Triangle Symposium on Advanced ICT 2008 (TriSAI 2008)
ICU, Daejeon, Korea, October 6-9, 2008

Mutually Authenticated Key Exchange Protocol for Computationally Limited Devices
Zeen Kim*, Youngdoo Kang** and Kwangjo Kim*
*School of Engineering, Information and Communications University, {zeenkim, kkj}@icu.ac.kr
** Instrumentation and Control Dept., Korea Institute of Nuclear Safety, k407kyd@kins.re.kr
Abstract.
In this paper, we consider the problem of mutually authenticated key exchanges between a computationally limited client and a powerful server. There are several schemes which solved this situation. Previous schemes succeed to reduce the computational load at client side but there exist some security holes on each scheme. We propose a new scheme for achieving mutually authenticated key exchanges. The protocol satisfies all security requirements of authenticated key exchange protocols. We also compare our scheme and previous schemes in security achievements.
Keywords. Authenticated key exchange, asymmetric computing power
1. Introduction
A mutually authenticated key exchange protocol (MAKEP) between two communicating entities provides assurance that they know each other's identity and at the same time shares a common key known only to the two legitimate parties. In spite of the remarkable increase in the availability of computing resources there has been considerable interest in protocols that can be implemented on devices with limited computational power. Such a computationally limited device could be a mobile station, Personal Digital Assistant (PDA), a cellular phone or a smart card in real applications.

Very often the low power device is a client required to establish a key with a computationally powerful server, a powerful server could be a base station, set-top box or the security center of a wireless network, and so an acceptable solution may have unbalanced computational requirements: the server end can bear an increased computational load in order to ease the load on the client side. Another effective technique is to allow the client side to precompute values which can be used during the protocol execution; mobile terminals typically have the opportunity to make offline computations during the idle time between awaiting calls.
In this paper, we propose a new scheme which not only gives the same scalability as other public-key based schemes do, but also satisfies all security requirements for authenticated key exchange protocol which is given by Menezes et al. [1].
The remainder of the paper is organized as follows. In Section 2, we describe some previous result on MAKEP for computationally limited devices and their security. In Section 3, we introduce a new protocol referred to as A-MAKEP (Asymmetric Mutually Authenticated Key Exchange Protocol). A security analysis of the protocol is given in Section 4. We conclude with some further works in Section 5.
2. Related Work
Although there is a long history of designing MAKEPs and many protocols have been proposed for various kinds of distributed systems, they seldom designed for such an unbalanced system setup. Recently several schemes have been proposed for systems with unbalanced computational power. Jakobsson and Pointcheval proposed a MAKEP which improves on efficiency by using precomputation [5] (JP-MAKEP, Figure 1). Wong and Chan showed that Jakobsson and Pointcheval protocol is susceptible to a variant of interleaving attacks and proposed an improvement to Jakobsson-Pointcheval protocol (WC-MAKEP, Figure 2).
[image: image1.emf]
Figure1. Jacobsson and Pointcheval Protocol

[image: image2.emf]
Figure 2. Wong-Chan Protocol

In [3], Choo et al. describe an unknown key share attack on the JP-MAKEP which breaks the reduction of the proof from JP-MAKEP to the discrete logarithm problem. Similarly to the Boyd-Gonzalez Nieto protocol, the proof model allows Corrupt queries for clients, and hence secure protocols ought to be immune to unknown key share attacks. The authors claim there exist an attack against WC-MAKEP which is described where an adversary A is able to obtain a fresh key of an initiator oracle by revealing a non-partner server oracle sharing the same session key. The proof was sketchy and failed to provide any simulation.
3. Our Scheme
In this section, we propose a novel mutually authenticated key exchange protocol which designed for computationally limited client and a powerful server. The proposed protocol consists of three phases; setup phase, registration phase, and session key establishment phase.
3.1 Setup Phase
At first, the server chooses two large random primes p and q, then he compute N = pq. Let g be the maximum order in the multiplicative group ZN* and H be a cryptographic one-way hash function. The server determines a pair of public and secret keys (e; d), which satisfies ed = 1 mod φ(N) with gcd(e,φ(N)) = 1. Then he publishes N, g, H, e and keep p, q, d secret.

3.2 Registration Phase
The client with identification ID chooses a prime number as secret key x in ZN*, and computes v = g-x mod N. Then, he sends {ID, v} to the server. Upon receiving the message, the server computes the client's public key y as y = (v - ID)d mod N. Then he forwards y is a long-life key it can be used in the session key establishment phase so many times if needed.
3.3 Session Key establishment Phase
Whenever the client wants to generate a new session key with the server, he executes the followings:

(Precomputation) The server selects k, r∈Z*N and computes gr and x = EPK(k).
1. The client sends {ID, y, x} to the server.

2. The server checks v = ye + ID mod N. If the check fails, he terminates the protocol run with failure. Otherwise, the server decrypt x and obtain k.

3. The server selects a ∈R ZN, computes A = ga, B = v-a = gax, l = H(k||A) and sends {A, l} to the client.

4. After receiving {A, l}, the client computes l’ = H(k||A) and checks l = l’. If the check fails, the server stops the protocol run with failure. Otherwise, the client computes Ax = gax = B, s = r - x H(k⊕B), σ = H(k ⊕ x||B) and ¯finds a new session key H(σ). Then the client sends {R, Ek(s), H(σU) } 1 to the server.

5. Upon receiving {R, Ek(s) , H(σU)}
, the server decrypts Ek(s) and obtain s. Then the server computes R·vH(k⊕B) and checks this value equals to gs mod φ(N). If the check fails, the server terminates the protocol with failure. Otherwise, the server finds σ = H(k ⊕ x||B) and computes a new session key H(σ). The sever computes H(σL) and sends H(σL) to the client. At same time, the server can confirm that the client has a exact session key by the value of H(σU).

6. The client confirms that the server has a exact session key by the value of H(σL).
The session key establish phase is shown as Figure 3.
[image: image3.png]RTU Master Station

{UD, y, Ep (K)}
k.r€Zy.E(k).R=g mod N
v=y°+ID mod N
Al DSK(EPK(k){: k agZ,
Hkl A =] €————— A=g"B=vi=g
AT 1= H(k| 4)
s=r—xH(k®g™) 5= Dy(E ()
c=H(k®s| B) EO.RH(O) e mods(1) _ RvEGkE™ g N
oc=H(k®s| B)
H(oy)

—

Figure 3. Key Establishment Phase
4. Security Analysis
The security of our proposed protocol is based on the secure one-way hash function, computational Diffie-Hellman problem (CDH), and RSA problem. In this section, we discuss about the security goals and attributes on the key exchange protocol. Then, we analyze that our proposed protocol satisfies all security requirements for key exchange protocol.
4.1 Security Requirements
The fundamental security goals of key establishment protocols are said to be implicit key authentication and explicit key authentication. Let A and B be two honest entities, i.e., legitimate entities who execute the steps of a protocol correctly. Informally speaking, a key agreement protocol is said to provide implicit key authentication (IKA) (of B to A) if entity A is assured that no other entity aside from a specifically identified second entity B can possibly learn the value of a particular secret key. A key agreement protocol which provides implicit key authentication to both participating entities is called an authenticated key agreement (AK) protocol. A key agreement protocol is said to provide key confirmation (of B to A) if entity A is assured that the second entity B actually has possession of a particular secret key. If both implicit key authentication and key confirmation (of B to A) are provided, the key establishment protocol is said to provide explicit key authentication (EKA) (of B to A). A key agreement protocol which provides explicit key authentication to both entities is called an authenticated key agreement with key confirmation (AKC) protocol.

Desirable security attributes of AK and AKC protocols are known key security (a protocol should still achieve its goal in the face of an adversary who has learned some other session keys - unique secret keys which each run of a key agreement protocol between A and B should produce.), forward secrecy (if static private keys of one or more entities are compromised, the secrecy of previous session keys is not affected.), key-compromise impersonation (when A's static private key is compromised, it may be desirable that this event does not enable an adversary to impersonate other entities to A.), unknown key-share (entity B cannot be coerced into sharing a key with entity A without B's knowledge, i.e., when B believes the key is shared with some entity C ≠ A, and A correctly believes the key is shared with B.), etc.

The following abbreviations are used for clear understanding: IKA denotes implicit key authentication, EKA explicit key authentication, KKS known-key security, FS forward secrecy, KCI key-compromise impersonation, and UKS unknown key-share.
Desirable performance attributes of AK and AKC protocols include a minimal number of passes, low communication overhead, low computation overhead and possibility of precomputations.
4.2 Security Analysis
Now, we consider the security of our protocol.

The protocol provides known-key security. Each run of the protocol between the client and the server should produce a unique session key which depends on k, x, a and r. Although an adversary has learned some other session keys, he can't compute s and gax from them, because he doesn't know ephemeral private keys r, k, and a. Therefore the protocol still achieves its goal in the face of the adversary.

It also possesses forward secrecy provided that EKA of all session keys is supplied. Suppose that static private keys x and PK of the client and the server, respectively, are compromised. However, the secrecy of previous session keys established by honest entities is not affected, because it is difficult to compute valid s and B by the randomness of the ephemeral private keys and computational hardness of gax from ga and gx.

It resists key-compromise impersonation. Though the client's static private key x is disclosed, this loss does not enable an adversary to impersonate the server to the client, since the adversary still cannot decrypt EPK(k). Without knowing the static private key of the server, SK, the adversary cannot compute valid H(k||A). Similarly, though the server's static private key SK is disclosed, it is difficult that an adversary impersonates the client to the server, since the adversary cannot compute valid s. Without knowing the static private key of the client, x, the adversary cannot find actual B.

It also prevents unknown key-share. According to the verification of R·vH(k⊕B) = gs mod φ(N) that the server has verified that the client possesses the private key x corresponding to her static public key v by the checking , an adversary can't register the client's public key v as its own. From the checking l is equal to H(k||A), an adversary cannot register the server's public key PK as its own. This is from the hardness of the decrypting EPK(k).

Table 1 contains a summary of the security services that are believed to be provided by JP-MAKEP, WC-MAKEP, and A-MAKEP. O means that the assurance is provided. X represents that the assurance is not provided. M/A means the mutual authentication.
Table 1. Comparison with previous schemes
	
	JP-MAKEP
	WC-MAKEP
	A-MAKEP

	IKA
	O
	O
	O

	EKA
	X
	X
	O

	KKS
	O
	O
	O

	FS
	X
	X
	O

	KCI
	O
	O
	O

	UKS
	X
	O
	O

	M/A
	O
	X
	O

5. Conclusion

In this paper, we proposed a new mutually authenticated key exchange protocol for computationally limited devices, called A-MAKEP. The main interest of this scheme is how to reduce the computational burden at the low-power device side. For this, we compute some values which will be used in session key agreement phase before online communications. Another important feature of our proposed protocol compared to previous MAKEP schemes is that our proposed scheme satisfies all security requirements for authenticated key exchange protocol. Our remained problem is to reduce the computational complexity on the client side as efficient as WC-MAKEP in spite of satisfying all security requirements.
Acknowledgement
This work was supported by the Korea Institue of Nuclear Safety under the Grant RS08-23-PL.
REFERENCES
[1] Simon Blake-Wilson and Alfred Menezes, “Authenticated Diffie-Hellman key agreement protocols,” In proceedings of SAC '98, LNCS Vol.1556, pages 339-361, Springer-Verlag, 1998.

[2] C. Boyd and A. Mathuria, “Protocols for Authentication and Key Establishment,” Springer-Verlag, 2003.

[3] Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock, “Errors in Computational Complexity Proofs for Protocols,” In proceedings of Asiacrypt 2005, Springer-Verlag, 2005.

[4] M. Girault, “Self-certified public keys,” In proceedings of EUROCRYPT '91, pages 490-497, Springer-Verlag, 1991.

[5] M. Jakobsson and D. Pointcheval, “Mutual Authentication and Key Exchange Protocol for Low Power Devices,” In proceedings of FC 2001, LNCS Vol.2339, pages 169-186, Springer-Verlag, 2001.

[6] D. S. Wong and A. H. Chan, “Efficient and Mutually Authenticated Key Exchange for Low Power Computing Devices,” In proceedings of Asiacrypt 2001, LNCS Vol.2248, pages 172-289. Springer- Verlag, 2001.

[7] http://www.ehomeupgrade.com/archives/000219.php

[8] http://www.cr0.net:8040/about/

� σL and σL denotes upper half bits and lower half bits of σ, respectively.

