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Abstract— A transitive signature scheme allows a signer to publish a graph in an authenticated
and cost-saving manner. The resulting authenticated graph is indeed the transitive closure of the graph
constructed by edges which are explicitly signed by the signer. A property of the transitive signature
scheme enables such scenario is called composability. Composability means that by knowing signatures
on two edges of a triangle, one can infer to a valid signature on the other edge of the triangle without
knowledge of the signer’s secret key thereby saving the signer from signing one signature. Several
transitive signature schemes have been proposed so far [1, 2, 3]. Their security assumptions are based
on the intractability of computing discrete logarithm, inverting RSA function, factoring and solving
Diffie-Hellman problem. In this paper, we will present another transitive signature scheme based the
GQ signature scheme. The security of our proposed can be proven under the assumption that solving
the strong RSA problem is hard in case of non-adaptive chosen-message attack. In case of adaptive
chosen-message attack, similar to Bellare and Neven’s work [2, 3], we can show that breaking our
scheme is as hard as solving the one-more-RSA inversion problem.

Keywords: Transitive signature scheme, provable security, strong RSA assumption, chosen-message
attack.

1 Introduction

Graph, consisting of vertices and edges, is a very
common data structure to represent relations between
objects. For example, a graph can be used to represent
a computer network, supervisor-employee relations in
an organization, etc. In many scenarios, one needs to
publish a graph representing some structure in an au-
thenticated (and efficient) manner. Micali and Rivest
proposed a specific solution for signing a graph called
transitive signature [1]. A transitive signature scheme
allows a signer to dynamically build an authenticated
graph edge by edge. The name “transitive” comes from
the fact that, at any time, the actual authenticated
graph is the transitive closure of the graph whose edges
are signed explicitly by the signer. Therefore, to pub-
lish a graph in an authenticated manner, the signer
just needs to sign a sub-graph of the original graph
as long as this sub-graph preserves the connectivity
of the graph. It is because given a same vertex set,
two connected graphs have the same transitive closure.
Considering the fact that a graph in practice is often
complicated and transitively closed, this is much more
efficient way to sign a graph. One special property of a
transitive signature scheme which enables such behav-
ior is that it allows composition of signatures. More
specifically, if we denote an edge on a graph as {i, j}
where i, j are vertex indexes, then, given two signatures
on edge {i, j} and edge {j, k}, without the secret key of
the signer, one can produce a valid signature on edge
{i, k}. Like any standard signature scheme, a transi-
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tive signature scheme must be unforgeable under the
strongest type of attack, namely chosen-message at-
tack. However, in case of transitive signature schemes,
composability can be seen as a type of forgery because
it does not need the signer’s secret key to function.
Therefore, for a transitive signature scheme, composi-
tion of signatures requires to be the only possible type
of forgery under chosen-message attack. If a transitive
signature scheme satisfies such security requirement,
we say that it is transitively unforgeable. Another re-
quirement for a transitive signature scheme mentioned
by Micali and Rivest [1] is for privacy purpose. This
requirement states that signatures obtained via compo-
sition procedure should be indistinguishable from sig-
natures explicitly signed by the signer. It is true that
in practice, if one finds that a given signature is not
produced by the original signer, he might not accept it
even though that signature is a valid one. Bellare and
Neven argued that this is not necessary a security re-
quirement but a “correctness” requirement of the com-
posibility feature [2, 3].

To realize the transitive signature concept, four secu-
rity assumptions have been used so far. They include
the intractability assumptions of RSA inversion, com-
puting discrete logarithm, factoring and solving Diffie-
Hellman problem [1, 2, 3]. In this paper, we present
a new transitive signature scheme based on Guillou-
Quisquater (GQ for short) signature scheme [8]. Our
proposed scheme is proven to be secure against non-
adaptive chosen-message attack under the strong RSA
assumption [11, 12]. Similar to [2, 3], we can also prove
the security of our scheme in case of adaptive chosen-
message attacks assuming that the one-more-RSA in-
version problem [13] is hard.



2 Definition

2.1 Transitive Signature Scheme and Its Secu-
rity

Similar to any standard digital signature scheme,
a transitive signature scheme consist of three compo-
nents, a key generation algorithm, a signature issuing
algorithm and a signature verification algorithm. In
addition to those components, there is another one to
enable signature transitivity property which is called
signature composition algorithm. Wlog, for an undi-
rected graph G = (V,E), we assume that V ⊂ N and
the notation {i, j} represents an edge in G such that
i < j. We now describe in detail four components of a
transitive signature scheme.

• TKG is a randomized key generation algorithm
which the security parameter k as its input and
produces a key pair (tpk, tsk) including the pub-
lic key tpk and the corresponding secret key tsk.

• TESign is an edge signing algorithm which takes
the secret key tsk and two vertices i, j as its in-
put and outputs a signature on edge {i, j}, σij .
TESign can be stateful.

• TEVf is a deterministic edge signature verification
algorithm. Given the public key tpk, two vertices
i, j and a candidate signature on edge {i, j}, σ,
TEVf outputs ‘accept’ if σ is a valid signature on
edge {i, j} relative to tpk. Otherwise, it outputs
‘reject’.

• TComp is also a deterministic algorithm. TComp
takes the public key tpk, three vertices i, j, k and
two signatures σ1, σ2 on edges {i, j} and {j, k},
respectively, as its input and outputs either a
valid signature on edge {i, k} or a symbol of fail-
ure, ⊥.

We now shall define what we mean by saying that a
given transitive signature scheme is secure. As usual,
we consider the strongest kind of adversary called cho-
sen message-attack adversary, say F . Similar to [2,
3], the security of a scheme is defined via an exper-
iment in which F equipped with the signing oracle,
TESign(tsk, ., ., ), attempts to forge a valid signature.
In the experiment, after executing the key generation
procedure to generate the key pair (tpk, tsk), the sign-
ing oracle TESign(tsk, ., ., ) is made available to F . F
makes queries to the signing oracle (in an adaptive or
non-adaptive manner) with two distinct vertices i and j
per query. Let G be the graph formed by all pairs {i, j}
involved in that F ’s queries. Eventually, F will pro-
duce two vertices i′, j′ and a forged signature σ′. The
experiment will return 1 if TEVf(tpk, i′, j′, σ′) returns
‘accept’ and edge {i′, j′} is not in the transitive closure
of the graph G. Otherwise, the experiment returns 0.
We say that the given transitive signature scheme is se-
cure if for all polynomial time F , the above experiment
returns 1 with negligible probability.

2.2 The Strong RSA Assumption

A variant of the standard RSA assumption (i.e., RSA
function is one-way) were introduced in [11, 12] called
the strong RSA assumption. Intuitively speaking, the
strong RSA assumption states that given a RSA mod-
ulus N and a value α ∈ Z∗

N , it is infeasible to β ∈ Z∗
N

and an integer number r such that βr = α mod N . In
this paper, we are interested in a class of the strong
RSA assumption where N is the product of two safe
primes 1. Suppose that N is k-bit long, we define the
strong RSA assumption by saying that the successful
probability of any polynomial-time strong RSA prob-
lem solver is negligible. We state a relevant lemma
which we will use in our security proof as follows:

Lemma 1 Let G be a finite group. Suppose that e1, e2

are two integers such that gcd(e1, e2) = g and gcd(g, |G|)
= 1. Given a and b ∈ G such that ae1 = be2 , one can
compute c such that c

e2
g = a in O(log e1+e2

g ) group op-
erations.

Proof A proof of this lemma is given in [7].

2.3 The One-More-RSA Inversion Assumption

The one-more-RSA inversion problem was introduced
in [13]. The problem setting is given as follows: an ad-
versary A is equipped with two oracles, CHALL(.) and
INV(.) where CHALL(.) returns a random element in Z∗

N

(N is product of two primes) and INV(.) inverts RSA
function with respect to the RSA modulus N and e
of RSA public key (i.e., return xe−1

mod N on input
x). A’s job is to compute RSA inversion of all k chal-
lenges returned by CHALL(.) by asking strictly less k
times the RSA inversion oracle, INV(.). The one-more-
RSA inversion assumption states that the chance for A
to succeed is negligible.

3 The New Scheme

We present our proposed transitive signature scheme
as an extension of the ordinary GQ signature scheme
[8]. We name our scheme as SRSA−T S. Like previous
schemes, our scheme makes use of a standard digital
signature scheme SDS = (SKG, SSign, SVerify). We
now describe four components of SRSA−T S as follows:

Key generation. The key generation algorithm
TKG, given key parameters k and l, does the following:

1. Run SKG to generate a key pair (spk, ssk) for
SDS

2. Generate two k/2 bit safe primes p, q and com-
pute N ← pq

3. Randomly choose s from Z∗
N and an (l + 1)-bit

odd integer e and compute v ← 1/se mod N .

4. Discard p, q and output tpk = (N, e, v, spk) and
ssk = (N, e, s, ssk)

1 A prime number p = 2q + 1 is safe if q is also prime. q is also
known as Sophie Germain prime



Edge signature generation. The edge signing algo-
rithm TESign, given the secret key tsk and two vertices
i, j (i < j), outputs a signature on edge {i, j}. TESign
maintains its state which includes a vertex index set
V , a vertex label table ∆ and a vertex certificate table
Σ (we refer ∆(i), Σ(i) as the containers for labels and
certificate of vertex i). It does the following:

1. For t ∈ [i, j] do

2. If t /∈ V then

3. V ← V ∪ {t}

4. Randomly choose a secret label `(t) from Z∗
N

5. Compute the pubic label L(t)← `(t)e mod N

6. Generate vertex certificate

Σ(t)← SSign(ssk, t||L(t))

7. Randomly choose another l-bit secret label xt

8. ∆(t)← (`(t), xt, L(t))

9. Compute zi ← `(i)sxi mod N

10. Compute zj ← `(j)sxj mod N

11. Compute z ← zi/zj mod N and x← xi − xj

12. Let Ci ← (L(i),Σ(i)) and Cj ← (L(j),Σ(j))

13. Output σij ← (Ci, Cj , z, x)

Edge signature verification. The edge signature
verification algorithm TEVf, given the public key spk,
two vertices i, j (i < j) and a candidate signature on
edge {i, j}, σ, outputs either ‘accept’ or ‘reject’. It does
the following:

1. Parse σ as (Ci, Cj , z, x)

2. Parse Ci as (Li,Σ(i)) and Cj as (Lj ,Σ(i))

3. If SVerify(spk, i||Li) = ‘reject’ ∨ SVerify(spk, j||Lj)
= ‘reject’

4. then Return ‘reject’

5. If not (|x| < 2l) then Return ‘reject’

6. If zevx 6= Li/Lj mod N then Return ‘reject’
Else Return ‘accept’

We can easily show that the edge signature verification
algorithm always returns ‘accept’ if σ is a valid signa-
ture because zevx =

(
`(i)sxi`(j)−1s−xj

)e (1/se)xi−xj =
`(i)e`(j)−e = L(i)/L(j) mod N .

Signature Composition. The signature composi-
tion algorithm TComp takes three vertices i, j, k (i <
j < k) and two signatures σ1, σ2 as its input and does
the following:

1. If TEVf(tpk, i, j, σ1) = ‘reject’ ∨ TEVf(tpk, j, k, σ2)
= ‘reject’

2. then Return ⊥

3. Parse σ1 as (Ci, Cj , z, x) and σ2 as (Cj , Ck, z′, x′)

4. Output σik ← (Ci, Ck, zz′ mod N,x + x′)

It is intuitive to see that the correctness of TComp is
satisfied since zz′ = (zi/zj)(zj/zk) = zi/zk mod N
and x + x′ = xi − xj + xj − xk = xi − xk. The two
values zz′ and x + x′ are the same values that the real
signer would produce himself for a valid signature on
edge {i, k}.

4 Security Analysis

We state the following two theorems regarding the
security of our proposed scheme.

Theorem 1 If the strong RSA assumption holds and
SDS is unforgeable under chosen-message attack, then
the SRSA−T S scheme is transitively unforgeable under
non-adaptive chosen-message attack.

Proof To prove the theorem, we consider two different
types of forger F described in the section 2.1:

• Type I Forger: F succeeds in forging a valid
signature on edge {i′, j′} where at least one of
i′ or j′ has not involved in F ’s queries to the
signing oracle. In this case, F needs at least one
forged vertex certificate since vertex certificates
are included in every edge signature. Therefore,
we can use this forged certificate(s) as the forged
signature(s) with respect to SDS which violates
our hypothesis that SDS is unforgeable.

• Type II Forger: F succeeds in forging a valid
signature on edge {i′, j′} where both i′ and j′

appear in F ’s queries to the signing oracle. In
this case, we will show that we can use F to
solve the strong RSA problem with non-negligible
probability which violates our hypothesis that the
strong RSA assumption holds. To do so, we now
construct an adversary A attacking the strong
RSA assumption which uses F as a subrountine.
Let’s recall A’s job: given N and α ∈ Z∗

N , find
β ∈ Z∗

N and an integer r such that βr = α
mod N . We now describe A in detail. A first
needs to generate tpk for F . A does so by as-
signing v = α and generates e, spk, ssk as the
real signer. A then run F with the input tpk =
(N, v, e, spk). When receiving F ’s queries which
forms the graph G, A answers the queries as fol-
lows:

– A firstly divides G into a set of disjoint sub-
graphs G′ = (V ′, E′) (V ′ ⊂ V,E′ ⊂ E) such
that each G′ is connected and signs each G′

separately.
– A does not need to sign exactly all edges

of G′, it can sign any other set of edges E′′

as long as (V ′, E′′) also forms a connected
graph. It is because the transitive closures
of G′ and G′′ are the same, therefore, by
signing the set of edges E′′, A can infer sig-
natures on edges belonging to E′ using sig-
nature composition.



We now show that A can produce signature on
edges of the graph G′ without knowing s of the
secret key by randomly generating half of secret
labels of vertices in V ′. Wlog, we also assume
that |V ′| = m is even (otherwise, A can add one
more vertex to V ′ itself). We prove the claim by
induction as follows:

– Case m = 2: Let V ′ = {i, j}, to sign the
edge {i, j}, A randomly chooses z ∈ Z∗

N

and an integer x such that |x| < 2l. A also
chooses a secret label `(i) for vertex i (or
vertex j) at random from Z∗

N . It then com-
pute public labels of two vertices

L(i) = `(i)e mod N and L(j) = zevx/L(i) mod N

and uses SDS to produce vertex certificates:

Σ(i) = SSign(ssk, i||L(i))

and

Σ(j) = SSign(ssk, j||L(j))

Finally, A returns a valid signature on edge
{i, j} as ((L(i),Σ(i)), (L(j),Σ(j)), z, x) to F .
This signature is valid because zevx = L(i)/L(j)
mod N .

– Assume that the claim is true for m = 2t
for some positive integer t, we show that the
claim is also true for m = 2t + 2. According
to the induction hypothesis, A can sign a
sub-graph G∗ = (V ∗, E∗) with |V ∗| = 2t.
For the remaining two vertices, say i, j (i <
j), A produces a signature on edge {i, j}
similar to the case m = 2. To make the
authenticated graph connected, A needs to
sign one more edge from either i or j to one
of vertex in V ∗. Suppose that A decides
to choose a secret label `(i) for the vertex
i when signing the edge {i, j}, A picks one
vertex, say w, in V ∗ that it knows w’s secret
label `(w). Then, A signs the edge {i, w} (or
{w, i} if w < i) by choosing x = 0 (in other
words, xw = xi) and computing the value z
as the real signer: z = `(i)sxi`(w)−1sxw =
`(i)/`(w)sx = `(i)/`(w) mod N . The valid
signature on the edge {i, w} is (Ci, Cw, z, x)
where Ci and Cw are taken from signatures
on edges {i, j} and {w,w′} from some vertex
w′ ∈ V ∗. To conclude, the claim is also true
for m = 2t + 2.

We have just shown that A can always answer
F ’s queries as long as F is non-adaptive. Suppose
that after the querying phase, F outputs a forged
signature on edge {i′, j′} as

σ′ = ((L(i′),Σ(i′)), (L(j′),Σ(j′)), z′, x′)

such that the edge {i′, j′} is not on the transitive
closure of the graph G formed by all F ’s queries.

Because certificates of i′ and j′ are reused, i′ and
j′ are in V . Since {i′, j′} is not the transitive clo-
sure of G, then, i′ and j′ must be on two different
disjoint connected sub-graphs of G. As we have
shown earlier, for each disjoint connected sub-
graph of G, A needs to generate half of secret
labels of vertices in that sub-graph. Therefore,
with probability 1

2 , A knows `(i′) and with prob-
ability 1

2 ·
1
2 = 1

4 , A knows both `(i′) and `(j′). If
σ′ is a valid signature on edge {i′, j′}, then, the
following equality holds:

z′evx′ = L(i′)L(j′)−1 = `(i′)e`(j′)−e mod N

⇒ vx′ =
(

`(i′)
`(j′)z′

)e

mod N

(1)
Because |x′| < 2l is enforced by the edge sig-
nature verification procedure and e is (l + 1)-bit
long, then e > |x′| and gcd(e, x′) = g is less than
e. Let r = e/g, then r > 1. Note that it is
likely that gcd(e, φ(N)) = 1 since N is prod-
uct of two safe primes. To see that, suppose
N = pq = (2p′ + 1)(2q′ + 1) and φ(N) = 4p′q′

where p, q, p′, q′ are all prime. Because A picks
e as a (l + 1)-bit odd integer, it is likely that
gcd(e, 4p′q′) = 1. As a result, gcd(g, φ(N)) is
also 1. As we know, φ(N) is the order of the
multiplicative group Z∗

N , following the Lemma
1, A can efficiently compute r-th root of v which
is its target α. So, with probability 1/4, A can
solve the strong RSA problem.

Theorem 2 If the one-more-RSA inversion assump-
tion holds and SDS is unforgeable under chosen-message
attack, then the SRSA−T S scheme is transitively un-
forgeable under adaptive chosen-message attack.

Proof Similar to the proof of Theorem 1, we also
consider two types of the forger F . We will describe
only the use of the second type of the forger F (reusing
vertex certificates) to violate the one-more-RSA inver-
sion assumption. As in [2, 3], the main idea of con-
structing an adversary A to attack the one-more-RSA
inversion assumption is to assign all challenges returned
by CHALL(.) to vertex public labels. By doing so, A can
answer all signature queries of the adaptive forger F as
follows: whenever F ask for a signature on edge {i, j},
A do the following:

• A first checks whether a signature on edge {i, j}
can be obtained via composition (of signatures
previously asked by F .

• If A cannot answer F ’s query using signature
composition (i.e., {i, j} are not on the transitive
closure the graph formed by signatures previously
asked by F), A proceeds as follows:

1. If vertex i has not been created, A lets L(i) =
CHALL(.). A then computes vertex certifi-
cate for i, Ci, as the real signer.



2. If vertex j has not been created, A lets L(j) =
CHALL(.). A then computes vertex certifi-
cate for j, Cj , as the real signer.

3. A computes

z = INV

(
L(j)L(j)−1

vx

)
where x is randomly chosen as long as it sat-
isfies the TVerify’s second check. A returns
a valid signature on edge {i, j} as (Ci, Cj , z, x).
This signature is valid because the following
equality always holds:

zevx = L(i)L(j)−1 mod N

As we can see, to answer every signature query
from F , A need to ask the RSA inversion oracle
INV(.) at most once. We can easily show that if
F asks for signatures forming a connected graph
G of m vertices, A needs to call INV(.) exactly
m− 1 times (since the minimal connected graph
of m vertices consists of m − 1 edges). Since G
has m vertices which means A has to return RSA
inversion of m challenges from CHALL(.), A can do
so by asking INV(.) to invert the public label of
any vertex in G, say L(j): `(j) = INV(L(j)). And
then, for each other challenge, say L(i) (wlog as-
sume that i < j), A can compute its RSA inver-
sion as `(i) = z/(`(j)−1sx) mod N where z, x are
parts of a signature on edge {i, j} (either asked
explicitly by F or obtained via composition). To
conclude, if F asks A to sign a connected graph
G with m vertices, in order to return RSA inver-
sions of m challenges, A needs m calls to INV(.).

In the general case, the graph G that F asks A
to sign can be divided into some connected sub-
graphs. Suppose that F outputs a forged signa-
ture on edge {i′, j′} which is not on the transi-
tive closure of G. Using the similar argument we
made in the proof of Theorem 1, i′ and j′ are on
two different connected sub-graphs of G. This im-
plies that the forged signature connect two sub-
graphs of G. We know that for each connected
graph of m vertices, A needs to call INV(.) m
times to answer challenges from CHALL(.). But
now, thank to F , two disjoint connected sub-
graphs are connected together for free, therefore,
A saves one call to INV(.) which proves the theo-
rem.

Note that, in the proof of Theorem 2, we do not
require x to be `- bit long (or strictly less than e).
Therefore, our proposed scheme can be simplified, yet
enjoys stronger security comparing to the case of secu-
rity proof under the strong RSA assumption.

5 Conclusion

We have presented a new transitive signature scheme
and proved its security. Our scheme exhibits almost the

same computational cost and signature size as in the
previous schemes (see [2, 3] for a comparison table of
previous schemes). We also note that, the secret key
in our scheme does not contain any information about
factors of the RSA modulus, therefore, it is easier to
implement a key evolving protocol to provide forward
security (for example, using the key evolving protocol
in [7]). Our inability to prove the security of our scheme
in case of adaptive chosen-message attacks assuming
the strong RSA assumption intensifies the belief that
one-way trapdoor permutation (thus standard digital
signature scheme) is not enough to construct a secure
transitive signature scheme [10]. Our future work is to
show that such claim is true.
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