
A New Transitive Signature Scheme based on
RSA-based Security Assumptions

Dang Nguyen Duc, Han Kyusuk, Zeen Kim and Kwangjo Kim

International Research center for Information Security (IRIS)
Information and Communications University (ICU)

119 Munjiro, Yuseong-gu
Daejon, 305-732, Korea

{nguyenduc, hankyusuk, zeenkim, kkj}@icu.ac.kr

Abstract. A transitive signature scheme allows a signer to publish a graph in an
authenticated and cost-saving manner. The resulting authenticated graph is indeed
the transitive closure of the graph constructed by edges which are explicitly signed
by the signer. A property of the transitive signature scheme enables such scenario
is called composability which means that by knowing signatures on two edges of a
triangle, one can infer to a valid signature on the other edge of the triangle without
knowledge of the signer’s secret key thereby saving the signer from signing one sig-
nature. Several transitive signature schemes have been proposed so far [1–3]. Their
security assumptions are based on the intractability of computing discrete logarithm,
inverting RSA function, factoring and solving Diffie-Hellman problem. In this paper,
we will present another transitive signature scheme based the Guillou-Quisquater
(GQ for short) signature scheme. The security of our proposed can be proven under
the assumption that solving the strong RSA problem is hard in case of non-adaptive
chosen-message attack. In case of adaptive chosen-message attack, similar to Bellare
and Neven’s work [2, 3], we can show that breaking our scheme is as hard as solving
the one-more-RSA inversion problem. 1

Key words: Transitive signature scheme, provable security, strong RSA assumption,
one-more-RSA-inversion assumption, chosen-message attack.

1 Introduction

1.1 The basic concept

Graph, consisting of vertices and edges, is a very common data structure to rep-
resent relations between objects. For example, a graph can be used to represent a
computer network, some organization structure, etc. In many scenarios, one needs
to publish a graph representing some structure in an authenticated (and efficient)
manner. In 2002, Micali and Rivest proposed such a solution for signing a graph
called transitive signature [1]. The name “transitive” comes from the fact that, at
any time, the actual authenticated graph is the transitive closure of the graph whose
edges are signed explicitly by the signer. Therefore, to publish a graph in an authen-
ticated manner, the signer just needs to sign a sub-graph of the original graph as
long as this sub-graph preserves the connectivity of the graph. It is because given a
same vertex set, two connected graphs have the same transitive closure. Considering
the fact that a graph in practice is often complicated and transitively closed, this

1 Some parts of this work were presented at the Symposium for Cryptography and Information
Security (SCIS) 20005 in Kobe, Japan.

is much more efficient way to sign a graph. One special property of a transitive
signature scheme which enables such behavior is that it allows composition of signa-
tures. More specifically, if we denote an edge on a graph as {i, j} where i and j are
vertex indexes, then, given two signatures on edge {i, j} and edge {j, k}, without
the secret key of the signer, one can produce a valid signature on edge {i, k}. Like
any standard signature scheme, a transitive signature scheme must be unforgeable
under the strongest type of attack, namely chosen-message attack. However, in case
of transitive signature schemes, composability can be seen as a type of forgery be-
cause it does not need the signer’s secret key to function. Therefore, for a transitive
signature scheme, composition of signatures is required to be the only possible type
of forgery. If a transitive signature scheme satisfies such security requirement, we
say that it is transitively unforgeable. Another requirement for a transitive signature
scheme mentioned by Micali and Rivest [1] is for privacy purpose. This requirement
states that signatures obtained via composition procedure should be indistinguish-
able from signatures explicitly signed by the signer. It is true that in practice, if
one finds that a given signature is not produced by the original signer, he might not
accept it even though that signature is a valid one. Bellare and Neven argued that
this is not necessary a security requirement but a “correctness” requirement of the
composibility feature [2, 3].

1.2 Potential applications

Beside the motivated application mentioned in [1] in which a transitive signature
scheme is used to sign the relationship between an officer and his immediate super-
visor, we describe an application of a transitive signature scheme in managing trusts
in a distributed system. Let’s suppose that we have a single administrative domain
with n nodes and every node trusts each other. There is a super node in charge of
authenticating trustworthiness between nodes in the domain. If we use a standard
signature scheme for the super node to authenticate trusts between nodes, then it
has to produce signatures for every pair of nodes (more specifically, n(n−1)

2 signa-
tures) which is considerably expensive. If we consider the domain as a graph where
vertices are all nodes in the domain and edges represents trust between two nodes,
then, this graph is clearly transitively closed (even complete) because every node
trusts each other. From this observation, we can use a transitive signature scheme
for the super node to sign only n− 1 signatures corresponding n− 1 edges forming
a sub-graph that preserves the connectivity of the original graph. This is a very
significant cost saving for the super node. We can also see that transitive signature
schemes capture the transitivity nature of trust relationship, i.e., if A trusts B and
B trusts C, then it is reasonable that A also trusts C.

1.3 Our contribution

It is a common practice in cryptography that one should find alternative solutions
for the same problem to seek performance gain, additional properties and probably
new insights. For realizing the transitive signature concept, four security assump-
tions have been used. They include the intractability assumptions of RSA inversion,
computing discrete logarithm, factoring and solving Diffie-Hellman problem [1–3].
In this paper, we present a new transitive signature scheme based on a Guillou-
Quisquater (GQ for short) signature scheme [8]. Our proposed scheme is proven

to be secure against non-adaptive chosen-message attack under the strong RSA as-
sumption [11, 12]. Also, similar to [2, 3], we can also prove the security of our scheme
in case of adaptive chosen-message attacks assuming that the one-more-RSA inver-
sion problem [13] is hard. Even though our proposed scheme does not provide any
performance or security gain, it shows a further (although weak) evidence that one-
way trapdoor permutation is not enough to construct a secure transitive signature
scheme [10].

2 Background and Definitions

2.1 Some Terminologies in Graph Theory

Transitive signature schemes target signing a graph. Therefore, we briefly recall some
related terminologies in graph theory as follows:

– A graph G consists of two sets, a vertex set V and a set edges E = {{i, j} : i, j ∈
V }. G is called an undirected graph if the edge {i, j} is identical to the edge
{j, i}. For the sake of simplicity, we assume that vertex index, i, is a positive
integer (i.e., V ⊂ N). Wlog, we also assume that an undirected edge from vertex
i to vertex j, denoted as {i, j}, implies i < j.

– A graph is said to be connected if there is a path between any pair of vertices.
An arbitrary graph G = (V, E) can be divided into connected sub-graphs G′ =
(V ′, E′) where V ′ ⊂ V and E′ ⊂ E.

– A graph is said to be transitively closed if there is a path between two vertices,
then there is an edge between them.

– The transitive closure of a graph G = (V, E) is a graph G′ = (V, E′) such that
if there is a path from i to j in G, then {i, j} ∈ E′. It is easy to see that two
connected graphs with the same vertex set result in the same transitive closure.

All graphs in this paper are undirected. It is still open to construct a transitive
signature scheme for directed graphs [10].

2.2 Formalization of Transitive Signature Scheme

We follow the formalization given by Bellare and Neven in [2] which is the first and
sound one after the introduction of the transitive signature concept by Micali and
Rivest [1]. First of all, we give a formal definition of a transitive signature scheme
according to [2].

Definition 1. A transitive signature scheme T S consists of four polynomial-time
algorithms described as follows:

– TKG is a randomized key generation algorithm which the security parameter k as
its input and produces a key pair (tpk, tsk) including the public key tpk and the
corresponding secret key tsk.

– TESign is an edge signing algorithm which takes the secret key tsk and two
vertices i and j as its input and outputs a signature on edge {i, j}, σij. TESign
can be stateful.

– TEVf is a deterministic edge signature verification algorithm. Given the public
key tpk, two vertices i and j and a candidate signature on edge {i, j}, σ, TEVf
outputs ‘accept’ if σ is a valid signature on edge {i, j} relative to tpk. Otherwise,
it outputs ‘reject’.

– TComp is also a deterministic algorithm. TComp takes the public key tpk, three
vertices i, j and k, and two signatures σ1 and σ2 on edges {i, j} and {j, k},
respectively, as its input and outputs either a valid signature on edge {i, k} or a
symbol of failure, ⊥.

The first three components of a transitive signature scheme are very similar to those
of a standard signature scheme. However, regarding the TComp algorithm, there are
several subtle matters we should consider. They are:

– TComp should work properly even though the input signatures are not signatures
obtained via the edge signing algorithm, TESign (instead, it can be any valid
one obtained via TComp algorithm itself).

– TComp should guarantee that signatures obtained via composition and TESign
are indistinguishable.

Taking the above considerations into account, Bellare and Neven formally defined
a notion called “correctness” of the composition algorithm [2, 3]. The definition is
achieved via an experiment in which an adversary A (not necessary computationally
bounded) fails to fool the composition algorithm. We refer interested readers to [2,
3] for more details.

As being mentioned in the definition, the edge signing algorithm TESign can
be stateful. It is because TESign needs to remember the state of a graph whose
edges have been signed. In particular, it is common in previous transitive signature
schemes [1–3] that each vertex is associated with two labels, a secret one and a
public one, throughout the lifetime of the system. Also, the public label is required
to be certified. This can be done by employing a standard signature scheme to sign
the public label. The stateful nature of TESign can be avoided by enabling the signer
to recompute vertex labels whenever required [2, 3].

We now shall define what we mean by saying that a given transitive signature
scheme is secure. As usual, we shall consider the strongest kind of adversary called
chosen message-attack adversary, say F . Similar to [2, 3], the security of a scheme
is defined via an experiment in which F with its signing oracle, TESign(tsk, ., .,),
attempts to forge a valid signature. We denote the experiment given the security pa-
rameter k ∈ N as Exptu−cma

T S,F (k). In the experiment, after executing the key genera-
tion procedure to generate the key pair (tpk, tsk), the signing oracle TESign(tsk, ., .,)
is made available to F . F makes queries to the signing oracle (in an adaptive or
non-adaptive manner) with two distinct vertices i and j per query. Let E be the
set of all pairs {i, j} such that F made oracle query i, j and let V be the set of all
vertices appeared in E (the cardinality of V should also be upper bounded by some
polynomial). Eventually, F will produce two vertices i′, j′ and a forged signature σ′.
The experiment will return 1 if TEVf(tpk, i′, j′, σ′) returns ‘accept’ and edge {i′, j′}
is not in the transitive closure of the graph G = (V, E). Otherwise, the experiment
returns 0. We are now ready to define security of a transitive signature scheme as
follows:

Definition 2. A transitive signature scheme is said to be secure or transitively un-
forgeable under chosen-message attack if given any polynomial-time (polynomial in

security parameter) adversary F , the below quantity (called advantage of F) is neg-
ligible in the security parameter 2:

Advtu−cma
T S,F (k) = Pr[Exptu−cma

T S,F (k) = 1]

As mentioned earlier, a standard digital signature scheme (denoted as SDS=(SKG,SSign,SVerify)

where SKG is a key generation algorithm, SSign is a signing algorithm and SVerify
is verification algorithm) is required to produce vertex certificates (i.e., signatures
on vertex public labels). The security of SDS certainly contributes to the security
the transitive signature scheme which makes use of SDS. Like in [6], we define the
security strength of SDS as the successful probability or advantage (as a function of
security parameter k) of a chosen-message attack adversary B, Advuf−cma

SDS,B (k). We
say that SDS is secure (unforgeable) under chosen-message attack if Advuf−cma

SDS,B (k)
is negligible for every polynomial-time adversary B.

2.3 The Strong RSA Assumption

A variant of the standard RSA assumption (i.e., RSA function is one-way) were
introduced in [11, 12] called the strong RSA assumption. Intuitively speaking, the
strong RSA assumption states that given a RSA modulus N and a value α ∈ Z∗N ,
it is infeasible to find β ∈ Z∗N and an integer number r such that βr = α mod N . In
this paper, we are interested in a class of the strong RSA assumption where N is the
product of two safe primes 3. Suppose that N is k-bit long, we define the strong RSA
assumption by saying that the successful probability of any polynomial-time strong
RSA problem solver A, Advs−rsa

A (k, l), is negligible. We state a relevant lemma
which we will use in our security proof as follows:

Lemma 1. Let G be a finite group. Suppose that e1 and e2 are two integers such
that gcd(e1, e2) = g and gcd(g, |G|) = 1. Given a and b ∈ G such that ae1 = be2, one
can compute c such that c

e2
g = a in O(log e1+e2

g) group operations.

Proof. A proof of this lemma is given in [7].

2.4 The One-More-RSA Inversion Assumption

The one-more-RSA inversion problem was introduced in [13]. The problem setting
is given as follows: an adversary A is equipped with two oracles, CHALL(.) and INV(.)
where CHALL(.) returns a random element in Z∗N (N is product of two primes) and
INV(.) inverts RSA function with respect to the RSA modulus N and e of RSA public
key (i.e., return xe−1

mod N on input x). A’s job is to compute RSA inversion of all
k challenges returned by CHALL(.) by asking strictly less k times the RSA inversion
oracle, INV(.). The one-more-RSA inversion assumption states that the chance for
A to succeed is negligible.

2 A function f(k) is said to be negligible if it is upper bounded by the inverse of any positive
polynomial 1/p(k) for sufficiently large k.

3 A prime number p = 2q + 1 is safe if q is also prime. q is also known as Sophie Germain prime.

3 The New Scheme

We present our proposed transitive signature scheme as an extension of the or-
dinary GQ signature scheme [8]. We name our scheme as SRSA−T S. Like previ-
ous schemes, our scheme makes use of a standard digital signature scheme SDS =
(SKG, SSign, SVerify). We now describe four components of SRSA−T S as follows:

Key generation. The key generation algorithm TKG, given key parameters k
and l, does the following:

1. Run SKG to generate a key pair (spk, ssk) for SDS
2. Generate two k/2 bit safe primes p, q and compute N ← pq
3. Randomly choose s from Z∗N and an (l + 1)-bit odd integer e and compute

v ← 1/se mod N .
4. Discard p, q and output tpk = (N, e, v, spk) and ssk = (N, e, s, ssk)

Edge signature generation. The edge signing algorithm TESign, given the secret
key tsk and two vertices i, j (i < j), outputs a signature on edge {i, j}. TESign
maintains its state which includes a vertex index set V , a vertex label table ∆ and
a vertex certificate table Σ (we refer ∆(i), Σ(i) as the containers for labels and
certificate of vertex i). It does the following:

1. For each t of the set {i, j} do
2. If t /∈ V then
3. V ← V ∪ {t}
4. Randomly choose a secret label `(t) from Z∗N
5. Compute the pubic label L(t) ← `(t)e mod N
6. Generate vertex certificate Σ(t) ← SSign(ssk, t||L(t))
7. Randomly choose another l-bit secret label xt

8. ∆(t) ← (`(t), xt, L(t))
9. Compute zi ← `(i)sxi mod N

10. Compute zj ← `(j)sxj mod N
11. Compute z ← zi/zj mod N and x ← xi − xj

12. Let Ci ← (L(i), Σ(i)) and Cj ← (L(j), Σ(j))
13. Output σij ← (Ci, Cj , z, x)

Edge signature verification. The edge signature verification algorithm TEVf,
given the public key spk, two vertices i, j (i < j) and a candidate signature on
edge {i, j}, σ, outputs either ‘accept’ or ‘reject’. It does the following:

1. Parse σ as (Ci, Cj , z, x)
2. Parse Ci as (Li, Σ(i)) and Cj as (Lj , Σ(j))
3. If SVerify(spk, i||Li, Σ(i)) = ‘reject’ ∨ SVerify(spk, j||Lj , Σ(j)) = ‘reject’
4. then Return ‘reject’
5. If not (|x| < 2l) then Return ‘reject’
6. If zevx 6= Li/Lj mod N then Return ‘reject’ Else Return ‘accept’

We can easily show that the edge signature verification algorithm always returns
‘accept’ if σ is a valid signature because zevx =

(
`(i)sxi`(j)−1s−xj

)e (1/se)xi−xj =
`(i)e`(j)−e = L(i)/L(j) mod N .

Signature Composition. The signature composition algorithm TComp takes
three vertices i, j, k (i < j < k) and two signatures σ1, σ2 as its input and does the
following:

1. If TEVf(tpk, i, j, σ1) = ‘reject’ ∨ TEVf(tpk, j, k, σ2) = ‘reject’
2. then Return ⊥
3. Parse σ1 as (Ci, Cj , z, x) and σ2 as (Cj , Ck, z

′, x′)
4. Output σik ← (Ci, Ck, zz′ mod N, x + x′)

It is intuitive to see that the correctness of TComp is satisfied since zz′ = (zi/zj)(zj/zk) =
zi/zk mod N and x+x′ = xi−xj +xj−xk = xi−xk. The two values zz′ and x+x′

are the same values that the real signer would produce himself for a valid signature
on edge {i, k}. For more rigorous correctness proof of TComp, please see Bellare and
Neven’s papers [2, 3].

Implementing key-evolving protocol. Since our proposed scheme and the
Itkis-Reyzin forward-secure signature scheme [7] are both based on the GQ signature
scheme (e.g., secret key does not contain information about factors of N). It is
possible to adapt their key-evolving protocol to our scheme so that our scheme can
provide forward secrecy.

4 Security Analysis

In this part, we sometimes use the two terminologies signature and edge interchange-
ably as an edge is assumed to exist if and only if it is authenticated by a signer’s
signature. We state the following two theorems regarding the security of our pro-
posed transitive signature scheme.

Theorem 1. If the strong RSA assumption holds and SDS is unforgeable under
chosen-message attack, then the SRSA−T S scheme is transitively unforgeable under
non-adaptive chosen-message attack.

Proof. Suppose that we are given a polynomial-time adversaryF to attack SRSA−T S.
It is desirable to show that, for all security parameter k, l, the following inequality
holds

Advtu−cma
SRSA−T S,F(k, l) ≤ c1Advs−rsa

A (k, l) + c2Advuf−cma
SDS,B (k)

where c1 and c2 are two constants or upper bounded by some polynomial (in security
parameter). This inequality says that if the right hand side is negligible, so does the
left hand side which proves the theorem. In this proof, we consider only the case that
F is non-adaptive meaning that F , given the public key tpk, prepares in advance its
queries to the signing oracle. Suppose that F ’s queries forms a graph G = (V,E).
After querying the signing oracle for signatures on edges of the graph G, F outputs
a forged signature on edge {i′, j′} such that {i′, j′} is not on the transitive closure
of F . Let E be the event both i′ and j′ are in V . We have:

Advtu−cma
SRSA−T S,F(k, l) = Pr[Exptu−cma

SRSA−T S,F(k, l) = 1]
= Pr[Exptu−cma

SRSA−T S,F(k, l) = 1 ∧E]
+ Pr[Exptu−cma

SRSA−T S,F(k, l) = 1 ∧E]

In case of the event E (either i′ or j′ is not in V), F needs at least one forged
vertex certificate as vertex certificate is included into edge signature. Therefore, in
this case, we can construct an adversary B attacking SDS which is used to produce
vertex certificates. This leads to:

Pr[Exptu−cma
SRSA−T S,F(k, l) = 1 ∧E] ≤ Advuf−cma

SDS,B (k). (1)

We now construct an adversary A attacking the strong RSA assumption in order to
evaluate Pr[Exptu−cma

SRSA−T S,F(k, l) = 1 ∧E]. Let’s recall A’s job: given N and α ∈ Z∗N ,
find β ∈ Z∗N and an integer r such that βr = α mod N . We now describe A in detail.
A first needs to generate tpk for F . A does so by assigning v = α and generates e,
spk and ssk as the real signer. A then run F with the input tpk = (N, v, e, spk).
When receiving F ’s queries which forms the graph G, A answers the queries as
follows:

– A firstly divides G into a set of disjoint sub-graphs G′ = (V ′, E′) (V ′ ⊂ V, E′ ⊂
E) such that each G′ is connected and signs each G′ separately.

– A does not need to sign exactly all edges of G′, it can sign any other set of edges
E′′ as long as (V ′, E′′) also forms a connected graph. It is because the transitive
closures of G′ and G′′ are the same, therefore, by signing the set of edges E′′, A
can infer signatures on edges belonging to E′ using signature composition.

We now show that A can produce signature on edges of the graph G′ without
knowing s of the secret key as follows: A first chooses a reference vertex, say vertex
i, from V ′. To sign the edge {i, j} for all other vertices j ∈ V ′, A randomly chooses
z ∈ Z∗N and an integer x such that |x| < 2l. A also chooses a secret label `(i) for
vertex i at random from Z∗N . It then computes public labels of two vertices

L(i) = `(i)e mod N and L(j) = L(i)/zevx mod N

and uses SDS to produce vertex certificates:

Σ(i) = SSign(ssk, i||L(i)) and Σ(j) = SSign(ssk, j||L(j))

Finally,A returns a valid signature on edge {i, j} as ((L(i), Σ(i)), (L(j), Σ(j)), z, x)
to F . This signature is valid because zevx = L(i)/L(j) mod N .

We have just shown that A can always answer F ’s queries as long as F is non-
adaptive. Suppose that after the querying phase, F outputs a forged signature on
edge {i′, j′} as σ′ = ((L(i′), Σ(i′)), (L(j′), Σ(j′)), z′, x′) such that the edge {i′, j′} is
not on the transitive closure of the graph G formed by all F ’s queries. In case of the
event E (certificates of i′ and j′ are reused), i′ and j′ are in V . Since {i′, j′} is not the
transitive closure of G, then, i′ and j′ must be on two different disjoint connected
sub-graphs of G. As we have shown earlier, for each disjoint connected sub-graph
of G, A needs to generate one secret label of a vertex in that sub-graph. Therefore,
with probability at least 1

m where m is the total number of vertices involved in
querying phase of F , A knows `(i′) and with probability 1

m · 1
m = 1

m2 , A knows both
`(i′) and `(j′). If σ′ is a valid signature on edge {i′, j′}, then, the following equality
holds:

z′evx′ = L(i′)L(j′)−1 = `(i′)e`(j′)−e mod N

⇒ vx′ =
(

`(i′)
`(j′)z′

)e
mod N

Because |x′| < 2l is enforced by the edge signature verification procedure and e is
(l + 1)-bit long, then e > |x′| and gcd(e, x′) = g is less than e. Let r = e/g, then
r > 1. Note that it is likely that gcd(e, φ(N)) = 1 since N is product of two safe
primes. To see that, suppose N = pq = (2p′ + 1)(2q′ + 1) and φ(N) = 4p′q′ where
p, q, p′, q′ are all prime. Because A picks e as a (l+1)-bit odd integer, it is likely that
gcd(e, 4p′q′) = 1. As a result, gcd(g, φ(N)) is also 1. As we know, φ(N) is the order

of the multiplicative group Z∗N , following the Lemma 1, A can efficiently compute
r-th root of v which is its target α. So, with probability 1/4 and in case of the event
E, if F succeeds in forging a valid signature, A can solve the strong RSA problem.
This implies:

1
m2

· Pr[Exptu−cma
SRSA−T S,F(k, l) = 1 ∧E] ≤ Advs−rsa

A (k, l) (2)

Combine (1) and (2), we achieved the desirable inequality:

Advtu−cma
SRSA−T S,F(k, l) ≤ m2Advs−rsa

A (k, l) + Advuf−cma
SDS,B (k).

Since m should be upper bounded by some polynomial, so does m2. Therefore,
we achieve our proof.

ut
The above strategy to construct A does not work in case F is adaptive because
A does not know all F ’s queries before answering them. If A attempts to use the
same strategy for adaptive F , the chance that A can answer each F ’s query is 1/2.
Therefore, if F asks qsig queries, the successful probability of A will be proportional
to (1/2)qsig which is obviously infeasible.

After failing to prove the security of our scheme in adaptive adversary case under
the strong RSA assumption, we found that the technique employed by Bellare and
Neven [2, 3] (which uses the one-more-RSA-inversion assumption) also worked for
our scheme. We present here a proof of security of our scheme in case of adaptive
chosen-message adversary using their idea but in a little more intuitive manner 4

Theorem 2. If the one-more-RSA inversion assumption holds and SDS is unforge-
able under chosen-message attack, then the SRSA−T S scheme is transitively unforge-
able under adaptive chosen-message attack.

Proof. Similar to the proof of Theorem 1, we also consider two types of the forger
F . We will describe only the use of the second type of the forger F (reusing vertex
certificates) to violate the one-more-RSA inversion assumption. As in [2, 3], the
main idea of constructing an adversary A to attack the one-more-RSA inversion
assumption is to assign all challenges returned by CHALL(.) to vertex public labels.
By doing so, A can answer all signature queries of the adaptive forger F as follows:
whenever F ask for a signature on edge {i, j}, A do the following:

– A first checks whether a signature on edge {i, j} can be obtained via composition
(of signatures previously asked by F .

– If A cannot answer F ’s query using signature composition (i.e., {i, j} are not on
the transitive closure the graph formed by signatures previously asked by F), A
proceeds as follows:

4 In fact, Hohenberger has already generalized the proof by Bellare and Neven by showing that
any one-way group isomorphism implies a secure transitve signature scheme under an autologous
assumption of the one-more-RSA-inversion assumption [10]. However, since Hohenberger used
a different model for a transitive signature scheme (e.g., a signing algorithm to produce vertex
certificate is designed explicitly rather than using any standard digital signature scheme). So, for
the self-containment and clarity purposes, we still brief the security proof under the one-more-
RSA-inversion assumption here.

1. If vertex i has not been created, A lets L(i) = CHALL(.). A then computes
vertex certificate for i, Ci, as the real signer.

2. If vertex j has not been created, A lets L(j) = CHALL(.). A then computes
vertex certificate for j, Cj , as the real signer.

3. A computes

z = INV

(
L(j)L(j)−1

vx

)

where x is randomly chosen as long as it satisfies the TVerify’s second check.
A returns a valid signature on edge {i, j} as (Ci, Cj , z, x). This signature is
valid because the following equality always holds:

zevx = L(i)L(j)−1 mod N

As we can see, to answer every signature query from F , A need to ask the
RSA inversion oracle INV(.) at most once. We can easily show that if F asks for
signatures forming a connected graph G of m vertices, A needs to call INV(.)
exactly m−1 times (since the minimal connected graph of m vertices consists of
m−1 edges). Since G has m vertices which means A has to return RSA inversion
of m challenges from CHALL(.), A can do so by asking INV(.) to invert the public
label of any vertex in G, say L(j): `(j) = INV(L(j)). And then, for each other
challenge, say L(i) (wlog assume that i < j), A can compute its RSA inversion
as `(i) = z/(`(j)−1sx) mod N where z, x are parts of a signature on edge {i, j}
(either asked explicitly by F or obtained via composition). To conclude, if F
asks A to sign a connected graph G with m vertices, in order to return RSA
inversions of m challenges, A needs m calls to INV(.).
In the general case, the graph G that F asks A to sign can be divided into some
connected sub-graphs. Suppose that F outputs a forged signature on edge {i′, j′}
which is not on the transitive closure of G. Using the similar argument we made
in the proof of Theorem 1, i′ and j′ are on two different connected sub-graphs
of G. This implies that the forged signature connect two sub-graphs of G. We
know that for each connected graph of m vertices, A needs to call INV(.) m times
to answer challenges from CHALL(.). But now, thank to F , two disjoint connected
sub-graphs are connected together for free, therefore, A saves one call to INV(.)
which proves the theorem.

ut
Note that, in the proof of Theorem 2, we do not require x to be `-bit long (or
strictly less than e). Therefore, our proposed scheme can be less restricted, yet
enjoys stronger security comparing to the case of security under the strong RSA
assumption.

5 Conclusion and Future Works

We have presented a new transitive signature scheme and proved its security. Our
scheme can provide forward security by employing a readily available key-evolving
protocol of [7]. In addition, Our inability to prove the security of our scheme in case
of adaptive chosen-message attacks assuming the strong RSA assumption and the

fact that the less restricted version of our scheme easily enjoys better security proof
are evidences (although weak) that one-way trapdoor permutation is not enough to
construct a secure transitive signature scheme [10]. Our future work is to show that
such claim is true.

Acknowledgement

The first author sincerely thanks anonymous reviewers of ACNS 2005 for their in-
sightful comments. This work is supported by a grant No.R12-2003-004-01004-0 from
Ministry of Commerce, Industry and Energy.

References

1. Silvio Micali and Ronald L. Rivest, “Transitive Signature Schemes”, In the Proceedings of the
Cryptographer’s Track at the RSA Conference 2002, Bart Preneel (Ed.), Springer-Verlag, LNCS
2271, pp. 236-243, 2002.

2. Mihir Bellare and Gregory Neven, “Transitive Signatures based on Factoring and RSA”, In
the Proceedings of ASIACRYPT’02, Y. Zheng (Ed.), Springer-Verlag, LNCS 2501, pp. 397-414,
2002.

3. Mihir Bellare and Gregory Neven, “Transitive Signatures: New Schemes and Proofs”, Available
at http://eprint.iacr.org/2004/215/.

4. Mihir Bellare and Phillip Rogaway, “Random Oracles are Practical: A Paradigm for Design-
ing Efficient Protocols”, In the Proceedings of the First Annual Conference on Computer and
Communications Security, ACM Press, pp. 62-73, 1993.

5. Robert Johnson, David Molnar, Dawn Song and David Wagner, “Homomorphic Signature
Schemes”, In the Proceedings of the Cryptographer’s Track at the RSA Conference 2002, Bart
Preneel (Ed.), Springer-Verlag, LNCS 2271, pp. 244-262, 2002.

6. Shafi Goldwasser, Silvio Micali and Ronald L. Rivest, “A Digital Signature Scheme Secure
against Adaptive Chosen-Message Attack”, SIAM Journal on Computing, 17(2), pp. 281-308,
April, 1988.

7. Gene Itkis and Leonid Reyzin, “Forward-Secure Signatures with Optimal Signing and Veri-
fying”, In the Proceedings of CRYPTO’01, J. Killian (Ed.), Springer-Verlag, LNCS 2139, pp.
332-354, 2001.

8. Louis C. Guillou and Jean J. Quisquater, “A Paradoxical Identity-Based Signature Scheme
Resulting from Zero-Knowledge”, In the Proceedings of CRYPTO’88, Shafi Goldwasser (Ed.),
Springer-Verlag, LNCS 403, pp. 21-25, 1990.

9. David Pointcheval and Jacques Stern, “Security Proofs for Signature Schemes”, In the Pro-
ceedings of EUROCRYPT’96, Ueli Maurer (Ed.), Springer-Verlag, LNCS 1070, pp. 387-398,
1996.

10. Susan Hohenberger, “The Cryptographic Impact of Groups with Infeasible Inversion”, Master
Thesis, Available at http://theory.lcs.mit.edu/ cis/cis-theses.html, May 2003.

11. Niko Baric and Birgit Pfitzmann, “Collision-free Accumulators and Fail-stop Signature Schemes
without Trees”, In the Proceedings of EUROCRYPT 97, Springer-Verlag, LNCS 1233, pp. 480–
494, 1997.

12. Eiichiro Fujisaki and Tatsuaki Okamoto, “Statistical Zero-Knowledge Protocols to Prove Modu-
lar Polynomial Relations”, In the Proceedings of CRYPTO’97, B. Kaliski (Ed.), Springer-Verlag,
LNCS 1294, pp. 16–30, 1997.

13. Mihir Bellare, Chanathip Namprempre, David Pointcheval and Michael Semanko, “The One-
More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme”, Journal
of Cryptology, 16(3), pp. 185–215, 2003.

