
Aggregate Proxy Signature and Verifiably

Encrypted Proxy Signature

Jin Li1 ?, Kwangjo Kim1, Fangguo Zhang2 and Xiaofeng Chen3

1 International Research center for Information Security (IRIS)
Information and Communications University(ICU)

58-4 Hwaam-dong Yusong-ku, Taejon, 305-732, Korea
2 Department of Electronics and Communication Engineering

Sun Yat-Sen University, Guangzhou, 510275, P.R.China
3 Department of Computer Science

Sun Yat-Sen University, Guangzhou, 510275, P.R.China

Abstract. An aggregate signature is a single short string that convinces
any verifier that, for all 1 ≤ i ≤ n, signer i signed message mi, where the
n signers and n messages are distinct. The main motivation of aggregate
signatures is compactness. In this paper, the concept of aggregate proxy
signature (APS) is first proposed to compact the proxy signatures. Fur-
thermore, a concrete APS scheme is constructed, which can be proved to
be secure under the security model of APS. Additionally, as an applica-
tion of APS, the concept of verifiably encrypted proxy signature (VEPS)
is also first proposed in this paper, which can be used in contract sign-
ing. The VEPS allows the original signer to delegate another to sign the
contract on its behalf. Finally, a VEPS construction is derived from the
APS, which can be easily proved to be secure from the security of APS.

Keywords: Proxy signature, Aggregate signature, Random oracle, Bilinear pair-
ings

1 Introduction

A proxy signature protocol allows an original signer to delegate its signing power
to another entity, called proxy signer, to sign messages on its behalf. The dele-
gated proxy signer can compute a proxy signature that can be verified by anyone
with access to the original signer’s public key. Proxy signatures have many prac-
tical applications such as in distributed system etc. [10] and are one of important
cryptographic protocols. The concept of proxy signature was first introduced by
Mambo, Usuda, and Okamoto [8] in 1996. After Mambo et al.’s first scheme was
published, many various types of proxy signature schemes have been proposed
such as short proxy signature scheme [5,7], one-time proxy signatures [16]. Also,
there are a lot of proxy signature schemes were found flaws such as [11]. The

? This work was partially supported by the 2nd stage of Brain Korea 21 Project
sponsored by the Ministry of Education and Human Resources Development, Korea

2 Jin Li, Kwangjo Kim, Fangguo Zhang and Xiaofeng Chen

main reason is the lack of formal security model. Until 2003, the formal security
model was proposed in [1]. In this security model, a public key infrastructure
setting (PKI) is also assumed, where each entity holds a public and secret key
pair.

The notion of aggregate signature schemes was introduced in 2003 by Boneh,
Gentry, Lynn and Shacham [3]. Basically, aggregating signatures means com-
pressing n signatures on n distinct messages from n distinct users into a unique
(shorter) signature. This is useful in many real-world applications. For exam-
ple, certificate chains in a hierarchical PKI of depth n consist of n signatures
by n different CAs on n different public keys. By using an aggregate signature
scheme, this chain can be compressed down to a single aggregate certificate. Af-
ter the concept of aggregate signatures was proposed, many types of aggregate
signatures have been presented such as identity-based aggregate signatures [4],
sequential aggregate signatures [13].

In this paper, the concept of aggregate proxy signature (APS) is first pro-
posed. Consider the following situations: n proxy signers have generated n proxy
signatures on n different messages on behalf of the same original signer. To verify
these proxy signatures, the ordinary method is to verify them one by one, which
costs large storage and computation. Reducing the amount of memory required
to store these proxy signatures and the computational time required to verify
their validity is the motivation for the concept of APS. An APS is obtained from
n different initial proxy signatures, ideally in such a way that: (1) the length
of the aggregate proxy signature is smaller than the sum of the length of the
n initial proxy signatures; (2) verifying the correctness of the aggregate proxy
signature costs less than verifying the n initial proxy signatures one by one. If an
aggregate proxy signature is verified as valid, then the receiver is convinced that
the n initial signatures are valid. On the other hand, if the aggregate signature
is invalid, the receiver is convinced that some initial proxy signature is not valid.

Next, we show an application of APS to verifiably encrypted proxy signature
(VEPS). It is known that verifiably encrypted signatures can be used in applica-
tions such as online contract signing [8]. Suppose Alice wants to show Bob that
she has signed a message, but does not want Bob to possess her signature of that
message. Alice can achieve this by encrypting her signature using the public key
of a trusted third party, and sending this to Bob along with a proof that she
has given him a valid encryption of her signature. Bob can verify that Alice
has signed the message, but cannot deduce any information from her signature.
Later, in the protocol, if Alice is unwilling or unable to reveal her signature, Bob
can ask the third party to reveal Alice’s signature.

However, consider the following situation: If either Alice or Bob is busy, they
can delegate their signing power to the other party, which is called as proxy
signer, to sign the contract on behalf of him or her. So, the concept of VEPS is
first presented in this paper to solve this problem. In this case, the proxy signer
of Alice, for example, wants to show Bob that it has signed a message on behalf
of Alice, but does not want Bob to possess its proxy signature on that message.
The proxy signer can achieve this by encrypting its proxy signature using the

Aggregate Proxy Signature and Verifiably Encrypted Proxy Signature 3

public key of a trusted third party, and sending this to Bob along with a proof
that it has given him a valid encryption of its proxy signature. Bob can verify
that the proxy signer has signed the message on behalf of Alice, but cannot
deduce any information from the encrypted signature. Later, in the protocol, if
the proxy signer is unwilling or unable to reveal its signature, Bob can ask the
third party to reveal its proxy signature.
Contributions. In this work we introduce the notion and security model of
APS. Roughly speaking, the new concept allows to efficiently manage multiple
proxy signatures addressed to a specific verifier. Furthermore, a concrete con-
struction is presented, which can be proved to be secure in the security model.
Additionally, the concept of VEPS is first proposed in this paper, which can be
used in contract signing. It allows the original signer to delegate another to sign
the contract on its behalf. A VEPS construction is also derived from the APS,
which can be easily proved to be secure from the security of APS.

2 Preliminaries

2.1 Definition

Definition 1. (APS) An APS scheme consists of 7 algorithms: (KeyGen, (D,P),
PSign, PVerify, Aggregate, Verify). The algorithms are specified as follows:

– KenGen The key generation algorithm, on input security parameter 1k, out-
puts user’s public key pk and corresponding secret key sk.

– (D,P) is a pair of interactive algorithms forming the proxy-designation pro-
tocol. The input to each algorithm includes two public keys pko, pki. D also
takes as input the secret key sko, and P also takes as input the secret key
ski. As result of the interaction, the expected local output of P is skp, a proxy
signing key that user pki uses to produce proxy signatures on behalf of user
pko.

– PSign The proxy signature generation algorithm, that takes as input a secret
key skp, a message m, returns the signature σ.

– PVerify The proxy signature verification algorithm, that takes input public
key pko, pki, a message m and a proxy signature σ, outputs 1 if it is a valid
proxy signature for m relative to pk. Otherwise, output 0.

– Aggregate The aggregate algorithm, that takes as input n different proxy
signatures σ1, · · · , σn of distinct messages m1, · · · , mn correctly signed by
different users pk1, · · · , pkn, outputs an aggregate proxy signature σ;

– Verify The aggregate proxy signature verification algorithm, that takes as
input pko, pk1, · · · , pkn, n messages m1, · · · , mn and σ, returns 1 or 0 for
accept or reject, respectively.

2.2 Security Requirements

Adversary’s attack capabilities are modelled by providing it access to certain
oracles. We now introduce the oracles we will need and provide the adversary
with different subsets of this set of oracles.

4 Jin Li, Kwangjo Kim, Fangguo Zhang and Xiaofeng Chen

– APS Oracle: The aggregate proxy signing oracle, on input message m1,
· · · , mn, pko, L = {y1, · · · , yn} for aggregate proxy signature, returns an
aggregate proxy signature σ such that APV(pko,L, m1, · · · , mn, σ) = 1.

– KR Oracle: The key registration oracle, on input key pair (pk, sk), first
checks if sk is indeed the secret key of pk. Then it stores (pk, sk) as a valid
registered key pair if it is. Otherwise, reject and output a special symbol ⊥ .

– DE Oracle: The delegation oracle, on input any registered public key pki,
and original public key pko, its secret key sko, returns a delegation on the
public key pki.

– RA Oracle: The random oracle, on input mi, outputs a randomly value ri

chosen in the domain of the hash function.

There are two types of unforgeability to consider in APS: Delegation unforge-

ability and aggregate proxy signature unforgeability. Delegation unforgeability

means that even if the adversary asks for polynomial users’ delegation, it is still
hard to output a forgery delegation that the original signer has not delegated.
Aggregate proxy signature unforgeability means that, except the proxy signers,
anyone else (even if the origin signer) cannot generate valid aggregate proxy
signature on behalf of these proxy signers.

2.2.1 Delegation Unforgeability

Delegation unforgeability for aggregate proxy signature is defined as in the fol-
lowing game involving an adversary A.

1. Let (pko, sko)← KenGen(1k). A is given pko and the public parameters.
2. A accesses to RA Oracle, DE Oracle, and KR Oracle.

The adversary A wins the game if he can output m∗
1, · · · , m

∗
n, L=(pk1, · · · ,

pkn,), such that L includes a public key pki that is not equal to any query of
DE oracle and σ∗ is a valid aggregate proxy signature with respect to pko. The
advantage of the adversary is the probability that he wins the game.

Definition 2. (Delegation Unforgeability) An aggregate proxy signature scheme
is delegation unforgeability secure if no probabilistic polynomial time (PPT) ad-
versary has a non-negligible advantage in the above game.

2.2.2 Aggregate Proxy Signature Unforgeability

We formalize this intuition as the aggregate chosen-key security model. In this
model, the adversary A is given a single proxy signer’s public key. His goal is
the existential forgery of an aggregate proxy signature. We give the adversary
power to choose all public keys except the challenge public key. The adversary is
also given access to a proxy signing oracle on the challenge key. His advantage,
AdvAggSig(A), is defined to be his probability of success in the following game.

– Setup: The aggregate forger A is provided with the challenge proxy signer’s
public key pk1 and original signer’s key pair (sko, pko), generated at random.

Aggregate Proxy Signature and Verifiably Encrypted Proxy Signature 5

– A requests proxy signatures with pk1 on behalf of original signer pko, adap-
tively.

– A accesses to RA Oracle and KR Oracle.
– Finally, A outputs n−1 additional public keys pk2, · · · , pkn, which have been

queried to KR Oracle. Here n is at most N , a game parameter. These keys,
along with the initial key pk1, will be included in A’s forged aggregate. A
also outputs messages m∗

1, · · · , m
∗
n, and, finally, an aggregate proxy signature

σ∗ by the n users on behalf of pko, each on his corresponding message. The
forger wins if the aggregate signature σ∗ is a valid aggregate on messages
m∗

1, · · · , m
∗
n under public keys pk1, · · · , pkn, and σ∗ is nontrivial, i.e., A did

not request a proxy signature on m∗
1 under pk1.

An aggregate forger A (t, qH , qS , n, ε)-breaks an n-user APS scheme in the
aggregate chosen-key model if: A runs in time at most t; A makes at most
qH queries to the random oracle and at most qS queries to the APS oracle;
AdvAggSig(A) is at least ε; and the forged aggregate signature is by at most N
users. An aggregate signature scheme is (t, qH , qS , n, ε)-secure against existential
forgery in the aggregate chosen-key model if no forger (t, qH , qS , n, ε)-breaks it.

Definition 3. An APS is secure if AdvAggSig(A) is negligible for any PPT ad-
versary A.

2.3 Preliminaries

Before present our results, we review the definitions of groups equipped with a
bilinear pairings and a related assumption. Let G be a (multiplicative) cyclic
group of prime order p. Let g be a generator of G. We also let ê be a bilinear
map such that ê : G×G→ G1 with the following properties:

1. Bilinearity: For all u, v ∈ G and a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g) 6= 1.
3. Computability: There exists an efficient algorithm to compute ê(u, v).

Definition 4. Computational Diffie-Hellman Assumption: Given g, gx,
gy ∈ (G)3 for unknown x, y ∈R Z∗

p, it is hard to compute gxy for any PPT
algorithm.

3 An APS Scheme

Let G be a bilinear group where |G| = p. Define a bilinear map ê : G×G→ G1.
Meanwhile, define two collision-resistant hash functions H1 : G → G and H2 :
{0, 1}∗ → G. The construction of such hash function can be found in [2]. Then
the system parameters are params=(G, G1, ê, g, H1, H2).

1. KenGen. For original signer, it picks xo ∈ Zp and outputs (xo, yo = gxo) as
its key pair. The original signer’s secret key is xo and the public key is yo.
For user i, it chooses xi ∈ Zp and outputs (xi, yi = gxi) as its key pair. The
user i′s secret key is xi and the public key is yi.

6 Jin Li, Kwangjo Kim, Fangguo Zhang and Xiaofeng Chen

2. D. In order to delegate his signing capability to user i, the original signer
yo, on input yi, computes Si = [H1(yi)]

xo as the corresponding delegation.
3. P. Given Si, the user i computes its proxy signing key as ski = (xi, Si).
4. PSign. Assuming the proxy signer i with public key yi wants to generate

signature on message m on behalf of yo, it computes H2(m)xi and outputs
the proxy signature σ = Si ·H2(m)xi .

5. PVerify. On input the aggregate proxy signature σ, message m and yo, yi,
accept if ê(σ, g) = ê(H1(yi), yo) ê (H2(m), yi).

6. Aggregate. On input n proxy signatures σ1, · · · , σn on n different messages
m1, · · · , mn by n distinct proxy signers y1, · · · , yn, output σ=σ1 · · ·σn as the
aggregate proxy signatures.

7. Verify. On input σ on n different messages m1, · · · , mn by n distinct proxy
signers y1, · · · , yn, accept if ê(σ, g) =

∏n

i=1
(ê(H1(yi), yo) ê (H2(mi), yi)).

3.1 Security Results

Theorem 1. In random oracle model, the APS scheme is delegation unforgeable
if CDH assumption holds in bilinear groups.

Proof. If there exists an adversary A breaks the scheme, then we show there
exists an algorithm C that, by interacting with A, solves the CDH problem. Our
algorithm C described below solves CDH problem for a randomly given instance
{g, gx, gy} and asked to compute gxy. The details are as follows.
C runs A on input yo = gx as target user’s public key, handling all of A’s

requests and answering all A’s queries as follows:

– H-queries: Assume A makes at most qH1
times to H1-oracle and qH2

times
to H2-oracle, respectively. When A queries mi to H2-oracle, C answers
H2(mi) = gm̂i for a random m̂i ∈ Zp. Furthermore, C randomly chooses
a s ∈ [1, qH1

] and prepares ti ∈ Zp for 1 ≤ i ≤ qH1
. When A queries yi to

H1-oracle, C answers H1(yi) = gti if i 6= s. Otherwise, H1(ys) = gy if i = s.
– Key Registration Queries: If A requests to register a new user i by outputting

(xi, yi), C stores these keys as valid registered key pair.
– Delegation Queries: If A requests to designates i with registered public key

yi, it assumes A has requested H1 query on yi. If i 6= s, C knows the value
ti such that H1(yi) = gti . So cert is yti

o . Otherwise, it aborts.

Finally, A outputs a forgery of aggregate proxy signature (m∗
1, · · · , m

∗
n, L,

σ∗), such that L includes a public key y∗ that is not equal to any query of DE
Oracle and σ∗ is a valid aggregate proxy signature with respect to pko and L on
message m∗. Assume L={y1, · · · , yn}, such that ys = y∗. It satisfies ê(σ∗, g) =∏n

i=1
(ê(H1(yi), yo) ê (H2(m

∗
i), yi)), which implies σ∗ =

∏n

i=1
H1(yi)

xH2(m
∗
i)

xi .
Because H2(mi) = m̂i, H1(y

∗) = gy, and H1(yi) = gti for yi 6= y∗, we can

compute gxy=σ∗/
∏n

i=1
y

m̂∗

i

i

∏
i∈{1,··· ,n}\s yti

o and solve the CDH problem.
It is easy to see that if A outputs a forgery of aggregate proxy signature with

probability ε, then CDH problem can be solved with probability about 1

qH1

· ε.

So, we can say that the APS scheme is delegation unforgeability secure in the
random oracle if CDH assumption holds.

Aggregate Proxy Signature and Verifiably Encrypted Proxy Signature 7

Theorem 2. In random oracle model, the APS scheme is aggregate proxy sig-
nature unforgeable if CDH assumption holds in bilinear groups.

Proof. We show there exists an algorithm C that, if there exists an adversary
A breaks the scheme, by interacting with A, solves the CDH problem. Our
algorithm C described below solves CDH problem for a randomly given instance
{g, gx, gy} and asked to compute gxy.
C chooses xo and computes yo = gxo . Then it sends (xo, yo) to the adversary.

C runs A on input y1 = gx as target proxy user’s public key, handling all of A’s
requests and answering all A’s queries as follows:

– H-queries: Assume A makes at most qH1
times to H1-oracle and qH2

times to
H2-oracle, respectively. When A queries yi to H1-oracle, C answers H1(yi) =
gri for a random ri ∈ Zp. Furthermore, C randomly chooses a s ∈ [1, qH2

].
When A queries mi to H2-oracle, C answers H2(mi) = gti if i 6= s. Otherwise,
H2(ms) = gy if i = s.

– Key Registration Queries: If A requests to register a new user by outputting
(x, y = gx), C stores these keys as valid registered key pair.

Finally, A outputs a forgery of aggregate proxy signature (m∗
1, · · · , m

∗
n, L =

{y1, · · · , yn}, σ∗), such that σ∗ is a valid aggregate proxy signature with respect
to pko and L on message m∗

1, · · · , m
∗
n. It satisfies ê(σ∗, g) =

∏n

i=1
(ê(H1(yi),

yo) ê (H2(m
∗
i), yi)). If m∗

1 = ms, we have H2(m
∗
1) = gy and H2(m

∗
i) = gti

for mi 6= ms. Finally, C can compute gxy=σ/(
∏

i∈{1,··· ,n} yri

o

∏
i∈{1,··· ,n}\s yti

i).
Otherwise, C aborts.

It is easy to see that if A outputs a forgery of APS with probability ε, then
CDH problem can be solved with probability about 1

qH2

· ε. So, we can say that

the APS scheme is secure in the random oracle if CDH assumption holds.

In this paper, we only deal with the proxy signatures on behalf the same
original signer. But, in many applications, the proxy signatures on behalf dif-
ferent signers are also practical. So, we think how to solve this question is also
interesting, including its security model and scheme. We do not show details
here for space.

4 Verifiably Encrypted Proxy Signature Scheme

Next, we show an application of APS to VEPS. Verifiably encrypted signatures
(VES) are used in applications such as online contract signing [8]. However, if
one of the two party is busy, they can delegate their signing power to the other
party, which is called as proxy signer, to sign the contract on behalf of him or
her. So, the concept of VEPS is first presented to solve this problem. From the
APS, a VEPS can be easily constructed.

Definition 5. (VEPS)A VEPS comprises nine algorithms: KeyGen, (D,P), PSign,
PVerify, AdjKeyGen, VEPSigCreate, VEPSigVerify, and Adjudicate, provide the
verifiably encrypted signature capability. The algorithms are described below. We
also refer to the trusted third party as the adjudicator.

8 Jin Li, Kwangjo Kim, Fangguo Zhang and Xiaofeng Chen

– KeyGen, (D,P), PSign, and PVerify are the same with their corresponding defi-
nitions in APS.

– AdjKeyGen. This algorithm generates key pair (ASK, APK) for the adjudi-
cator.

– VEPSigCreate. Given a proxy signing key skp, message m, adjudicator’s pub-
lic key APK, it outputs the verifiably encrypted proxy signature σ.

– VEPSigVerify. Given original public key pko, proxy signer’s public key pki, a
message m, an adjudicator’s public key APK, and a signature σ, verify if σ
is a valid verifiably encrypted proxy signature on m.

– Adjudicate. Given an adjudicator’s secret key ASK, and a verifiably encrypted
proxy signature σ on some message m, extract and output σ′, an ordinary
proxy signature on m of proxy signer pki on behalf of pko.

We require three security properties of VEPS: validity, unforgeability, and
opacity, which is similar to [3].

– Validity requires that ordinary proxy signature verify, verifiably encrypted
proxy signatures verify, and that adjudicated verifiably encrypted signatures
verify, i.e., that PVerify(m,PSign(m)), VESigVerify(m,VESigCreate(m)) and
PVerify(m,Adjudicate(VESigCreate(m))) hold for all m.

– There are two types of unforgeability, including delegation unforgeability
and verifiably encrypted proxy signature unforgeability. Delegation unforge-
ability requires that it be difficult to forge a valid verifiably encrypted proxy
signature of an unauthorized user. Verifiably encrypted proxy signature un-
forgeability requires that it be difficult to output a verifiably encrypted proxy
signature by anyone else, even the original user, except the right proxy signer.

– Opacity requires that it be difficult, given a VEPS, to extract an ordinary
proxy signature on the same message, given access to a VEPS creation oracle
and an adjudication oracle, maybe along with a hash (random) oracle. The
opacity can easily be achieved in our construction based on the assumption
that given an APS of n signatures it is difficult to extract the individual
proxy signatures.

Let G be a bilinear group where |G| = p. Define a bilinear map ê : G×G→
G1. Meanwhile, define two collision-resistant hash functions H1 : {0, 1}∗ → G

and H2 : {0, 1}∗ → G. The system parameters are params=(G, G1, ê, g, H1, H2).

1. KenGen. For original signer, it picks xo ∈ Zp and outputs (xo, yo = gxo) as
its key pair. The original signer’s secret key is xo and the public key is yo.

2. D. In order to delegate his signing capability to user with registered public
key pair (x, y = gx), then original signer, on input y, computes S = [H1(y)]xo

as the corresponding delegation.
3. P. Given S, the user computes its proxy signing key as skp = (x, S).
4. PSign. Assume the proxy signer wants to generate proxy signature on mes-

sage m on behalf of original signer with public key yo. It computes the proxy
signature σ = S · [H2(m)]x.

Aggregate Proxy Signature and Verifiably Encrypted Proxy Signature 9

5. PVerify. On input σ, a message m and yo, y, accept if ê(σ, g) = ê(H1(y),
yo) ê (H2(m), y).

6. AdjKeyGen. For adjudicator, it picks xa ∈ Zp and outputs (xa, ya = gxa)
as its key pair. The adjudicator’s secret key is xa and the public key is ya.

7. VEPSigCreate. Given a proxy signing key skp = (x, S), a message m ∈
{0, 1}∗, and adjudicator’s public key ya, it signs as follows:

a. Compute h = H2(m), where h ∈ G, and σ = hx · S.

b. Select r at random from Zp, set u = gr and compute σ′ = (ya)r.

c. Aggregate σ and σ′ as ω = σσ′.

Finally, the verifiably encrypted proxy signature is the pair (ω, u). (This can
also be viewed as ElGamal encryption of σ under the adjudicator’s key.)

8. VEPSigVerify. Given public keys yo, y, a message m, adjudicator’s public
key ya, and a verifiably encrypted proxy signature (ω, u), set h = H2(m);
accept if ê(ω, g) = ê(yo, H1(y)) · ê(y, h) ·ê(u, ya) holds.

9. Adjudicate. Given adjudicator’s private key xa, and a verifiably encrypted
proxy signature (ω, u) on some message m, ensure that the verifiably en-
crypted proxy signature is valid by running algorithm VEPSigVerify; then
output the proxy signature σ = ω/uxa .

4.1 Security Results

Our VEPS scheme depends on the assumption that given an aggregate signature
of k signatures it is difficult to extract the individual signatures. We posit that
it is difficult to recover the individual signatures σi given their aggregate σ, and
the messages. In fact, for the VEPS is only constructed from an aggregate proxy
signature of 2 proxy signatures, its security can be reduced to the following
problem [3].

Definition 6. Given ga, gb, gx, gy, and gax+by ∈ G, it is hard to output the value
gax.

In the bilinear aggregate proxy signature scheme, it is difficult to extract
individual proxy signatures, under the aggregate extraction assumption [3]. For
more details, the reader can be referred to [3]. We can get the following two secu-
rity results easily from the security of APS with the above aggregate extraction
problem [3]:

Theorem 3. In random oracle model, the VEPS scheme is unforgeable (dele-
gation unforgeable and verifiably encrypted proxy signature unforgeable) if CDH
assumption holds in bilinear groups.

Theorem 4. In random oracle model, the VEPS scheme achieves opacity if
CDH assumption holds in bilinear groups.

10 Jin Li, Kwangjo Kim, Fangguo Zhang and Xiaofeng Chen

5 Conclusion

In this paper we introduce the notion and security model of APS, which allows
to compress the proxy signatures on different messages from different proxy
signers into one. Meanwhile, a concrete APS scheme is presented, and it can
be proved to be secure in the security model. Additionally, as an application
of APS, the concept of verifiably encrypted proxy signature is also proposed in
this paper, which can be used in contract signing. It allows the original signer to
delegate another to signing the contract. A VEPS construction is also derived
from the APS and can be easily proved to be secure from the properties of the
corresponding APS.

References

1. A.Boldyreva, A.Palacio, B.Warinschi. Secure Proxy Signature Schemes for Delega-
tion of Signing Rights. Cryptology ePrint Archive, Report 2003/096. Available at
http://eprint.iacr.org, 2003.

2. D.Boneh, B.Lynn, H. Shacham. Short Signatures from the Weil Pairing. Asiacrypt
2001, LNCS 2248, Springer-Verlag, pp. 514-532, 2001.

3. D.Boneh, C. Gentry, H.Shacham, B. Lynn. Aggregate and verifiably encrypted
signatures from bilinear maps, Eurocrypt’03, LNCS 2656, Springer-Verlag, pp. 416-
432, 2003.

4. C. Gentry, Z. Ramzan. Identity-Based Aggregate Signatures, PKC 2006, LNCS
3958, pp. 257-273, Springer-Verlag, 2006.

5. X. Huang, Y. Mu, W. Susilo, F. Zhang, X. Chen. A Short Proxy Signature Scheme:
Efficient Authentication in the Ubiquitous World. EUC Workshopspp, pp. 480-489,
Springer-Verlag, 2005.

6. B.G. Kang, J.H. Park, S.G. Hahn. A Certificate-Based Signature Scheme, CT-
RSA’04, LNCS 2964, pp. 99-111, Springer-Verlag, 2004.

7. J. Li and Y. Wang. A short provably secure proxy signature scheme. Chinese
Journal of Electronics, 2006, Vol.15, No. 4: 721-724.

8. M. Mambo, K.Usuda, and E.Okamoto. Proxy signatures for delegating signing
operation, Proceedings of the 3rd ACM Conference on Computer and Communi-
cations Security (CCS), ACM, pp. 48-57, 1996.

9. S.Malkin, S.Obana, and M.Yung. The hierarchy of key evolving signatures and a
characterization of proxy signatures, Eurocrypt’04, LNCS 3027, pp. 306-322, 2004.

10. B.C. Neuman. Proxy based authorization and accounting for distributed systems,
Proceedings of the 13th International Conference on Distributed Computing Sys-
tems, pp. 283-291, 1993.

11. G.Wang, F. Bao, J. Zhou, R.H. Deng. Security Analysis of Some Proxy Signatures,
ICISC 2003, LNCS 2971, Springer-Verlag, pp. 305-319, 2004.

12. H.X.Wang, J.Pieprzyk. Efficient One-time proxy signatures, Asiacrypt 2003,
Springer-Verlag, pp. 507-522, 2004.

13. H. Zhu, F. Bao, T. Li, Y.Wu. Sequential aggregate signatures for wireless routing
protocols, IEEE WCNC 2005, 2436-2439, 2005.

