ; ðm2; r2Þ 2M�R that satisfy m1 6¼ m2 and
HHKðm1; r1Þ ¼ HHK 0 ðm2; r2Þ outputs, with a probability which is not negligible, the long-term trapdoor key TK1.

3.2. A new construction

� System parameters generation: Let l be a prime power, and EðFlÞ an elliptic curve over finite field Fl. Let #EðFlÞ be the
number of points of EðFlÞ, and P be a point of EðFlÞwith prime order q where qj#EðFlÞ. Denote by G the subgroup generated
by P. Define a collision resistant hash function f : Zq �G! Zq. Choose two random elements k; x2RZ

�
q, and compute

K ¼ kP;Y ¼ xP. The one-time/long-term hash key pair is HK ¼ ðK;YÞ, and the one-time/long-term trapdoor key pair is
TK ¼ ðk; xÞ.
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� The hash family: Given the hash key pair HK, the proposed chameleon hash function HHK : Zq � Zq ! G is defined as
follows:
HHKðm; rÞ ¼ f ðm;KÞ � ðK þ YÞ þ rP:
Theorem 1. The construction above is a double-trapdoor chameleon hash family under the assumption that the discrete logarithm
problem in G is intractable.

Proof. We prove that the scheme satisfies the properties defined in Section 3.1.

(1) Efficiency: Given the hash key pair ðK;YÞ and a pair ðm; rÞ 2 Zq � Zq, HHKðm; rÞ ¼ f ðm;KÞ � ðK þ YÞ þ rP is computable in
polynomial time.

(2) Collision resistance: Assume to the contrary, that there exists a polynomial time algorithm A that on input HK outputs,
with a probability which is not negligible, two pairs ðm1; r1Þ; ðm2; r2Þ 2 Zq � Zq that satisfy m1 6¼ m2 and
HHKðm1; r1Þ ¼ HHKðm2; r2Þ. Then, we can use A to solve the discrete logarithm problem in G as follows: For a randomly
given instance ðP; aPÞ, choose a random integer b2RZq and define K ¼ aP, and Y ¼ bP. Therefore, if the equation
f ðm1; aPÞ � ðaP þ bPÞ þ r1P ¼ f ðm2; aPÞ � ðaP þ bPÞ þ r2P holds, we can compute
a ¼ ðf ðm1; aPÞ � f ðm2; aPÞÞ�1ðr2 � r1Þ � bmodq:
(3) Trapdoor collisions: Assume that we are given the hash key pair ðK;YÞ, the trapdoor key pair ðk; xÞ, a pair
ðm1; r1Þ 2 Zq � Zq, and an additional message m2 2 Zq, we want to find r2 2 Zq such that
f ðm1;KÞ � ðK þ YÞ þ r1P ¼ f ðm2;KÞ � ðK þ YÞ þ r2P:
The value of r2 can be computed in polynomial time as follows:
r2 ¼ r1 þ ðkþ xÞðf ðm1;KÞ � f ðm2;KÞÞmodq:
Also, if r1 is uniformly distributed in R then the distribution of r2 is computationally indistinguishable from uni-
form in R.

(4) Key-exposure freeness: Given the long-term hash key Y, two different one-time hash key ðK;K 0Þ, two pairs
ðm1; r1Þ; ðm2; r2Þ 2 Zq � Zq that satisfy m1 6¼ m2 and f ðm1;KÞ � ðK þ YÞ þ r1P ¼ f ðm2;K

0Þ � ðK 0 þ YÞ þ r2P; i:e:;
f ðm1;KÞ � ðkþ xÞ þ r1 ¼ f ðm2;K

0Þ � ðk0 þ xÞ þ r2 modq; it is infeasible to compute x since there are another two unknown
integers k and k0 which are independent of x in this equation. Moreover, it is equivalent to solve the discrete logarithm
problem in G to compute k (or k0) from K (or K 0). h

Remark 1. Note that the hash key K must be used only once. Otherwise, given a collision ðm1; r1Þ and ðm2; r2Þ that satisfy
m1 6¼ m2, we can compute kþ x from the equation f ðm1;KÞ � ðK þ YÞ þ r1P ¼ f ðm2;KÞ � ðK þ YÞ þ r2P: Though the trapdoor
information x is still not revealed because k is unknown, it can be used to compute other collisions for the same hash value.
Note that this feature has some advantages in the chameleon signatures. For example, the signer can provide a different col-
lision to hide the original signed message. While in the case of on-line/off-line signatures, it means that the verifier can uni-
versally forge a signature of the signer. This is the reason why we introduce the idea of one-time hash key in double-trapdoor
chameleon hash family.
4. Our efficient on-line/off-line signature scheme

In this section, we apply the ‘‘hash–sign–switch” paradigm to propose a more efficient on-line/off-line signature scheme.
We can adopt any provably secure digital signature scheme to design our on-line/off-line signature scheme, so it is also a
generic construction.

4.1. The proposed signature scheme

The proposed on-line/off-line signature scheme consists of the following efficient algorithms:

� System parameters generation: Let l be a prime power, and EðFlÞ an elliptic curve over finite field Fl. Let #EðFlÞ be the
number of points of EðFlÞ, and P be a point of EðFlÞ with prime order q where qj#EðFlÞ. Denote G the subgroup generated
by P. Define a collision resistant hash function f : Zq �G! Zq. Given a one-time/long-term hash key HK ¼ ðK;YÞ, the cha-
meleon hash function HHK : Zq � Zq ! G is defined as follows:
HHKðm; rÞ ¼ f ðm;KÞ � ðK þ YÞ þ rP:
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Let ðG;S;VÞ be any provably secure signature scheme. The system parameters are SP ¼ fE; l; q; P;G; f ;HHK ; ðG;S;VÞg:
� Key generation algorithm:

– On input 1k, run the key generation algorithm of the original signature scheme G to obtain the signing/verification key
pair ðSK;VKÞ.

– On input 1k, run the key generation algorithm of the trapdoor hash family to obtain the long-term trapdoor/hash key
pair ðx;Y ¼ xPÞ.

– Choose at random k�2RZq, and compute the chameleon hash value h ¼ k�P. Run the signing algorithm S with the sign-
ing key SK to sign the message h. Let the output be r ¼ SSKðhÞ.

The signing key is ðSK; x; k�Þ and the verification key is ðVK; Y;h;rÞ.
� The signing algorithm:

1. Off-line phase
3 We
every t
– Choose at random ki2RZq, and compute kiP.
– Store the one-time trapdoor/hash key pair ðki; kiPÞ.
2. On-line phase

– For a given message m, retrieve from the memory a random pair ðki; kiPÞ.
– Compute ri ¼ k� � f ðm; kiPÞðki þ xÞmodq.
– Send ðri; kiPÞ as the signature of the message m.
� The verification algorithm:
– Compute h ¼ f ðm; kiPÞðkiP þ YÞ þ riP by using the one-time hash key kiP and the long-term hash key Y.
– Verify that r is indeed a signature of the hash value h with respect to the verification key VK.3

Note that
i

h ¼ f ðm; kiPÞðkiP þ YÞ þ riP ¼ f ðm; kiPÞðkiP þ YÞ þ ðk� � f ðm; kiPÞðki þ xÞÞP ¼ k�P
So, the proposed scheme satisfies the property of completeness.

Remark 2. Note that the value of x�1 need not be pre-computed and stored in our scheme, which is an improvement
compared with [9,29]. Meanwhile, since ri ¼ k� � f ðm; kiPÞðki þ xÞmodq, it also requires only 1 modular multiplication of Zq

in the on-line phase of our scheme.
4.2. Security analysis of the proposed scheme

The most general known security requirement of a signature scheme is security against existential forgery on adaptively
chosen message attacks, which was firstly defined by Goldwasser et al. [19] as follows:

Definition 3. A signature scheme X ¼ ðGen; Sign;VerÞ is existentially unforgeable under adaptive chosen message attacks if
for any probabilistic polynomial time adversary A there exist no non-negligible probability � such that
AdvðAÞ ¼ Pr

hpk; ski  Genð1lÞ;

for i ¼ 1;2; . . . ; k;

mi  Aðpk;m1;r1; . . . ;mi�1;ri�1Þ;ri  Signðsk;miÞ;

hm;ri  Aðpk;m1;r1; . . . ;mk;rkÞ;

m 62 fm1; . . . ;mkg ^ Verðpk;m;rÞ ¼ accept

2
666666664

3
777777775

P �:
Now we give the formal security proof of our on-line/off-line signature scheme. More precisely, we have the following
theorem:

Theorem 2. In the random oracle model, the resulting on-line/off-line signature scheme is existentially unforgeable against
adaptive chosen message attacks, provided that the discrete logarithm problem in G is intractable.

Proof. In the proposed on-line/off-line signature scheme, the corresponding signature r on the chameleon hash value h is
viewed as the public key of the signer. Therefore, a hash collision r and a one-time hash key kP are the real signature on the
message m.
argue that this step could be omitted since ðh;rÞ has been included in the verification key, i:e:; it is not required for the verifier to perform this step
me. Therefore, the verification algorithm of our signature scheme is much more efficient than that of [29].
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Suppose that A is a probabilistic algorithm that given a verification key ðVK;Y ;h;rÞ, forges a signature with respect to the
proposed on-line/off-line signature scheme by an adaptively chosen message attack in time T with success probability �. We
denote, respectively, by qR and qS the number of queries that A can at most ask to the random oracle and the signing oracle.
Let ðmi; kiPÞ denote the input of i-th query to the random oracle, and ðri; kiPÞ denote the corresponding signatures produced
by the signing oracle. Let ðm; r; kPÞ denote the output of A. Since the success probability of A is �, it follows that
Table 1
Compar

Key gen
Off-line
On-line
Signatu
Pr½VVKðh;rÞ ¼ 1 ^ h ¼ HkP;Y ðm; rÞ ¼ HkiP;Yðmi; riÞ�P �:
Then we can construct a probabilistic algorithm M to compute a for a randomly given instance ðP; aPÞwhere P is a generator
of G as follows:

� Let ðSK;VKÞ be the signing/verification key pair of the original signature scheme. Choose a random element Y2RG and let Y
be the long-term hash key. Define the chameleon hash value h ¼ aP. Run the signing algorithm S with the signing key SK to
sign the message h. Let the output be r ¼ SSKðhÞ and then publish the public key ðVK;Y ;h;rÞ.

� Maintain a list, called f-list, which is initially set to empty. If the ith query ðmi;KiÞ to the hash oracle f is not in the list,
choose a random element ei2RZq and respond it as the answer of ith query. Then add ðmi;Ki; eiÞ to the f-list.

� Let mj denote the input of jth query to the signing oracle, choose at random ðe0j; r0jÞ2RZq � Zq ( Note that e0j is not in the f-
list) and define
K 0j ¼ e0j
�1ðh� r0jPÞ � Y;
respond e0j as the hash oracle answer to the query ðmj;K
0
jÞ, and ðK 0j; r0jÞ as the signing oracle answer to the query mj. Then add

ðmj;K
0
j; e
0
jÞ to the f-list.

Suppose the output of A is ðm;K; rÞ. If m 6¼ mj for j ¼ 1; . . . ; qS and h ¼ f ðm;KÞðK þ YÞ þ rP, we say that A forges a
signature ðK; rÞ on the message m with respect to the proposed on-line/off-line signature scheme.

By replays of A with the same random tape but different choices of oracle f, as done in the forking Lemma [26], we can
obtain two valid signatures ðm;K; rÞ and ðm;K; r0Þ with respect to different hash oracles f and f 0.

Note that h ¼ f ðm;KÞðK þ YÞ þ rP and h ¼ f 0ðm;KÞðK þ YÞ þ r0P, we can compute a ¼ ðf 0ðm;KÞ � f ðm;KÞÞ�1ðf 0ðm;KÞr�
f ðm;KÞr0Þ as the discrete logarithm of aP with respect to the base P.

The success probability of M is also �, and the running time of M is equal to the running time of the Forking Lemma which
is bounded by 23TqR=� [26]. h
4.3. Efficiency analysis of the proposed scheme

We compare the efficiency of our scheme with that of Shamir–Tauman’s scheme given in Section 2.2 and Chen et al.’s
scheme [9]. We denote by CðhÞ the computation cost of operation h, and by jkj the bits of k. Also, we denote by M a scalar
multiplication in G, by SM a simultaneous scalar multiplication of the form kP þ lQ in G, by I the inversion in Zq, and by
m the modular multiplication in Zq. We omit other operations such as point addition and hash in both schemes.

Since a 160-bit ECC key offers more or less the same level of security as a 1024-bit RSA key [23], we let jqj=160 in the
following. Currently, for any secure signature scheme, the signature length jrjP jlj þ 1 since jlj is about 160. In the optimal
case, we can choose an elliptic curve EðFlÞ such that #EðFlÞ is just a 160-bit prime q. From Hasse theorem, we know that
jlj ¼ j#EðFlÞj ¼ 160.

Tables 1 and 2 present the comparison of the computation cost, the storage cost, and the communication cost for each
message signing among Shamir–Tauman’s scheme, Chen et al.’s scheme and our scheme.

Therefore, the proposed scheme is much superior to Shamir–Tauman’s scheme in the computation cost of off-line phase,
signature verification cost, storage cost and communication cost. The computation cost in the on-line phase is same. So, we
argue that our signature scheme is more suitable for smart-card applications where both the computation and storage re-
sources are limited. The disadvantage of our scheme is the higher computation cost in the key generation algorithm.

Compared with Chen et al.’s scheme [9], ours is more efficient in the key generation and off-line signing phase. Moreover,
our signature scheme is more suitable for constructing an efficient generic on-line/off-line threshold signature scheme. For
more details, refer to Section 5.
ison of the computation cost

Shamir–Tauman’s scheme Chen et al.’s scheme Our scheme

eration 1M þ 1I 2M þ 1I þ 1CðrÞ 2M þ 1CðrÞ
phase 1SM þ 1CðrÞ 1M þ 1m 1M
phase 1m 1m 1m

re verification 1SM þ 1CðrÞ 1SM 1SM



Table 2
Comparison of the storage and communication cost

Shamir–Tauman’s scheme Chen et al.’s scheme Our scheme

Storage off-line phase 2jqj þ 1jrj 2jqj 2jqj
Communication on-line phase 1jqj þ 1jrj 2jqj 2jqj
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Remark 3. We adopt elliptic curve cryptosystems [20,24] to present our double-trapdoor hash family as [9]. If we adopt
other generic group such as the subgroup of Z�p to present our double-trapdoor chameleon hash family and on-line/off-line
signature scheme, the communication cost for our on-line/off-line signature scheme is 1jqj þ 1jpj. For most current signature
schemes, the signature length jrj < jpj if we let jpj ¼ 1024. So, our proposed on-line/off-line signature scheme is inferior to
Shamir–Tauman’s scheme in communication cost since 1jqj þ 1jpj > 1jqj þ 1jrj. This is the reason why we choose the elliptic
curve cryptosystems.
5. Generic on-line/off-line threshold signature scheme

Though Chen et al. [9] proposed the first generic on-line/off-line signature scheme without key exposure, we argue that it
is not suitable for constructing an on-line/off-line threshold signature scheme by using Gennaro et al.’s DKG protocol [18]. It
seems difficult to construct such an efficient DKG protocol without a trusted dealer: each player performs the protocol and
obtains a secret share of a random, uniformly distributed value x�1 while the secret/public key pair is ðx; y ¼ gxÞ.

In this section, we use our double-trapdoor chameleon hash family to present an efficient generic on-line/off-line thresh-
old signature scheme without a trusted dealer TSOn=Off ¼ ðKey-Gen;Threshold-Sig-Off-line;Threshold-Sig-On-line;VerifyÞ: The
proposed scheme uses Gennaro et al.’s DKG protocol and follows Crutchfield et al.’s construction [7].

5.1. The proposed on-line/off-line threshold signature scheme

The system parameters SP are the same as above and the proposed on-line/off-line threshold signature scheme consists of
the following efficient algorithms:

(1) Key generation (performed once)
4 Cer
a messa
Inputs: A threshold signature scheme TS ¼ ðThresh-Key-Gen;Thresh-Sig;VerÞ, a set of n players P ¼ fp1; p2; . . . ; png, a
threshold t < n

2, and a security parameter l 2 N.
Public Output: A set of public keys.
Private Output: All players pj 2 P receive a set of private keys.
(a) On input 1l, run the Thresh-Key-Gen to obtain the signing/verification key pair ðSK;VKÞ and each pj 2 P receives
the signing key share SKi.

(b) Use the DKG protocol to create the long-term hash key HK ¼ Y ¼ xP, where x 2 Zq is the long-term trapdoor key
and pj 2 P receives the share xj for a degree t polynomial RxðzÞ 2 Zq½z� such that Rxð0Þ ¼ x.

(c) Use the DKG protocol to create k�P, where k� 2 Zq so that pj receives the share k�j for a degree t polynomial
Rk� ðzÞ 2 Zq½z� such that Rk� ð0Þ ¼ k�. Let the chameleon hash value h ¼ k�P, and run the Thresh-Sig to sign the mes-
sage h. Let the output be r ¼ TSSKðhÞ.

(d) Publish the public key ðVK;Y; h;rÞ. All players pj 2 P retain ðSKj; xj; k
�
j Þ.
(2) Off-line phase (performed for each message)

In the off-line phase of Crutchfield et al.’s scheme, the output is a signature stamp r, i:e:, a certain precomputed sig-
nature. However, since the chameleon hash value and the corresponding signature are always identical and published
as the public key in the phase of key generation, the output in the Threshold-Sig-Off-line phase of our scheme is a ran-
dom one-time trapdoor/hash key pair.4

Inputs: The same set of n players P and a threshold t < n
2.

Private output: A random one-time trapdoor/hash key pair.
(a) Use the DKG protocol to create kiP, where ki 2 Zq so that pj receives the share kij for a degree t polynomial
Rki
ðzÞ 2 Zq½z� such that Rki

ð0Þ ¼ ki.
(b) All players pj 2 P retain the corresponding key pair ðkij ; kiPÞ.
tainly, all players pj 2 P can precompute plenty of such key pairs in the off-line phase for the future use. In the on-line phase, the subset of P for signing
ge can randomly retrieve such a key pair with a same index i.
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(3) On-line phase (performed for each message)

Inputs: A subset P0 � P of size t þ 1 and a message m 2 Zq.
Public output: A signature for m.
(a) For each pj 2 P0, define rij ¼ k�j � f ðm; kiPÞðkij þ xjÞmodq. Then pj broadcasts rij to all of the other players in P0.
(b) Define cjðxÞ ¼

Q
pl2P0nfpjg

l�x
l�j, as in the definition of Lagrange interpolation. Now use Lagrange interpolation on the

shares to compute the hash collision ri as follows:

ri ¼
X
pj2P0

rijcjð0Þ ¼
X
pj2P0
ðk�j � f ðm; kiPÞðkij þ xjÞÞcjð0Þ 	 k� � f ðm; kiPÞðki þ xÞmodq

(c) ðri; kiPÞ is the signature of the message m.
(4) Verification (performed for each message)

Inputs: A message m and the signature ðri; kiPÞ.
Public Output: ‘‘Accept” or ‘‘Reject”.
(a) Compute h ¼ f ðm; kiPÞðkiP þ YÞ þ riP by using the one-time hash key kiP and the long-term hash key Y.
(b) Run the Ver to check that r is indeed a signature of the hash value h with respect to the verification key VK.
(5) Signature share verification (performed if necessary)
If the signature verification failed, then some players sent incorrect shares. In order to ensure robustness, we should
identify and remove the corrupted players. That is, we have each player in P check the validity of the pair rij for each
player pj 2 P0. Note that k�j P, kij P, xjP, and kiP are known values from the DKG protocol, so for each pj 2 P0 we can com-
pute and conform that
rij P ¼ k�j P � f ðm; kiPÞðkij P þ xjPÞ:

If any of the shares are deemed incorrect, then broadcast a complaint against pj. If there are at least t þ 1 complaints, then
clearly pj must be corrupted since with at most t malicious players, there can be at most t false complaints. Also, if pj is
corrupted, there will always be enough honest players to generate at least t þ 1 complaints and pj will surely be disqual-
ified in this case. Once eliminated, pj is removed from P0 and is replaced with a new player, thus resulting in a new sig-
nature. As long as at most t players are corrupted, there will always be enough honest players to create a valid signature.
5.2. Security analysis

Theorem 3. The proposed on-line/off-line threshold signature scheme TSOn=Off is complete.

Proof. Note that ri ¼ k� � f ðm; kiPÞðki þ xÞmodq, we have
h ¼ f ðm; kiPÞðkiP þ YÞ þ riP ¼ f ðm; kiPÞðkiP þ YÞ þ ðk� � f ðm; kiPÞðki þ xÞÞP ¼ k�P
So, the verifier will accept the signature with probability 1. h

Theorem 4. Suppose that an adversary corrupts at most t players, the proposed on-line/off-line threshold signature scheme
TSOn=Off is robust.

Proof. The robustness of Key-Gen and Threshold-Sig-Off-line is ensured by the DKG protocol, where each player can validate
his secret key share using the corresponding public verification key share.

In the phase of Threshold-Sig-On-line, if the verifier accepts the incorrect share of a corrupted player, then the corrupted
player will be identified with probability 1 since the equation rij P ¼ k�j P � f ðm; kiPÞðkij P þ xjPÞ holds for the honest players. h

Theorem 5. The proposed on-line/off-line threshold signature scheme TSOn=Off is simulatable.

Proof. Key-Gen and Threshold-Sig-Off-line is simulatable since the DKG protocol is simulatable.
Now we prove that Threshold-Sig-On-line is simulatable. Given the system parameters SP, the message m, the

corresponding signature r ¼ ðri; kiPÞ, t secret key shares ðk�j ; xjÞ and one-time trapdoor/hash key pair shares ðkij ; kiPÞ for
1 6 j 6 t. The simulator can simulate the view of the adversary on an execution of Threshold-Sig-On-line as follows:

(1) Compute rij ¼ k�j � f ðm; kiPÞðkij þ xjÞ for 1 6 j 6 t.
(2) Let FðzÞ be a polynomial like function of degree t such that Fð0Þ ¼ ri and FðjÞ ¼ rij for 1 6 j 6 t. Then the adversary can

compute and broadcast rij ¼ FðjÞ for t þ 1 6 j 6 n. h



Table 3
Comparison of the computation cost

Crutchfield et al.’s scheme Our scheme
Key generation 1CðDKGÞ 2CðDKGÞ þ 1CðThres-SigÞ

Off-line phase 3CðDKGÞ þ 1mþ 1CðThres� SigÞ 1CðDKGÞ
On-line phase ð2þ ð2t þ 1Þ2Þm ð1þ ðt þ 1Þ2Þm
Verification 1SM þ CðVerÞ 1SM
Signature share verification 6M 1M

Table 4
Comparison of the storage and communication cost

Crutchfield et al.’s scheme Our scheme

Total storage off-line phase 2njqj þ 1jrj 2njqj
Communication on-line phase 2ð2t þ 1Þjqj þ 2jqj þ 1jrj ðt þ 1Þjqj þ 2jqj
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Theorem 6. If a threshold signature scheme TS is simulatable and the underlying signature scheme S is existentially unforgeable
against adaptive chosen message attacks, then the threshold signature scheme TS is also existentially unforgeable against adaptive
chosen message attacks.

Proof. Please refer to [17]. h

Theorem 7. Our proposed on-line/off-line threshold signature scheme TSOn=Off is existentially unforgeable against adaptive cho-
sen message attacks.

Proof. The proof can be easily deduced from Theorem 2, Theorem 4, Theorem 5, and Theorem 6. h
5.3. Efficiency analysis

We compare the efficiency of our scheme with the elliptic curve version of Crutchfield et al.’s scheme [7]. Similarly, we
denote by CðhÞ the computation cost of operation h, and by jkj the bits of k. Also, we denote by M a scalar multiplication in G,
by SM a simultaneous scalar multiplication of the form kP þ lQ , and by m the modular multiplication in Zq. We omit other
operations such as point addition and hash in both schemes.

We first analyze the computation complexity. The sum of computation cost for the key generation and off-line phase of
Crutchfield et al.’s scheme is comparable to that of our scheme. While in the on-line phase of our scheme, it only requires
each player pj 2 P0 to perform 1 modular multiplication for computing a signature share, and ðt þ 1Þ2 modular multiplication
for the signature reconstruction. So, the computation cost of our scheme is much less than that of Crutchfield et al.’s scheme
in the on-line phase. Furthermore, our scheme only requires 1 scalar multiplication for the signature share verification,
which is also more efficient than Crutchfield et al.’s scheme.

We then analyze the storage and communication complexity. In the off-line phase of our scheme, each player pj 2 P

should store 2jqj bits for the trapfoor/hash key share, so the total storage for n players is 2njqj bits. In the on-line phase
of our scheme, each player pj 2 P0 broadcasts jqj bits for the collision share to the other players. Note that the signature
length is 2jqj bits, so the total communication cost is ðt þ 1Þjqj þ 2jqj bits. Therefore, our scheme is superior to Crutchfield
et al.’s scheme in storage and communication complexity.

Tables 3 and 4 present the comparison of the computation cost, the storage cost, and the communication cost for each
message signing between Crutchfiled et al.’s scheme and our scheme.

6. Conclusions

On-line/off-line signatures are particularly useful in smart card applications. In this paper, we propose a new double-trap-
door chameleon hash family based on the discrete logarithm assumption and then apply the ‘‘hash–sign–switch” paradigm
to propose a more efficient generic on-line/off-line signature scheme and threshold signature scheme. Compared with the
existing schemes based on Shamir–Tauman’s paradigm, the advantages of our signature scheme are the lower computation
and storage cost for the off-line phase, and the lower communication cost for the on-line phase. Moreover, we prove that the
proposed schemes achieve the desired security requirements.
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