
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2008 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2008 The 2008 Symposium on
Cryptography and Information Security

Miyazaki, Japan, Jan. 22-25, 2008
The Institute of Electronics,

Information and Communication Engineers

New Polymorphic Worm Detection
based on Instruction Distribution and Signature

Hanyoung Noh ∗ Jangseong Kim ∗ Chan Yeob Yeun ∗ Kwangjo Kim ∗

Abstract— The financial loss that suffered from malicious worm is known to be growing annually.
In order to deal with this problem many researchers suggested the Network Intrusion Detection System
(NIDS) which extracts file signature from the worms. Using the signature the NIDS checks whether
received payload is worm or not. Malicious users introduced polymorphic worm that changes its
signature itself to evade the NIDS, . The NIDS requires huge signatures to detect one polymorphic
worm. It causes high performance overhead. Lee et al. [7] introduced polymorphic worm detection
based on instruction distribution (PolyI-D). PolyI-D has 3-stage procedures to detect polymorphic
worm. Throughout the 3-stage of PolyI-D, a payload is classified to polymorphic worm or not.

In this paper, we describe the limitation of PolyI-D and propose hybrid polymorphic worm detection.
Our proposed scheme classifies a given payload into executable code and non-executable code based on
instruction distribution. Only if polymorphic engine, SFX or Packer engine are found, our proposed
scheme reconstructs the original file and check whether the file is worm or not using the signature.
In this way our proposed scheme reduce false detection rate than PolyI-D. Moreover, our scheme has
higher performance than the previous polymorphic detection schemes.

Keywords: Polymorphic Worm, Intrusion Detection System.

1 Introduction

Worms increasingly threaten users who use software
that has a variety of vulnerabilities. Typical of the
damage reported, caused by these computer worms,
was the 50,000 employees of 13 Daimler-Chrysler as-
sembly plants in Illinois, Indiana, Wisconsin, Ohio,
Delaware and Michigan, who were idled for nearly an
hour while technicians restored the computers which
control the plants. To defeat the worm, Network In-
trusion Detection System (NIDS) was proposed. Based
on signature information such as specific code pattern
of program, NIDS can verify whether the received file
is worm or not. Only if the signature is same as the tar-
get program, it is classified to Internet worms. NIDS
can easily defeat Internet worms effectively. However,
NIDS cannot deal with worms spread speed since net-
work professionals should extract worm signature. To
solve the problem many researchers suggested auto-
matic worm signature extracting system [1, 2, 3]. To-
day polymorphic worm has been introduced which can
change own code pattern using its own polymorphic
engine. Whenever it is distributed, polymorphic en-
gine encrypts itself using a different key. It means that
the previous IDS system needs huge signatures to de-
tect one polymorphic worm. To detect polymorphic
worm many schemes [4, 5, 6] are suggested. However
most of these scheme have low performance to be used
in real-time application or can be easily evaded. Based
∗ Information and Communications University, Munji-dong,

Yuseong-gu, Daejeon, 305-732 Korea, {kirseia, withkals,
cyeun, kkj}@icu.ac.kr

on that the polymorphic worm has a special instruction
distribution on polymorphic engine, PolyI-D overcomes
these problems. Throughout the 3-stage PolyI-D clas-
sifies a received payload as non-executable code and
executable code. Only if the payload has executable
code, PolyI-D checks whether the payload has poly-
morphic engine or not. However it has high false alarm
rate.

In this paper we describe the limitation of PolyI-D
and propose hybrid polymorphic worm detection. Our
proposed scheme classifies a given payload into exe-
cutable code and non-executable code based on instruc-
tion distribution. Only if polymorphic engine, SFX or
Packer engine are found, our proposed scheme recon-
structs the original file and check whether the file is
worm or not using signature. In this way our proposed
scheme reduce false detection rate than PolyI-D.

The remaining of this paper is organized as follows:
In Section 2, we describe the virus, worm and polymor-
phic worm and introduce related work about previous
IDSs and shortcoming of IDSs, and introduce high ef-
ficiency IDS, called PolyI-D overcomes shortcoming of
previous schemes. In Section 3, we describe the moti-
vation of our experiment. In Section 4, we explain our
experimental work to find reasons for PolyI-D’s false
alarms. In Section 5, we propose our scheme ‘Improved
Polymorphic worm detection based on Instruction Dis-
tribution’ and compare with PolyI-D. Lastly, we con-
clude in Section 6.

1



2 Related work

In this section, we give a brief introduction about
computer virus, worm, and polymorphic worm. A virus
is a program code that can copy itself and infect a com-
puter program without users permission or awareness.
And, viruses can spread to other computers by infect-
ing files on a network file system or a file system that
can be accessed. However, worm is some different with
virus. A worm is a self-duplicating computer program.
It sends copies of itself to computer using a network and
usually it does not have any user permission. Unlike
a virus, it does not need to attach itself to an existing
program. Worms almost cause harm to the network, if
only by consuming bandwidth, while on the other hand
viruses almost always corrupt or modify files on a tar-
geted computer. Figure 1 indicates difference between
virus and worms.

Figure 1: Operation of virus and worm

A Polymorphic worm is an advanced worm that is
capable of changing program code itself to evade sig-
nature based IDS. It consists of polymorphic engine,
encrypted data, and decryption key. When a polymor-
phic worm is executing, the polymorphic engine de-
crypts the encrypted data and decrypted data is exe-
cuted on memory. A polymorphic worm encrypts the
decrypted data itself using another key, and distributes
on network when it is spread. Figure 2 shows operation
of polymorphic worm.

Figure 2: Operation of polymorphic worm

Since a polymorphic worm makes as many variants
of itself as the length of the key size. In this reason,
signature based IDS needs number of signatures as key
size to detect that variant, since all variant has different
signatures. It is impossible that IDS contains the whole

of signatures that of polymorphic worms. That is why
we need a new polymorphic detection method.

The previous IDS can detect ordinary worm with
high efficiency, but it cannot response to propagation
speed of worms. Many researchers suggested automatic
extraction of worm signatures, for instance EarlyBird
[1] and Autograph [2]. However, these schemes did not
consider the polymorphic worm, so that they cannot
detect polymorphic worm. Newsome et al. [5] pro-
posed the Polygraph to detect polymorphic worm for
the first time. The main idea of Polygraph is that the
combination of invariant short contents is sufficiently
unique, that it can be used as a signature. But Lee et
al. [7] (denoted by LKHK06) analyzed that “Polygraph
can be easily evaded. Only effective content is the one,
corresponding to a return address of a buffer overflow
attack. That is, if there were no return address in a
content, the signature would not work properly, since
all other contents too general. On the other hand, if
there is only a return address solely as content of sig-
nature, it will work as good as a signature consisting
of multiple contents. However, there can be exploits
which do not need return address”. Another scheme
suggested by Kruegel et al. [4] which extracts a con-
trol flow graph, and the most frequency sub-graph is
selected as a signature. They assume that the control
flow of polymorphic engine is not changed too much.
However this scheme has high overheads to extract the
control flow signature on on-line. PolyI-D [7] is poly-
morphic worm detection system based on instruction
distribution that overcomes weakness of the previous
schemes. It has high efficiency since simple procedure
that three stages classification operation. PolyI-D clas-
sifies whether the payload is polymorphic worm or not.

Score1 =
T

D · P
(1)

T = Number of total instructions
D = Number of type of instructions
P = Number of prefixes

Score2 =
Score1
V

(2)

V = Number of ‘call’ instructions

Figure 3 shows the x86 intel architecture instruction
structure. We use ‘Opcode’ and ‘Instruction prefix’ for
Eq.(1) and Eq.(2) of PolyI-D.

Figure 3: Operation of polymorphic worm

The details of PolyI-D procedures are as follows; Firstly,
PolyI-D classifies the payload as executable and non-
executable code in stage 1 by Eq.(1). The payload goes
to stage 2 when Score1 is greater than τ1. Secondly,

2



PolyI-D checks the payload that contained polymor-
phic engine or not by Eq.(2). If Score2 is greater than
τ2, then payload goes to stage 3. Finally, if payload
does not contain the narrow null-bytes, that payload is
classified polymorphic worm.

Note that non-executable code usually has a greater
number of type of instructions and prefixes than exe-
cutable code. Also a polymorphic engine uses smaller
number of ‘call’ instructions than ordinary executable
code. Therefore we can classify whether the payload
has a polymorphic worm or not. The τ1 and τ2 are
threshold values to classify the payload as executable
code, non-executable code and polymorphic engine which
can be determined by empirical. The following is a brief
description of PolyI-D’s operation.

1. If Score1 > τ1, then go 2

2. If Score2 > τ2, then go 3

3. If Null-bytes do not exist in payload,
then it is classified as the polymorphic worm

PolyI-D has high efficiency because of its simple proce-
dures. However it has high false alarm rate. PolyI-D
mentioned reasons for false alarm rate, regular code
pattern exists in non-executable code in the payload,
Score1 is high and Score2 is high, too. If a non-
executable payload has ordinary code pattern, the num-
ber of type of instructions is low and the number of
‘call’ instructions is low, too. Therefore this payload
has higher Score2 than τ2. Namely, this payload is
classified as polymorphic worm. Nevertheless, another
possibility of false alarm rate may happen because the
PolyI-D only detects the polymorphic engine. In other
words, PolyI-D may classify a payload to polymorphic
worm if the payload has a similar instruction distribu-
tion with polymorphic engine.

3 Motivation

Although PolyI-D can detect polymorphic worm effi-
ciently, there is a false classification situations. LKHK06
pointed out that is “false positive alarms occur because
some packets have specific types of data repeated”.
But, we expect another false alarm case because PolyI-
D detect only polymorphic engine. If a program code
has same structure as polymorphic worm, that program
will be classified to polymorphic worm. We found some
files such as Self-Extracting Archive (SFX) [10, 12],
executable packer (Packer) [8, 11] which have almost
similar structure of polymorphic engine. The SFX file
consists of a decompress engine and a compressed data.
When we execute the SFX file, it decompresses itself
with decompress engine and compressed data. The
Packer is almost same as SFX file, but it contains a
decryption engine and an encrypted data. When it is
executed, it decrypts an encrypted data in memory it-
self. These files should not be classified to the polymor-

phic worm using PolyI-D. Figure 4 shows the structure
of polymorphic worm, SFX file, and Packer file.

Figure 4: File structure

4 Experiment

4.1 Experiment objective

We perform an experiment to find reasons and situ-
ations of false alarms. For our experiment, we prepare
non-executable codes (document, compressed file, etc),
executable codes (EXE, DLL, SFX, Packer), and poly-
morphic worm codes. A reason for having SFX file and
Packer file is they almost have same file structure as
polymorphic worm. We divide our prepared codes to
same size as the payload. The goal of experiment 1
is to find a situation and reason of false alarms when
PolyI-D classifies the payload as non-executable code
and executable code. The goal of experiment 2 is to de-
cide whether PolyI-D can classify the SFX and Packer
as polymorphic worm or not.

Our experiment environment is Windows XP SP2,
and open source disassemble engine is DISIT [9]. For
non-executable code disassemble, DISIT is modified a
little. For SFX file, we gather executable file of installer
form, ZIP, RAR, and Packer are made using UPX, As-
pack. In addition, a polymorphic worm is obtained
from the Internet.

4.2 Experiment result and analysis

Our experiment result 1 - Figure 6 shows the
result of experiment 1. There are two cases of false
alarm. First case, when non-executable code is classi-
fied as executable code, that situation is pointed out
in LKHK06 which is a regular code pattern existing
in non-executable code payload. However, executable
code sometimes classified as non-executable code. We
analyze the second case. When executable code and
non-executable code are mixed in a payload, sometimes
that payload is classified as non-executable code. Fig-
ure 5 shows this case.

When Score1 of Case2 is greater than τ1, this pay-
load will have a Score2 greater than τ1, since it has a
low number of ‘call’ instructions. It means PolyI-D will
classify the payload as polymorphic worm.

Our experiment result 2 - The SFX file and Packer
file can be classified to the polymorphic worm in Figure
7. In this result, we cannot set the τ2 since SFX, Packer

3



Figure 6: Result of classification executable code and non-executable code

Figure 7: Result of classification executable code, SFX, Packer and polymorphic worm

Figure 5: Mixed data code and executable code

and polymorphic worm all have high Score2. This re-
sult can cause a big problem since SFX file is usually
used for install program or compression program, and
Packer is usually used for anti-cracking or for reducing
file size. In addition, a polymorphic worm is classified

as ‘it is not a polymorphic worm’. When a payload is
mixed with null-bytes, stage 3 of PolyI-D will classify
this payload as ‘it is not a polymorphic worm’. Case 1
shows mixed with null-bytes and polymorphic engine,
and Case 2 shows mixed with null-bytes and divided
polymorphic engine in Figure 8. These two cases are
‘false negatives’ in PolyI-D.

5 Our proposed scheme

To overcome the experiment result 1, which is false
classification between executable and non-executable
code, we classify the payload using both signature and
instruction distribution. If we do not use instruction
distribution, efficiency will be low. Moreover, to over-
come the experiment result 2 that is false classification

4



Figure 8: Mixed polymorphic engine and null bytes

with null-bytes mixed polymorphic worm payload, we
remove the null-bytes in the payload before calculating
Score1 and Score2. Our proposed scheme has 6-stages.
The followings are the details of our proposed scheme.

• Stage 1 : Null-bytes removed

This stage removes null-bytes in payload to over-
come the null-bytes problem of PolyI-D. We al-
ready mentioned about null-bytes problem of PolyI-
D in our experiment result 1, therefore we remove
null-bytes first.

• Stage 2 : Finding executable code

This stage is same as stage 1 of PolyI-D, but our
payload does not have null-bytes. So we can clas-
sify the executable code more clearly. If we find
executable code in payload at this stage, that
payload goes to stage 3. However, if we can-
not find an executable code, that payload is non-
executable code.

• Stage 3 : Finding polymorphic engine

We classify if the payload contains a polymor-
phic engine or not by using Eq.(2) of PolyI-D.
The payload may contain a part of polymorphic
engine, therefore we must check the size of pay-
load. If payload has smaller size than ordinary
payload, we can combine previous payload to new
payload. A payload goes to stage 4 regardless of
finding polymorphic engine.

• Stage 4 : File construction

This stage works on a file, not a payload. A pay-
load that passed the stages 1,2 and 3 is highly
suspicious payload; it means that payload may
part of an ordinary worm or polymorphic worm.
This stage construct a file from group of payload
including suspicious payload.

• Stage 5 : File recovery

When stage 3 finds polymorphic engine, the file
from stage 4 recovers using polymorphic engine.
The word “recovery” means that decrypting the
encrypted code by polymorphic engine. After
stage 5, we can get the decrypted suspicious file.
If cannot recover file since that file is not exe-
cutable file, we can decide that file is not ordinary
worm or polymorphic worm. It means ‘this file
is not harmful’. However, our assumption of this
stage is that can decrypt the file using decrypt
engine of polymorphic worm or SFX or Packer.

• Stage 6 : Signature detection

This is the final stage. After stages 4 and 5,
we get the executable file or decrypted file, but
not the payload, therefore we apply the signature
based IDS to the file. If the file accords with sig-
nature, it means ‘this file is harmful’. However, if
we do not find any signature according with this
file, it means ‘this file is not harmful’ or ‘unknown
malware’.

Our proposed scheme uses both signature and in-
struction distribution for the payload and file. Firstly,
it finds an executable code and a polymorphic engine
using instruction distribution. Secondly, it constructs
the file from payload and recovered the file using poly-
morphic engine when it is polymorphic worm. Finally,
it detects ordinary worm or polymorphic worm by check-
ing signature on recovered file. Figure 9 is briefly de-
scribes our proposed scheme.

Figure 9: Operation of our proposed scheme

PolyI-D can detect only polymorphic worm, however
our proposed scheme can detect both ordinary worm
and polymorphic worm since our scheme is based on

5



both instruction distribution and signature. Secondly,
PolyI-D has higher false alarm than our scheme be-
cause we also use signature, and not just instruction
distribution of polymorphic engine. Lastly, our scheme
is slower than PolyI-D as file recovery stage. Although
an efficiency is slower than PolyI-D, our scheme is more
faster than the previous polymorphic worm detection
systems. Table 1 shows the comparison of proposed
scheme with PolyI-D.

Table 1: Comparison of proposed scheme with PolyI-D
Proposed scheme PolyI-D

Ordinary worm detection O X

Polymorphic worm O O
detection

Detection accuracy Good Not good

Efficiency Reasonable Good
O - Can detect, X - Cannot detect

6 Conclusion and Future work

A polymorphic worm is new type of worm that de-
signed to disrupt the signature based IDS. Many re-
searchers suggested polymorphic worm detection sys-
tems, but there is no efficient IDS. To overcome low effi-
ciency of the previous schemes, LKHK06 proposed new
IDS based on instruction distribution, called PolyI-D.
Although it can detect polymorphic worm with high
performance and low overhead, it has a high false alarm
rate. Because PolyI-D detects just polymorphic engine
since it checks only instruction distribution of payload.
In this paper, we did an experiment to find the reason
of false alarm rate and proposed polymorphic worm
detection based on instruction distribution and signa-
ture. Our scheme checks both payload instruction dis-
tribution and file signature. In this way, our proposed
scheme has high efficiency and low false alarm rate.

Our future work is to implement our scheme and to
compare performance with the previous schemes. How-
ever, file recovery stage using unknown engine such as
polymorphic, SFX and Packer engine is a difficult prob-
lem. We will study about decryption with unknown
engine first.

References

[1] Singh, S., Estan, C., Vargohese, G., Savage,S., “The
EarlyBird System for Real-time Detection of Un-
known Worms,” Tech. Rep. CS2003-0761, UCSD,
Aug. 2003.

[2] H. Kim and B. Karp, “Autograph : Toward auto-
mated, distributed worm signature detection,” In
13 USENIX Security Symposium, San Diego, Cali-
fornia, August 2004.

[3] Singh, S., Estan, C., Vargohese, G., Savage,S., “Au-
tomated worm fingerprinting,” Proceeding of 6th
symposium on Operating System Design and Im-
plementation(OSDI), 2004.

[4] Kruegel, C., Kirda, E., Mutz, D., Robertson, W.,
Vigna, G., “Polymorphic Worm detection using
structural information of executables,” 8th Interna-
tional Symposium on Recent Advances in Intrusion
Detection(RAID), 2005.

[5] Newsome, J., Karp, B., Song, D., “Polygraph : au-
tomatically generating signatures for polymorphic
worms,” 2005 IEEE Symposium on Security and
Privacy, 2005.

[6] Jisheng Wang, Ihab Hamadeh, George Kesidis, and
David J.Miller, “Polymorphic Worm Detection and
defence : System Design, Experimental Method-
ology, and Data Resources,” SIGCOMM’06 Work-
shops, Pisa, Italy, September 11-15, 2006.

[7] Ki Hun Lee, Yuna Kim, Sung Je Hong, Jong Kim,
“PolyI-D : Polymorphic Worm Detection Based on
Instruction Distribution,” WISA 2006, Jeju Island,
Korea, August 28-30, 2006.

[8] Aspack, http://www.aspack.com/

[9] DISIT, Open Source Disassembler Engine,
http://www.piotrbania.com/all/disit/

[10] RARLAB, http://www.rarlab.com/

[11] UPX, the Ultimate Packer for eXecutables,
http://upx.sourceforge.net/

[12] WinZip, http://www.winzip.com/

6


