
Generic Security-Amplifying Methods of
Ordinary Digital Signatures

Jin Li1, Kwangjo Kim1, Fangguo Zhang2, and Duncan S. Wong3

1 International Research center for Information Security (IRIS)
Information and Communications University(ICU)

103-6 Munji-Dong, Yuseong-Gu, Daejeon, 305-732, Korea
{jjl,kkj}@icu.ac.kr

2 School of Information Science and Technology
Sun Yat-Sen University, Guangzhou, 510275, P.R.China

isdzhfg@mail.sysu.edu.cn
3 Department of Computer Science

City University of Hong Kong, Hong Kong, China
duncan@cs.cityu.edu.hk

Abstract. We describe two new paradigms on how to obtain ordinary
signatures that are secure against existential forgery under adaptively
chosen message attacks (fully-secure, in short), from any signatures sat-
isfy only a weak security notion called existentially unforgeable against
weak chosen message attacks (weakly-secure, in short). The new transfor-
mations from a weakly-secure signature scheme to fully-secure signature
scheme are generic, simple, and provably secure in the standard model.
Moreover, these two new paradigms are built only on weakly-secure sig-
natures. They are different from the previous methods, which also relied
on some other cryptographic protocols or non-standard models.

By using two new paradigms, several efficient instantiations without
random oracles are also presented, which are based on two previous
weakly-secure signature schemes. These fully-secure signature schemes
have many special interesting properties compared with the previous re-
lated signature schemes.

Keywords: Signature, Weak Chosen Message Attack, q-SDH Assump-
tion, Strong-RSA Assumption, Strong Unforgeability.

1 Introduction

Digital signature is a central cryptographic primitive. The standard definition
on the security of signature scheme was given by Goldwasser, Micali, and Rivest
[18]. In fact, in terms of the goals and resources of the adversary, there are many
security models can be formed. Compared to the standard security model, there
are also many weak security models. Signatures in these weak security models
are not sufficient in many practical applications. Among these weak security
models, we will focus on the weak security model mentioned in [5,18], which
is called existentially unforgeable against generic chosen message attack (or,

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 224–241, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generic Security-Amplifying Methods of Ordinary Digital Signatures 225

weak chosen message attack). The signatures that satisfy this security model are
called weakly-secure signatures in this paper. In this security model, it requires
the adversary to submit all signature queries before the signer’s public key is
published. More detailed definition will be given in Section 2. Obviously, because
of the limitation of signature queries, it is insecure in many practical applications.
However, in our paper, we will show its applications in the constructions of
standard signatures and strongly secure signatures.

Since the standard definition on the security of signature schemes was given
[18], there are many attempts to design practical and provably secure signature
schemes in this security model. These methods can be divided into two categories,
namely, concrete construction method and generic construction method.

There are many concrete constructions of signature schemes based on some
standard assumptions, such as discrete logarithm problem [28,30], computational
Diffie-Hellman problem [6,17,33], factoring [3]. Some constructions are based on
other assumptions [29,34]. These schemes are very efficient, but their security
can be proven only in the random oracle model. However, Canetti et al. [9]
proved that some popular cryptosystems previously proved secure in the random
oracle are actually provably insecure when the random oracle is instantiated by
any real-world hashing functions. Over the years, several signature schemes were
proposed in the standard model based on some stronger complexity assumptions
such as [5,8,13,16]. Among them, the most efficient schemes are based on the
Strong-RSA assumption [13,16] and q-strong Diffie-Hellman (q-SDH) assumption
[5]. These assumptions are cryptographically stronger than the computational
Diffie-Hellman, factoring, and RSA assumptions. The reason is that in order to
simulate the signing oracle for the adversary in the proof, the simulator has to
get some additional auxiliary inputs.

There are also many generic constructions of signatures. Most of them are
based on the basic cryptographic primitive, such as (trapdoor) one-way func-
tions [1,21]. There are also many generic constructions from other cryptographic
protocols such as non-interactive zero-knowledge [19] and [12,15] et al. Among
them, the most famous is the Fiat-Shamir (FS) transform [15]. Recall that the
FS-transform [15] is a way to obtain a signature scheme from a three-move
identification Σ protocol (honest-verifier zero-knowledge protocol) by collapsing
the interaction via a hash function. But its security relies on the random oracle
model. In order to avoid the usage of random oracle model, from the Σ protocol,
Cramer et al. [12] gave another generic transform. The transform also uses hash
function which does not act as a random oracle in the proving process. This
conversion method is not practical because it used the authentication tree. Very
recently, Bellare and Shoup [4] showed a simple transform for the construction
of standard and strongly secure signatures from the Σ protocol, using the tool
of two-tier signatures.

Compared to the standard security notion of existential unforgeability, there is
another strong security notion which is called strongly existential unforgeability.
Recently, this notion was concerned by many papers, such as [7,20,32].

226 J. Li et al.

1.1 Our Results

Firstly, we present two new paradigms to transform any weakly-secure signature
schemes into fully-secure signature schemes. More precisely, the two paradigms
are called sequential composition and parallel composition method, respectively.
The new transformations from a weakly-secure signature scheme to fully-secure
one are generic, simple and provably in the standard model. The goal is to
obtain constructions that are based on standard assumptions and are efficient.
They have interest from both theoretical and practical perspective.

– Sequential Composition (of weak signatures): This paradigm requires two
weak signature schemes sequentially. Key pair in the first weak signature
scheme is generated in key generation algorithm and used to sign the other
public key, which is generated in signing algorithm.

– Parallel Composition (of weak signatures): Two weak signature schemes
are also required in this paradigm, however, both of their key pairs should
be generated in key generation algorithm, and used to sign two random and
related messages.

We also show several efficient instantiations without random oracles converted
from two weakly-secure signature schemes. The first paradigm, i.e., the sequen-
tial composition method, is very efficient in key generation algorithm compared
to the second. However, the signing algorithm is more efficient in the second par-
adigm. So, we can use different paradigm in different circumstances according
to its requirements. This is a coincidence that, when instantialized from weak
signature scheme [16], the construction will be similar to twin signature scheme
[25]. In fact, our second paradigm can be viewed as generalization and extension
of the twin signature scheme [25]. And, in both paradigms, if the signing algo-
rithm in the weak signature is deterministic, the resulted fully-secure signature
is strongly unforgeable secure.

1.2 Organization

In the next section, the definitions of variant signatures are given. Then, two
previous instantiations of weakly-secure signature schemes are reviewed in Sec-
tion 3. In Section 4, we propose our two generic transformations techniques. The
security proof for these two transformations are given in Appendix. In Section 5,
two instantiations from sequential composition method are presented based on
two previous weakly-secure signature schemes. In Section 6, we present the two
instantiations from parallel composition method. We discuss the efficiency of our
two generic transformation methods and instantiations by comparing them with
the previous signatures. Finally, the conclusion will be made.

2 Preliminaries

A signature scheme is defined by the following algorithms:

– Key generation algorithm Gen. On input 1k, where k is the security parame-
ter, it outputs (pk, sk) as public and secret keys.

Generic Security-Amplifying Methods of Ordinary Digital Signatures 227

– Signing algorithmSign. On input a message m and sk, it outputs a signature σ.
– Verification algorithm Verify. Given public key pk, message m and signature σ,

algorithm Verify(pk, m, σ) outputs 1 if σ ← Sign(sk, m). Otherwise, output 0.
In terms of the goals of the adversary, it can be divided into four categories

[18]:

– Total break: This is the most serious attack, in which the adversary is able
to disclose the secret key of the signer.

– Universal forgery : The adversary is able to sign any given messages.
– Existential forgery : The adversary is able to provide a signature on a new

message whose signature has not been seen.
– Strong Existential forgery: The adversary is able to provide a new message-

signature pair.

On the other hand, various resource can be made available to the adversary,
helping into his/her forgery [18]. We focus ourselves on two kinds of message
attacks:

– Weakly chosen message attack: The adversary is allowed to obtain signatures
from the signer for a chosen list of messages before it attempts to break the
scheme. These messages chosen by the adversary must be given to the signer
before seeing the signer’s public key.

– Adaptively chosen message attack: The adversary is allowed to request sig-
natures of messages chosen by itself. These messages may not only depend
on signer’s public key, but also depend on the previous obtained signatures.

2.1 Unforgeability

By combining the different goals of the adversary and various resource available
to the adversary, many security notions for signature schemes can be derived.
The standard notion of security for a signature scheme is called existential un-
forgeability under adaptively chosen message attacks (fully-secure signatures)
[18], which is defined through the following game between a challenger C and an
adversary A:

Setup: A public/private key pair (pk, sk) ← Gen(1k) is generated and ad-
versary A is given the public key pk.

Query: A runs for time t and issues q signing queries to a signing oracle
in an adaptive manner, that is, for each i, 1 ≤ i ≤ q, A chooses a
message mi based on the message-signature pairs that A has already
seen, and obtains in return a signature σi on mi from the signing oracle
(i.e., σi = Sign(sk, mi).

Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if
– σ∗ is a valid signature on message m∗ under the public key pk, i.e.,

Verify(pk, m∗, σ∗) = 1; and
– m∗ has never been queried, i.e., m∗ /∈ {m1, m2, · · · , mq}.

228 J. Li et al.

Definition 1 (Unforgeability). A signature scheme Π =(Gen, Sign, Verify) is
(t, q, ε)-fully-secure, if any adversary with run-time t wins the above game with
probability at most ε after issuing at most q signing queries.

If we lower down the adversary’s goal to strong existential forgeability and keep
its ability unchanged, we can get a stronger definition compared to existential
unforgeability against adaptive chosen message attacks:

2.2 Strong Existential Unforgeability

The notion is also defined using the above game between a challenger C and
an adversary A, except the definition that “A wins the game ”is A can output
a pair (m∗, σ∗) such that (m∗, σ∗) does not belong to the previous queried set
{(mi, σi)} and Verify(pk, m∗, σ∗)=1.

If we lower the adversary’s ability to weak chosen message attack while keeping
the goal of the adversary unchanged compared to the standard security notion,
we can get a weaker definition compared to existential unforgeability against
adaptive chosen message attacks:

2.3 Weak Unforgeability

The difference between this security notion with the standard security [18] is
that here it requires that the adversary should submit all messages for signature
queries before the public key is seen. And we define “A wins the game ”is equiv-
alent to A can output a pair (m∗, σ∗) such that σ is a valid signature of a new
message m∗.

Pre-Proceeding: Adversary A runs for time t and issues q signing queries
to a signing oracle, i.e., A chooses messages mi, where 1 ≤ i ≤ q.

Setup: A public/private key pair (pk, sk) ← Gen(1k) is generated and ad-
versary A is given the public key pk. Meanwhile, q signatures σi on mi

from the signing oracle (i.e., σi = Sign(sk, mi), are also returned to A.
Forge: A outputs a forgery (m∗, σ∗) and halts. A wins if

– σ∗ is a valid signature on message m∗ under the public key pk, i.e.,
Verify(pk, m∗, σ∗) = 1; and

– m∗ has never been queried, i.e., m∗ /∈ {m1, m2, · · · , mq}.

Definition 2 (Weak Unforgeability). A signature scheme Π = (Gen, Sign,
Verify) is (t, q, ε)-weakly-secure, if any adversary with run-time t wins the above
game with probability at most ε.

3 Instantiations of Weak Signatures

It has been shown in [5,16] that two weakly-secure signature schemes can be
constructed, based on the q-SDH assumption and Strong-RSA assumption, re-
spectively, in the standard model.

Generic Security-Amplifying Methods of Ordinary Digital Signatures 229

3.1 Weak Boneh-Boyen Signature [5]

Before describing the weak Boneh-Boyen signature, we first introduce some pre-
liminaries on bilinear maps and an assumption used in [5].

Let G1 and G2 be cyclic groups of prime order p with the multiplicative group
action. And, g is a generator of G1. Let ê : G1 × G1 → G2 be a map with the
following properties:

1. Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all g1, g2 ∈ G1, and a, b ∈R Zp;
2. Non-degeneracy: There exists g1, g2 ∈ G1 such that ê(g1, g2) �= 1, in other

words, the map does not send all pairs in G1 × G1 to the identity in G2;
3. Computability: There is an efficient algorithm to compute ê(g1, g2) for all

g1, g2 ∈ G1.

As shown in [6,34], such non-degenerate bilinear maps over cyclic groups can
be obtained from the Weil or the Tate pairing over algebraic curves.

Definition 3. (q-Strong Diffie-Hellman Assumption (q-SDH in short)).
The q-SDH assumption in group G1 is defined as follows: given a (q + 1)-tuple
(g, gx, gx2

, · · · , gxq

) ∈ (G1)q+1 as input, it is hard to output a pair (c, g1/(x+c)),
where c ∈ Z∗

p.

Next, we describe the weak Boneh-Boyen signature [5]. Let (G1, G2) be bilinear
groups where the order of G1 and G2 is p. As usual, g is a generator of G1.

1. Gen: Pick x ∈ Z∗
p, compute y = gx. The public key is y and the secret key

is x.
2. Sign: Given message m ∈ Z∗

p, the signer outputs the signature on m as
σ = g

1
x+m .

3. Verify: On input verification key y, message m, and the signature σ, output
1 if and only if ê(y · gm, σ) = ê(g, g). Otherwise, output 0.

Theorem 1. The weak Boneh-Boyen signature is weakly-secure if the q-SDH
assumption holds.

Proof. Refer to [5]. ��

3.2 Weak GHR Signature [16]

Gennaro, Halevi and Rabin proposed a secure signature scheme [16] (denoted
by GHR signature) without random oracle, however, under the assumption that
hash function H is division intractable, and acts like the random oracle model or
achieves the chameleon property, which was called a non-standard randomness-
finding oracle in [16]. Division intractability means that it is computationally
impossible to find a1, a2, · · · , ak and b such that H(b) divides the product of all
the H(ai). In order to get a fully-secure signature without random oracles, the
non-standard randomness-finding oracle was required [16]. This non-standard
assumption helps the simulator to find the second preimage during the simu-
lation. The randomness-finding oracle is non-standard because it requires that,

230 J. Li et al.

given a hash function H , values M and e, one could find a random value R such
that H(R, M) = e. In fact, without the assumption of randomness-finding ora-
cle, the simulator has to guess which messages the adversary will ask during the
signing simulation phase. Then, the scheme in [16] can only be proven weakly-
secure without the randomness-finding oracle. This problem was also addressed
in [11], which presented an extension to [16] without relying on this non-standard
assumption.

Definition 4. (Strong-RSA Assumption) Given a randomly chosen RSA
modulus n, and a random element s ∈ Z∗

n, it is infeasible to find a pair (e, r)
with e > 1 such that re = s (mod n).

We describe the weak GHR signature scheme as follows:

1. Gen: Pick two safe primes p and q, compute n = pq as RSA modulus, a
hash function H , and select s ∈ Z∗

n. The public key is (n, s) and the secret
key is (p, q).

2. Sign: To sign a message m, the signer computes e ← H(m) and outputs the
signature as σ = s

1
e mod n.

3. Verify: On input verification key (n, s), message m, and σ, output 1 if and
only if σH(m) = s mod n. Otherwise, output 0.

Theorem 2. The weak GHR signature scheme is weakly-secure if the Strong-
RSA assumption holds and H is division intractability.

Proof. Refer to [10,16] ��
As stated in [11,16], division-intractable hash functions can be constructed from
collision-intractable hash functions [26].

4 Fully-Secure Signatures from Weakly-Secure Signatures

4.1 Related Work

There are two main techniques in order to get fully-secure signatures from
weakly-secure signatures:

– Random Oracle Model: By using the hash function on the messages for
signatures without changing other algorithms, the new signatures can be
fully-secure from the back patch property of random oracle [2]. This method
was used in [5,34].

– Chameleon Hash Function: By combining weakly-secure signatures with the
chameleon hash function, the signer can first sign any value with the weak
signature scheme. Then it can sign the real message from the signature on
any value, by using the property of chameleon hash function. Many papers
have used this technique, such as [5,14,24,31].

Compared to fully-secure signatures, the construction of weakly-secure signa-
tures is relatively easy (Obvious, every fully-secure signature scheme also satis-
fies security notion of weakly-secure signature). There have several weakly-secure
signature schemes in the open literature.

Generic Security-Amplifying Methods of Ordinary Digital Signatures 231

4.2 Sequential Composition Method

Given a weakly-secure signature scheme Π ′ = (Gen′, Sign′, Verify′), we construct
a fully-secure signature scheme Π = (Gen, Sign, Verify) by using the sequential
composition method. We assume that the public key space belongs to the mes-
sage space in this paradigm. Otherwise, hash function or other techniques could
be applied here to achieve this. The construction of Π proceeds as follows:

– Gen. On input security parameter 1k, invoke Gen′(1k) and obtain (pk, sk) ←
Gen′(1k). Output Π ′s public key pk and secret key sk (In fact, Gen = Gen′).

– Sign. To sign message m, the signer first invokes Gen′(1k) to obtain a key
pair (pk′, sk′) ← Gen′(1k). The signer then invokes algorithms Sign′(sk, pk′)
and Sign′(sk′, m). Finally, it outputs σ=(A, B, C) as the signature, where
A = Sign′(sk, pk′), B = Sign′(sk′, m), C = pk′.

– Verify. On input verifying key pk, message m, and signature σ = (A,B,C),
output 1 if and only if Verify′ (pk,C,A) = 1 and Verify′(C, m,B) = 1.

Key generation of the resulted fully-secure signature Π is the same with the
key generation of weak signature Π ′. In signature generation phase, Sign′(sk, pk′)
can be pre-computed by the signer. The construction is similar with [4,22]. How-
ever, only weakly-secure signatures are required here, instead of fully secure sig-
nature scheme or one-time signature scheme as required in [4,22]. This could be
viewed as improvements to the results [4,22].

Below, we formally prove the security of the signature scheme Π . We denote
the cost of a signing algorithm Sign′ in Π ′ by tsign′ .

Theorem 3. If Π ′ is (t′, q, ε′)-weakly-secure, then the signature Π is (t, q, ε)-
fully-secure, where t ≤ t′ − O(q · tsign′) and ε ≥ 2q · ε′. 1

Proof. See Appendix A. ��

In fact, if the signing algorithm Sign′ in Π ′ deterministic, then the fully-secure
signature scheme Π is strongly unforgeable.

4.3 Parallel Composition Method

In this section, we show another generic transformation from weakly-secure sig-
natures to fully-secure signatures.

Before showing the transformation, we define a relation R={((a, b), c)} that
satisfies the following conditions:

– Given a and c (or b and c), b(or a) is determined and can be computed in
probabilistic polynomial time (PPT);

1 In fact, the key pair (pk′, sk′) ← Π ′ generated in the signing algorithm is only
used to sign message for one-time. So, in fact, (pk′, sk′) can be generated from
weakly-secure signatures satisfies only (t′, 1, ε′)-weakly-secure, which is easier to be
constructed compared to (t′, q, ε′)-weakly-secure signatures.

232 J. Li et al.

– Given randomly chosen values a and b, it is hard to find c in PPT , such that
((a, b), c) ∈ R.

In fact, this kind of relation can be easily found. Suppose the security para-
meter is 1k. For example, given a collision-resistant hash function H : {0, 1}∗ →
{0, 1}k, a, b ∈ {0, 1}k and c ∈ {0, 1}∗, we define ((a, b), c) ∈ R, if and only if
a ⊕ b = H(c).

Obviously, this relation satisfies the definition of R because: Given a ∈ {0, 1}k

and c, b ∈ {0, 1}k is determined and can be computed efficiently; And, randomly
choose a ∈ {0, 1}k and b ∈ {0, 1}k, it is hard to find c such that a⊕ b = H(c) for
the collision-resistant property of the hash function.

In public parameters, relation R={((a, b), c)} defined above should be given.
The generic construction follows:

1. Gen. On input security parameter 1k, invoke Gen′(1k) two times and ob-
tain two key pairs (pk1, sk1) and (pk2, sk2). Output Π ′s public key pk =
(pk1, pk2) and secret key sk = (sk1, sk2).

2. Sign. To sign message m, the signer first chooses m′ randomly and com-
putes m

′′
such that ((m′, m

′′
), m) ∈ R. The signer then invokes algorithms

Sign′(sk1, m
′) and Sign′(sk2, m

′′
). Output σ=(A, B, C) as the signature on

message m, where A = Sign′(sk1, m
′), B = Sign′(sk2, m

′′
), C = m′.

3. Verify. On input verifying key pk = (pk1, pk2), message m, and signature
σ = (A, B, C), first compute m

′′
from m and C such that ((C, m

′′
), m) ∈ R

(This can be done from the property of the relation R). Finally, it outputs
1 if and only if Verify′(pk1, C, A) = 1 and Verify′(pk2, m

′′
, B) = 1.

It is easy to prove that Π is strongly unforgeable if Π ′ is deterministic. Below,
we formally prove the security of the resulting signature scheme Π , with very
tight security reduction to Π ′. We also denote the cost of a signing algorithm
sign′ in Π ′ by tsign′ .

Theorem 4. The signature scheme Π is (t, q, ε)-fully-secure, provided that Π ′

is (t′, q, ε′)-weakly-secure, where t ≤ t′ − O(q · tsign′) and ε ≥ 2ε′.

Proof. See Appendix B. ��

4.4 Comparison of Two Paradigms

– Key generation phase: The key generation in fully-secure signature from the
sequential method, is the same with its corresponding key generation of weak
signature scheme. And, for the fully secure signature from parallel method,
it requires to run the key generation algorithm of weak signature twice. So,
the key size is smaller and computation cost is less in sequential method,
compared with the parallel method.

– Signing phase: In the first paradigm, the signer should run the key genera-
tion algorithm and signing algorithm of weak signature, respectively. In the

Generic Security-Amplifying Methods of Ordinary Digital Signatures 233

second paradigm, it requires to run the signing algorithm of weak signature
twice. The online computations of both methods in signing phase requires
to run signing algorithm of weak signature only once.

– Verification phase: In both paradigms, it requires to run the verification of
weak signature scheme twice. So, the computations of verification algorithm
are the same.

In conclusion, the sequential method is more suitable for device with small
storage such as smart card for its smaller key size. And, the signing algorithm
in the sequential composition method requires one key generation of weak sig-
natures. So, if the computation of this phase is almost the same with signing
algorithm of weak signature, then, the sequential method is indeed better than
the parallel composition method. Otherwise, from only the computational cost
of signing algorithm, the parallel composition method is better. So, we can use
different paradigms according to circumstance requirements.

After presenting two paradigms, we will describe several instantiations con-
verted from the weakly-secure signature schemes [5,16].

5 Instantiations from Sequential Composition Method

5.1 Fully-Secure Signature from Weak Boneh-Boyen Signature

We describe how to get fully-secure signature, denoted by S-WBB, by using the
sequential composition method on the weak Boneh-Boyen signature scheme. The
public parameters are similar with the weak Boneh-Boyen signature, except a
collision resistant hash function H : G1 → Z∗

p is chosen additionally.

1. Gen: Pick x ∈ Z∗
p, compute y = gx. The public key is y and the secret key

is x.
2. Sign: Given message m ∈ Z∗

p, the signer chooses a random x′ ∈ Z∗
p, computes

y′ = gx′
, and outputs the signature as σ=(A, B, C), where A = g

1
x+H(y′) ,

B = g
1

x′+m , C = y′.
3. Verify: On input verification key y, message m, and the signature σ =

(A, B, C), output 1 if and only if ê(y · gH(C), A) = ê(g, g) and ê(y′ · gm, B) =
ê(g, g). Otherwise, output 0.

In key generation algorithm, S-WBB scheme needs one exponentiation in
group G1. The signing algorithm costs two exponentiations computations in
group G1 and two inversion computations in Z∗

p. As the value A could be pre-
computed, the computations is reduced to only one exponentiation in G1 and
one inversion computation in Z∗

p. In verification algorithm, the value ê(g, g) can
be fixed and published as part of the public key. So, it only needs two pairing
and two exponentiations computations.

Compared with the fully-secure signature scheme in [5], the key generation al-
gorithm of S-WBB is more efficient. Furthermore, the key size is smaller than [5]
because the secret key consists of only one group element. So, it is very suitable

234 J. Li et al.

for small storage device such as smart card or mobile phone to perform authenti-
cation operations. The online computation for signing algorithm in [5] is also one
exponentiation in G1 and one inversion computation in Z∗

p. The computation of
online verification in S-WBB requires one more pairing computation compared
with [5]. From the above comparison, the S-WBB scheme is very suitable for
device with small storage.

Theorem 5. The S-WBB signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 1 and 3. ��

5.2 Fully-Secure Signature from Weak GHR Signature

In this section, we present a fully-secure signature, denoted by S-WGHR, from
the weak GHR signature scheme [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1, q1).
Compute n1 = p1q1 as a RSA modulus, select s1 ∈ Z∗

n1
. Meanwhile, choose

a division intractability hash function H1 : {0, 1}∗ → Z
∗
n1

. The public key is
(n1, s1, n2, s2, H1) and the secret key is (p1, q1).

2. Sign: To sign a message m, choose two pairs safe primes (p2, q2), and a
random s2 ∈ Z∗

n2
, compute n2 = p2q2. Then, choose a division intractabil-

ity hash functions and H2 : {0, 1}∗ → Z∗
n2

and compute the signature

as σ=(A, B, C), where A = s
1

H1(n2‖s2‖H2)

1 mod n1, B = s
1

H2(m)

2 mod n2,
C = n2 ‖ s2 ‖ H2.

3. Verify: On input verification key (n1, s1, H1), message m, and σ=(A, B, C),
parse C = (C1, C2, C3). Then, output 1 if and only if AH1(C) = s1 mod n1
and BC3(m) = C2 mod C1. Otherwise, output 0.

Theorem 6. The S-WGHR signature scheme is fully-secure.

Proof. The result can be derived directly from Theorems 2 and 3. ��

In key generation algorithm, it requires one multiplications in Z∗
n1

. The secret
key size is only [log2n1]. The signing algorithm needs one exponentiation and
inversion computations in Z∗

n1
and Z∗

n2
, respectively. As the value A could be

pre-computed, the computation is reduced to only one exponentiation and one
inversion computation in Z∗

n2
. In verification algorithm, it requires one expo-

nentiation computation in Z∗
n1

and Z∗
n2

, respectively. Compared to [25], the
computations in signing and verification algorithms are almost the same. In key
generation algorithm of S-WGHR, the key size is smaller than [25] and it requires
less exponentiations to generate key pair.

6 Instantiations from Parallel Composition Method

In the following two instantiations, we will use the concrete relation R given in
Section 4.3: ((a, b), c) ∈ R, if and only if a ⊕ b = H(c). The relation should be
described in system public parameters, in both following examples.

Generic Security-Amplifying Methods of Ordinary Digital Signatures 235

6.1 Fully-Secure Signature from Weak Boneh-Boyen Signature

Denote the following fully-secure signature scheme from the weak Boneh-Boyen
by P-WBB. The public parameters are similar with the weak Boneh-Boyen sig-
nature, excluding a concrete relation R given in Section 4.3.

1. Gen: Pick x1, x2 ∈ Z∗
p, compute y1 = gx1 and y2 = gx2 . The public key is

(y1, y2) and the secret key is (x1, x2).
2. Sign: Given message m ∈ Z∗

p, the signer chooses a random m′ ∈ Z∗
p and com-

putes the signature as σ=(A, B, C), where A = g
1

x1+m′ , B = g
1

x2+(H(m)⊕m′) ,
C = m′.

3. Verify: On input verification key (y1, y2), message m, and the signature
σ = (A, B, C), output 1 if and only if ê(y1 · gC , A) = ê(g, g) and ê(y2 ·
gH(m)⊕C , B) = ê(g, g). Otherwise, output 0.

In key generation algorithm of P-WBB, it needs two exponentiations in group
G1. The signing algorithm costs two exponentiations computations in group G1
and two inversion computations in Z

∗
p. In verification algorithm, it only needs

two pairing and two exponentiations computations as the value ê(g, g) can be
published as part of the public key..

From Theorems 1 and 4, we can get the following result:

Theorem 7. The P-WBB signature scheme is fully-secure.

The security reduction is the same with Theorem 4.

6.2 Fully-Secure Signature from Weak GHR Signature

In this section, we present a fully-secure signature, denoted by P-WGHR, from
the weak GHR signature[16] with the following advantages: The new scheme
does not require the non-standard randomness-finding oracle assumption [16].
The signing algorithm requires less exponentials computation compared to [16].

1. Gen: On input security parameter 1k, pick two pairs safe primes (p1, q1),
(p2, q2). Compute n1 = p1q1 and n2 = p2q2 as two RSA modulus, select
s1 ∈ Z∗

n1
and s2 ∈ Z∗

n2
. Meanwhile, choose two division intractability hash

functions H1 : {0, 1}∗ → Z∗
n1

and H2 : {0, 1}∗ → Z∗
n2

. Furthermore, a
collision-resistant hash function H : {0, 1}∗ → {0, 1}k is selected. The public
key is (n1, s1, n2, s2, H1, H2, H) and the secret key is (p1, q1, p2, q2).

2. Sign: To sign a message m, the signer chooses a random m′ ∈ {0, 1}k and

computes the signature as σ=(A, B, C), where A = s
1

H1(m′)
1 mod n1, B =

s
1

H2(H(m)⊕m′)
2 mod n2, C = m′.

3. Verify: On input verification key (n1, s1, n2, s2, H1, H2, H), message m, and
σ=(A, B, C), output 1 if and only if AH1(C) =s1 mod n1 and BH2(H(m)⊕C) =
s2 mod n2. Otherwise, output 0.

236 J. Li et al.

It requires one multiplication in Z∗
n1

and Z∗
n2

in key generation algorithm,
respectively. The signing algorithm needs one exponentiation and inversion com-
putations in Z∗

n1
and Z∗

n2
, respectively. The online computation in signing phase

could be reduced to only one exponentiation and one inversion computation in
Z∗

n2
. In verification algorithm, it requires one exponentiation computation in Z∗

n1

and Z
∗
n2

, respectively.
It is very interesting because this instantiation from the weak GHR signature

scheme looks similar to the twin signature scheme in [25]. In fact, the parallel
composition paradigm could be viewed as generalization of [25]. First, we define
a relation R as follows:

(a, b), c) ∈ R if and only if a = c ⊕ μ1 ‖ c ⊕ μ2, b = μ1 ‖ μ2 for some μ1 and
μ2.

It is easy to verify such kind of relation satisfies the definition given in Section
4.3. Based on this given relation and the parallel paradigm, the twin signature
scheme [25] could be derived directly from the weak GHR signature scheme.

And, the following result could be derived easily from Theorems 2 and 4. And,
security reduction is the same with Theorem 4.

Theorem 8. The P-WGHR signature scheme is fully-secure.

7 Conclusion

We showed two new paradigms on how to obtain fully-secure signature scheme
from any scheme satisfies only a weak security notion called existentially un-
forgeable against generic chosen message attacks in the standard model. The
new paradigms are different from known methods because they are built only
on weakly-secure signatures, and do not rely on other cryptographic protocols
such as one-time signature, or non-standard assumptions such as random ora-
cle model. The transformations are simple, generic, and provably secure in the
standard model. The sequential composition method is very efficient in key gen-
eration algorithm compared to the second. However, if the computation cost in
the key generation algorithm of weak signature needs more than the weak sig-
nature’s signing algorithm, then, the signing algorithm is more efficient in the
second paradigm. So, we can use different paradigm in applications according to
different requirements.

We also presented several concrete fully-secure signature schemes without
random oracles converted from two previous weakly-secure signature schemes.
Their efficiency comparison with the previous secure signatures was also given.

The design of existentially unforgeable secure signature scheme under adap-
tively chosen message attack, then, can be reduced to that of signature scheme
which is secure under only weakly chosen message attack. In the standard model,
constructing an efficient signature scheme based on standard assumption is still
an open problem. The two new paradigms give one direction in order to solve
this problem.

Generic Security-Amplifying Methods of Ordinary Digital Signatures 237

Acknowledgements

This work was partially supported by the 2nd stage of Brain Korea 21 Project
sponsored by the Ministry of Education and Human Resources Development, Ko-
rea. The third author was supported by the National Natural Science Foundation
of China (No. 60773202 and 60633030) and 973 Program (2006CB303104).

References

1. Bellare, M., Micali, S.: How to Sign Given Any Trapdoor Function. J. of the
ACM 39, 214–233 (1992)

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

3. Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures-How to Sign
with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

4. Bellare, M., Shoup, S.: Two-Tier Signatures, Strongly Unforgeable Signatures, and
Fiat-Shamir without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)

5. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from The Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

7. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

8. Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials
from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

9. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited.
In: STOC 1998, pp. 207–221. ACM, New York (1998)

10. Chevallier-Mames, B., Joye, M.: A Practical and Tightly Secure Signature Scheme
without Hash Function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

11. Coron, J.-S., Naccache, D.: Security Analysis of The Gennaro-Halevi-Rabin Sig-
nature Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
91–101. Springer, Heidelberg (2000)

12. Cramer, R., Damg̊ard, I.: Secure Signature Schemes Based on Interactive Protocols.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 297–310. Springer,
Heidelberg (1995)

13. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM TISSEC 3(3), 161–185 (2000); Extended abstract. In: Sixth ACM Conference
on Computer and Communication Security (1999)

14. Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. Journal
of Cryptology 9, 35–67 (1996)

15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

238 J. Li et al.

16. Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without The
Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

17. Goh, E.-J., Jarecki, S.: A Signature Scheme as Secure as The Diffie-Hellman Prob-
lem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415.
Springer, Heidelberg (2003)

18. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)

19. Goldwasser, S., Ostrovsky, R.: Invariant Signatures and Non-Interactive Zero-
Knowledge Proofs Are Equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS,
vol. 740, pp. 228–239. Springer, Heidelberg (1993)

20. Huang, Q., Wong, D.S., Zhao, Y.: Generic Transformation to Strongly Unforgeable
Signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17.
Springer, Heidelberg (2007)

21. Lamport, L.: Constructing Digital Signatures from a One Way Function. Technical
Report CSL-98, SRI International (1979)

22. Li, J., Chan, Y.Y., Wang, Y.: A Generic Construction of Secure Signatures Without
Random Oracles. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar,
D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 309–
317. Springer, Heidelberg (2006)

23. Lindell, Y.: A Simpler Construction of CCA2-Secure Pulic Key Encryption under
General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 241–254. Springer, Heidelberg (2003)

24. Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: Proc. of NDSS
2000, Internet Society (1998), http://eprint.iacr.org/1998/010

25. Naccache, D., Pointcheval, D., Stern, J.: Twin Signatures: An Alternative to The
Hash-and-Sign Paradigm. In: ACM Conference on Computer and Communications
Security 2001, pp. 20–27. ACM, New York (2001)

26. Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic
Applications. In: ACM symposium on Theory of Computing, pp. 33–43. ACM
Press, New York (1989)

27. Perrig, A.: The BiBa One-Time Signature and Broadcast Authentication Protocol.
In: Eighth ACM Conference on Computer and Communication Security, pp. 28–37.
ACM, New York (2001)

28. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology 13(3), 361–396 (2000)

29. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signature
and Pulbic Key Cryptosystems. Comm. of ACM, 120–126 (1978)

30. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy 4, 161–174 (1991)

31. Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

32. Steinfeld, R., Pieprzyk, J., Wang, H.: How to Strengthen Any Weakly Unforgeable
Signature into a Strongly Unforgeable Signature. In: Abe, M. (ed.) CT-RSA 2007.
LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)

33. Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In:
Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

34. Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilin-
ear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)

http://eprint.iacr.org/1998/010

Generic Security-Amplifying Methods of Ordinary Digital Signatures 239

Appendix A: Proof of Theorem 3

Proof. Given any adversary A attacking Π in an adaptive chosen message at-
tack, we construct an adversary A′ breaking Π ′ in weak chosen message attacks.
After given public key pk of Π , A queries the signing oracle of Π on messages
mi adaptively and gets q signatures σi=(Ai, Bi, Ci) for 1 ≤ i ≤ q. After the sig-
nature queries, A outputs a forged signature on a new m∗ as σ∗ = (A∗, B∗, C∗).

There are two types of forgeries.
Type 1 forgery: C∗ �= Ci for 1 ≤ i ≤ q.

Type 2 forgery: C∗ = Ci for some i, 1 ≤ i ≤ q.

The reduction works differently for each forger type. Therefore, initially A′ will
choose a random bit bcode ∈ {1, 2} that indicates its guess for the type of forger.
The simulation proceeds differently for each bcode.

If bcode = 1, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ first invokes Gen′(1k) and gets q key pairs
(pki, ski) ← Gen′(1k) (Assume that A makes at most q queries to signing oracle),
and sends the q values pki, for 1 ≤ i ≤ q, to challenger for signature queries of
Π ′ before the parameters publication of Π ′. Then A′ gets public key pk of Π ′

and q signatures σ′
i = Sign′(sk, pki) on the q messages pki, with respect to pk,

for 1 ≤ i ≤ q. A′ sends the public key pk to the adversary A as the public key
of Π .

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as σi=(Ai,
Bi, Ci), where Ai=σ′

i from the challenger, Bi = Sign′(ski, mi), Ci = pki.

Forgery After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗).

If C∗ �= Ci for 1 ≤ i ≤ q, then A′ can output a forged Π ′ signature as σ = A∗

on a new message C∗ and break the signature scheme Π ′. Otherwise, A′ aborts.

If bcode = 2, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ randomly generates (pk, sk) ← Gen′(1k) of
Π ′. A′ then sets Π ′s key pair as (pk, sk) and sends the public key pk to A. A′

also chooses a random κ ∈ [1, q] and keeps it secret.

Simulation of Signing Oracle. A queries the signing oracle of Π on messages mi

adaptively for 1 ≤ i ≤ q. A′ answers the signature query as follows: if i �= κ, A′

first invokes Gen′(1k) and gets key pair (pki, ski) ← Gen′(1k). Then, it returns the
simulated signature on messages mi as σi=(Ai, Bi, Ci), where Ai=Sign′(sk, pki),
Bi = Sign′(ski, mi), Ci = pki. Otherwise, if i = κ, A′ sends mi to the challenger

240 J. Li et al.

for signature of Π ′, and gets the challenge public key pk∗ of Π ′ and signature
Sign′(sk∗, mi) of mi with respect to pk∗. Then A′ answers the signature query
as σi=(Ai, Bi, Ci), where Ai=Sign′(sk, pk∗), Bi= Sign′(sk∗, mi) and Ci=pk∗.

Forgery. After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗), where C∗ = Ci for some 1 ≤ i ≤ q.

If i �= κ, A′ aborts and fails. Otherwise, if i = κ, then c∗ = pk∗. This implies
that A′ can output a forged signature B∗ on a new message m∗ with respect to
pk∗ and break the signature scheme Π ′.

We define two events, E1 and E2, which denotes type 1 forgery and type 2
forgery occurs, respectively. As prob[E1] + prob[E2] = prob[A wins]. Since A wins
with probability ε, it follows that one of the two events occurs with probability at
least ε/2. It is easy to see that the success probability of A′ under the conditions
that event E1 occurs is 1

2 · prob[E1]. In the type 2 forgery simulation, success
guess of γ is 1

q . So the success probability of A′ under the conditions that event
E2 occurs is 1

2q prob[E2]. Therefore, if A wins with probability ε, the signature
scheme Π ′ with probability at least ε

2q . ��

Appendix B: Proof of Theorem 4

Proof. Given any adversary A attacking Π in an adaptive chosen message at-
tack, we construct an adversary A′ breaking Π ′ in weak chosen message attacks.
After given public key pk of Π , A queries the signing oracle of Π on messages
mi adaptively and gets q signatures σi=(Ai, Bi, Ci) for 1 ≤ i ≤ q. After the sig-
nature queries, A outputs a forged signature on a new m∗ as σ∗ = (A∗, B∗, C∗).

There are also two types of forgeries:
Type 1 forgery: C∗ �= Ci for 1 ≤ i ≤ q.

Type 2 forgery: C∗ = Ci for some i, 1 ≤ i ≤ q.

The reduction works differently for each forger type. Therefore, initially A′ will
choose a random bit bcode ∈ {1, 2} that indicates its guess for the type of forger
that A will emulate. The simulation proceeds differently for each bcode.

If bcode = 1, we construct an algorithm A′ to break Π ′ as follows:

Simulation of Key Generation. A′ first invokes Gen′(1k) and gets key pair
(pk2, sk2) ← Gen′(1k). Then A′ chooses q random values m′

1, · · · , m′
q (Assume

A makes at most q queries to signing oracle), and sends the q values m′
i, for

1 ≤ i ≤ q, to challenger for signature queries of Π ′ before the parameters pub-
lication of Π ′. Then A′ gets its challenge public key pk of Π ′ and q signatures
σ′

i = Sign′(sk, m′
i) on the q messages m′

i, with respect to pk, for 1 ≤ i ≤ q.
Then A′ sets the public key of Π as pk = (pk1, pk2), where pk1 = pk, and

sends the public key pk to the adversary A.

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as follows:

Generic Security-Amplifying Methods of Ordinary Digital Signatures 241

– From the first property of the given relation R, A′ could compute m
′′

i such
that ((m′

i, m
′′

i), mi) ∈ R;
– Then, it computes Bi = Sign′(sk2, m

′′
i);

– Finally, outputs the signature σi=(Ai, Bi, Ci), where Ai=σ′
i from challenger,

and Ci = m′
i.

Forgery. After the signature queries, A outputs a forged signature on a new
message m∗ as σ∗ = (A∗, B∗, C∗).

Because m∗ �= mi for 1 ≤ i ≤ q, then if C∗ = m′
i for some i, A′ aborts

and fails. Otherwise, A′ can output a forged Π ′ signature as σ = A∗ of a new
message C∗ and break the signature scheme Π ′, with the challenge public key
pk.

If bcode = 2, we construct an algorithm A′ to break Π ′ in another way:

Simulation of Key Generation. A′ randomly generates (pk1, sk1) ← Gen′(1k)
of Π ′. Then A′ chooses q random values m′′

1 , · · · , m′′
q (Assume that A makes at

most q queries to signing oracle), and sends the q values m′′
i , for 1 ≤ i ≤ q, to

challenger for signature queries of Π ′ before the parameters publication of Π ′.
Then A′ gets its challenge public key pk of Π ′ and q signatures σ′

i = Sign′(sk, m′′
i)

of the q messages m′′
i , with respect to pk, for 1 ≤ i ≤ q.

Then A′ sets the public key of Π as pk = (pk1, pk2), where pk2 = pk, and
sends the public key pk to the adversary A.

Simulation of Signing Oracle. A then queries the signing oracle of Π on mes-
sages mi adaptively for 1 ≤ i ≤ q. A′ answers the signature query as fol-
lows: First, from the first property of relation R, A′ computes m′

i such that
((m′

i, m
′′

i), mi) ∈ R. Then, A′ outputs simulated signature on message mi as
σi=(Ai, Bi, Ci), where Ai=Sign′(sk1, m

′
i), Bi = σ′

i, Ci = m′
i.

Forgery. After the signature queries, A outputs a forged signature on a new mes-
sage m∗ as σ∗ = (A∗, B∗, C∗). By using the first property of relation R again,
A′ could compute m∗′′

from m∗ and C∗, such that ((C∗, m∗′′
), m∗) ∈ R.

Recall that in this kind of forgery, C∗ = Ci for some i. Because m∗ �= mi

for 1 ≤ i ≤ q, and m′
i, m

′′

i are chosen randomly by the simulator, we have
m∗′′ �= m

′′

i from the second property of the defined relation R. This proof, in
fact, shows that the signature scheme prevents the attack from the adversary
that just combine the first part in one signature for message M and the second
part in the other signature for message M ′.

So, A′ can output a forged Π ′ signature as σ = A∗ on a new message m∗′′

and break the signature scheme Π ′, with respect to the challenge public key pk.
��

	Generic Security-Amplifying Methods of Ordinary Digital Signatures
	Introduction
	Our Results
	Organization

	Preliminaries
	Unforgeability
	Strong Existential Unforgeability
	Weak Unforgeability

	Instantiations of Weak Signatures
	Weak Boneh-Boyen Signature [5]
	Weak GHR Signature [16]

	Fully-Secure Signatures from Weakly-Secure Signatures
	Related Work
	Sequential Composition Method
	Parallel Composition Method
	Comparison of Two Paradigms

	Instantiations from Sequential Composition Method
	Fully-Secure Signature from Weak Boneh-Boyen Signature
	Fully-Secure Signature from Weak GHR Signature

	Instantiations from Parallel Composition Method
	Fully-Secure Signature from Weak Boneh-Boyen Signature
	Fully-Secure Signature from Weak GHR Signature

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

