Enhancing Security of EPCglobal Gen-2 RFID Tag against Traceability and Cloning

Dang Nguyen Duc*, Jaemin Park, Hyunrok Lee and Kwangjo Kim
CAIS Lab, Information and Communications University (ICU), Korea
Auto-ID Lab, ICU, Korea

This work was partially supported by a grant No.R12-2003-004-01004-0 from Ministry of Commerce, Industry and Energy
Content

• RFID Overview
• Security and Privacy Issues in RFID System
• Previous Protocols
• New Protocol
• Analysis and Comparison
• Conclusion and Future Work
RFID Overview

- Wirelessly and Automatically identify objects nearby:

A multi-tier system: RFID tag, reader and backend server

A typical RFID tag

@ Pictures are adapted from Internet
RFID Applications

Supply chain management Smart appliance Payment system

Library management Smart labels Security Lock

@ Pictures are adapted from Internet
Distinguished Properties of RFID

• Properties of RFID tag that matter:
 – Short range wireless communication.
 – Extremely low cost (expected to be 5 cents by 2007).
 – Minimal computational functionalities.
 – Limited memory.
 – No power source (receive power from reader).
RFID Organization

• **Auto-ID Lab**
 – Established at MIT. Later expand to Keio, Fudan, St. Gallen, Cambridge, Adelaide and ICU Universities..
 – Research on RFID technology and develop open standards.
 – Our work in Auto-ID Lab in Korea focuses on Mobile RFID and RFID security.

• **EPCglobal Inc.**
 – Joint venture of EAN International (Europe) and UCC (USA).
 – Develop industry RFID standards.
 – Class-1 Gen-2 RFID standard: air interface protocol for RFID devices – latest version 1.09

This work aims at suggesting possible security enhancements for Gen-2 standard!
EPCGlobal Class-1 Gen-2 Tag

• Passive RFID Tag
 – Receive power from Tag reader.
 – Communicate in UHF Band (800 – 960 MHz) and communication range up to 10m.

• Privacy Protection
 – Self-destruct when received kill command (with valid 32-bit kill PIN).

• Other security features
 – Memory access possible only when Tag in “secure mode”.
Security and Privacy Issues in RFID

- Lack of authentication:
 - Malicious reading (skimming)
 - Captured information aids duplicating genuine tags.
 - Denial-of-Service due to deployment of cloned tags.

- Privacy invasion:
 - Static ID is subject to tracking.

@ picture is credited to Juels et al.
Previous Protocols for Secure RFID

• Hash-based protocols:
 – By Ohkubo et. al. and other researchers.
 – Cons: cryptographic hash is still beyond current capability of RFID tag.

• Juels’ protocol for Gen-2 Tag:
 – Provide authentication but not eavesdropping and privacy protection.
 – Cons: Tag and reader need to repeat q rounds of PIN-test to get $1/2^q$ security margin.
New protocol - Design Considerations

- RFID Tag is extremely computational limited:
 - Employ only PRNG, logical operations, CRC ⇒ ratified by Gen-2 standard.
 - Note: We will not make use of “weak” one-way property of CRC. We use only its compression and integrity-checking properties.

- Secure
 - Provide reasonable protection against cloning and privacy invasion.

- Easy to adapt to current RFID standards:
 - Need not to rework entire standard.
Main Idea

• Using seeded PRNG to share session key

• Reader is a proxy between Tag and Server:
 – Reader always asks Server to decode EPC for every Tag query ⇒ easy access control and accountability.
 – Reader has to authenticate to Server first ⇒ no need to Reader-to-Tag authentication (except when Reader “access” Tag’s memory).
- Some Notations

• $f(.)$ – pseudo-random number generator
• $\text{CRC}(.)$ – cyclic redundancy check function (produce checksum)
• K_i – secret key at the i-th session
• EPC – Electronic Product Code
• r – random nonce.
• PIN – “access” command password
• T – Tag
• R – Reader
• S - Backend Server
- Protocol

• Deployment time:
 – For each RFID tag, choose a unique seed’s number seed and compute.
 \[K_1 = f(\text{seed}) \]
 – Choose PIN for each tag.
 – Store EPC, PIN, K_1 on each tag and in EPC, PIN, K_1 in backend server’s database.

<table>
<thead>
<tr>
<th>id</th>
<th>pin</th>
<th>K_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPC</td>
<td>PIN</td>
<td>K_1</td>
</tr>
</tbody>
</table>
- Protocol (cont.)

- Tag Query Protocol:

\[T(EPC, PIN, K_i) \]

Generate random nonce \(r \)

\[M_1 = CRC(EPC \oplus r) \oplus K_i \]

- Mutual Authentication

For each entry in DB:

\[M'_1 = M_1 \oplus K_i \]

Verify if \(M'_1 \) of the form \(CRC(EPC \oplus r) \) ?

If found, check R’s privileges and send appropriate info.
- Protocol (cont.)

- Tag Access Protocol:
 - S → R: $M_2 = \text{CRC}(\text{EPC} \parallel \text{PIN} \parallel r) \oplus K_i$
 - R → T: forward authentication token M_2 to T.
 - T: Verify $M_2 \oplus K_i = \text{CRC}(\text{EPC} \parallel \text{PIN} \parallel r)$

- Key Updating Protocol
 - R → T, S: ‘End Session’
 - T: $K_{i+1} = f(K_i)$
 - S: $K_{i+1} = f(K_i)$

Database-desynchronization protection: R announces ‘End Session’ with a token CRC($r' \oplus \text{PIN}'$) where r' is a random nonce broadcasted to Tag with ‘Query Req’ and PIN’ is a secret shared between T and legitimate R.
Security Analysis

• Tag authentication:
 – CRC(EPC ⊕ r) is blinded by K_i to avoid direct attack on weak one-wayness of CRC.
 – Tag’s EPC must satisfy integrity-checking property of CRC to be recognized by server.

• Reader authentication:
 – Reader must authenticate himself to server get object information.
 – A valid access PIN and K_i are required to “access” Tag’s memory.

• Privacy protection
 – Tag does not directly emit EPC and session key is kept changing, then malicious readers cannot perform tracking.
Comparison with Juels’ Protocol

<table>
<thead>
<tr>
<th></th>
<th>Juels’ Protocol</th>
<th>Our Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server’s complexity</td>
<td>O(N)</td>
<td>O(N)O(CRC)</td>
</tr>
<tr>
<td>Reader’s complexity</td>
<td>O(q)</td>
<td>O(1)</td>
</tr>
<tr>
<td>Tag’s complexity</td>
<td>O(q)</td>
<td>1CRC+1PRNG</td>
</tr>
<tr>
<td>Tag authentication</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Reader authentication</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Eavesdropping protection</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Privacy protection</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Note: N – # of tags; O(CRC) – complexity of CRC; q – number of PIN-test round; Reader-to-Server authentication complexity not counted
Conclusion & Future Work

• Propose a new communication protocol for Gen-2 RFID:
 – Light-weight
 – Implicit authentication of Reader and Tag.
 – Eavesdropping protection.
 – Privacy protection.

• Future work:
 – Rigorous analysis.
 – Multiple reading.
 – Backend server’s complexity should be improved.
 – Transfer of tag’s ownership.